版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的圖象大致為A. B. C. D.2.在中,為中點(diǎn),且,若,則()A. B. C. D.3.如圖所示的程序框圖,當(dāng)其運(yùn)行結(jié)果為31時(shí),則圖中判斷框①處應(yīng)填入的是()A. B. C. D.4.設(shè)為自然對(duì)數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.5.若集合,,則=()A. B. C. D.6.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.7.已知函數(shù),下列結(jié)論不正確的是()A.的圖像關(guān)于點(diǎn)中心對(duì)稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關(guān)于直線對(duì)稱 D.的最大值是8.下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位9.若集合,,則A. B. C. D.10.如果,那么下列不等式成立的是()A. B.C. D.11.根據(jù)黨中央關(guān)于“精準(zhǔn)”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟(jì)部門派四位專家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.12.如圖,長(zhǎng)方體中,,,點(diǎn)T在棱上,若平面.則()A.1 B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知扇形的半徑為1,面積為,則_____.14.設(shè)f(x)=etx(t>0),過點(diǎn)P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點(diǎn)為Q,曲線C過點(diǎn)Q的切線交x軸于點(diǎn)R,若S(1,f(1)),則△PRS的面積的最小值是_____.15.在平面直角坐標(biāo)系中,若函數(shù)在處的切線與圓存在公共點(diǎn),則實(shí)數(shù)的取值范圍為_____.16.若,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線C1和C2的極坐標(biāo)方程:(Ⅱ)設(shè)射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點(diǎn),求|AB|的值.18.(12分)已知函數(shù),.(1)當(dāng)時(shí),①求函數(shù)在點(diǎn)處的切線方程;②比較與的大小;(2)當(dāng)時(shí),若對(duì)時(shí),,且有唯一零點(diǎn),證明:.19.(12分)某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級(jí)過濾,使用壽命為十年如圖所示兩個(gè)二級(jí)過濾器采用并聯(lián)安裝,再與一級(jí)過濾器串聯(lián)安裝.其中每一級(jí)過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級(jí)濾芯和二級(jí)濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購(gòu)買濾芯,則一級(jí)濾芯每個(gè)160元,二級(jí)濾芯每個(gè)80元.若客戶在使用過程中單獨(dú)購(gòu)買濾芯則一級(jí)濾芯每個(gè)400元,二級(jí)濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購(gòu)買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級(jí)過濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級(jí)過濾器更換的濾芯個(gè)數(shù)制成的條形圖.表1:一級(jí)濾芯更換頻數(shù)分布表一級(jí)濾芯更換的個(gè)數(shù)89頻數(shù)6040圖2:二級(jí)濾芯更換頻數(shù)條形圖以100個(gè)一級(jí)過濾器更換濾芯的頻率代替1個(gè)一級(jí)過濾器更換濾芯發(fā)生的概率,以200個(gè)二級(jí)過濾器更換濾芯的頻率代替1個(gè)二級(jí)過濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級(jí)濾芯總數(shù),求的分布列及數(shù)學(xué)期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購(gòu)買的一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買各級(jí)濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.20.(12分)設(shè)橢圓:的右焦點(diǎn)為,右頂點(diǎn)為,已知橢圓離心率為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為3.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線斜率的取值范圍.21.(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,且兩坐標(biāo)系取相同的長(zhǎng)度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標(biāo)方程:(1)求曲線的極坐標(biāo)方程;(2)若直線與曲線交于、兩點(diǎn),求的最大值.22.(10分)若關(guān)于的方程的兩根都大于2,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由題可得函數(shù)的定義域?yàn)?,因?yàn)?,所以函?shù)為奇函數(shù),排除選項(xiàng)B;又,,所以排除選項(xiàng)A、C,故選D.2、B【解析】
選取向量,為基底,由向量線性運(yùn)算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,平面向量基本定理,屬于基礎(chǔ)題.3、C【解析】
根據(jù)程序框圖的運(yùn)行,循環(huán)算出當(dāng)時(shí),結(jié)束運(yùn)行,總結(jié)分析即可得出答案.【詳解】由題可知,程序框圖的運(yùn)行結(jié)果為31,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.此時(shí)輸出.故選:C.【點(diǎn)睛】本題考查根據(jù)程序框圖的循環(huán)結(jié)構(gòu),已知輸出結(jié)果求條件框,屬于基礎(chǔ)題.4、D【解析】
利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D【點(diǎn)睛】本小題主要考查函數(shù)值的計(jì)算,屬于基礎(chǔ)題.5、C【解析】試題分析:化簡(jiǎn)集合故選C.考點(diǎn):集合的運(yùn)算.6、B【解析】
先判斷命題的真假,進(jìn)而根據(jù)復(fù)合命題真假的真值表,即可得答案.【詳解】,,因?yàn)椋?,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點(diǎn)睛】本題考查真假命題的概念,以及真值表的應(yīng)用,解題的關(guān)鍵是判斷出命題的真假,難度較易.7、D【解析】
通過三角函數(shù)的對(duì)稱性以及周期性,函數(shù)的最值判斷選項(xiàng)的正誤即可得到結(jié)果.【詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時(shí),或時(shí),即在上單調(diào)遞增,在和上單調(diào)遞減;且,,,故D錯(cuò)誤.故選:.【點(diǎn)睛】本題考查三角函數(shù)周期性和對(duì)稱性的判斷,利用導(dǎo)數(shù)判斷函數(shù)最值,屬于中檔題.8、D【解析】
根據(jù)函數(shù)圖像得到函數(shù)的一個(gè)解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個(gè)單位得到.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.9、C【解析】
解一元次二次不等式得或,利用集合的交集運(yùn)算求得.【詳解】因?yàn)榛?,,所以,故選C.【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于容易題.10、D【解析】
利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.11、A【解析】
每個(gè)縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項(xiàng):【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.12、D【解析】
根據(jù)線面垂直的性質(zhì),可知;結(jié)合即可證明,進(jìn)而求得.由線段關(guān)系及平面向量數(shù)量積定義即可求得.【詳解】長(zhǎng)方體中,,點(diǎn)T在棱上,若平面.則,則,所以,則,所以,故選:D.【點(diǎn)睛】本題考查了直線與平面垂直的性質(zhì)應(yīng)用,平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,利用扇形面積公式求出圓心角,再根據(jù)等腰三角形性質(zhì)求出,利用向量的數(shù)量積公式求出.【詳解】設(shè)角,則,,所以在等腰三角形中,,則.故答案為:.【點(diǎn)睛】本題考查扇形的面積公式和向量的數(shù)量積公式,屬于基礎(chǔ)題.14、【解析】
計(jì)算R(t,0),PR=t﹣(t),△PRS的面積為S,導(dǎo)數(shù)S′,由S′=0得t=1,根據(jù)函數(shù)的單調(diào)性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導(dǎo)數(shù)f′(x)=tetx,∴過Q的切線斜率k=t,設(shè)R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導(dǎo)數(shù)S′,由S′=0得t=1,當(dāng)t>1時(shí),S′>0,當(dāng)0<t<1時(shí),S′<0,∴t=1為極小值點(diǎn),也為最小值點(diǎn),∴△PRS的面積的最小值為.故答案為:.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求面積的最值問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.15、【解析】
利用導(dǎo)數(shù)的幾何意義可求得函數(shù)在處的切線,再根據(jù)切線與圓存在公共點(diǎn),利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數(shù)在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義求解切線方程的問題,同時(shí)也考查了根據(jù)直線與圓的位置關(guān)系求解參數(shù)范圍的問題,屬于基礎(chǔ)題.16、13【解析】
由導(dǎo)函數(shù)的應(yīng)用得:設(shè),,所以,,又,所以,即,由二項(xiàng)式定理:令得:,再由,求出,從而得到的值;【詳解】解:設(shè),,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【點(diǎn)睛】本題考查了導(dǎo)函數(shù)的應(yīng)用、二項(xiàng)式定理,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)根據(jù),可得曲線C1的極坐標(biāo)方程,然后先計(jì)算曲線C2的普通方程,最后根據(jù)極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式,可得結(jié)果.(Ⅱ)將射線θ=分別與曲線C1和C2極坐標(biāo)方程聯(lián)立,可得A,B的極坐標(biāo),然后簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】(Ⅰ)由所以曲線的極坐標(biāo)方程為,曲線的普通方程為則曲線的極坐標(biāo)方程為(Ⅱ)令,則,,則,即,所以,,故.【點(diǎn)睛】本題考查極坐標(biāo)方程和參數(shù)方程與直角坐標(biāo)方程的轉(zhuǎn)化,以及極坐標(biāo)方程中的幾何意義,屬基礎(chǔ)題.18、(1)①見解析,②見解析;(2)見解析【解析】
(1)①把代入函數(shù)解析式,求出函數(shù)的導(dǎo)函數(shù)得到,再求出,利用直線方程的點(diǎn)斜式求函數(shù)在點(diǎn)處的切線方程;②令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.(2)由題意,,在上有唯一零點(diǎn).利用導(dǎo)數(shù)可得當(dāng)時(shí),在上單調(diào)遞減,當(dāng),時(shí),在,上單調(diào)遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調(diào)遞減,進(jìn)一步得到在上單調(diào)遞增,由此可得.【詳解】解:(1)①當(dāng)時(shí),,,,又,切線方程為,即;②令,則,在上單調(diào)遞減.又,當(dāng)時(shí),,即;當(dāng)時(shí),,即;當(dāng)時(shí),,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點(diǎn).當(dāng)時(shí),,在上單調(diào)遞減,當(dāng),時(shí),,在,上單調(diào)遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調(diào)遞減,又,,.在上單調(diào)遞增,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查邏輯思維能力與推理論證能力,屬難題.19、(1)0.024;(2)分布列見解析,;(3)【解析】
(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過濾器均需要更換4個(gè)濾芯,而由一級(jí)濾芯更換頻數(shù)分布表和二級(jí)濾芯更換頻數(shù)條形圖可知,一級(jí)過濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過濾器需要更換4個(gè)濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級(jí)濾芯更換頻數(shù)條形圖可知,一個(gè)二級(jí)過濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學(xué)期望;(3)由,且,可知若,則,或若,則,再分別計(jì)算兩種情況下的所需總費(fèi)用的期望值比較大小即可.【詳解】(1)由題意知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過濾器均需要更換4個(gè)濾芯,設(shè)“一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16”為事件,因?yàn)橐粋€(gè)一級(jí)過濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過濾器需要更換4個(gè)濾芯的概率為0.2,所以.(2)由柱狀圖知,一個(gè)二級(jí)過濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個(gè)).或用分?jǐn)?shù)表示也可以為89101112(個(gè)).(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買各級(jí)濾芯所需總費(fèi)用(單位:元)因?yàn)?,且?°若,則,(元);2°若,則,(元).因?yàn)?,故選擇方案:.解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買一級(jí)濾芯和二級(jí)濾芯所需費(fèi)用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買的各級(jí)濾芯所需總費(fèi)用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因?yàn)樗赃x擇方案:.【點(diǎn)睛】此題考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法及應(yīng)用,考查古典概型,考查運(yùn)算求解能力,屬于中檔題.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由題意可得,,,解得即可求出橢圓的C的方程;(Ⅱ)由已知設(shè)直線l的方程為y=k(x-2),(k≠0),聯(lián)立直線方程和橢圓方程,化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系求得B的坐標(biāo),再寫出MH所在直線方程,求出H的坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科貿(mào)職業(yè)學(xué)院《學(xué)校課外音樂活動(dòng)組織》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東交通職業(yè)技術(shù)學(xué)院《建設(shè)項(xiàng)目環(huán)境影響評(píng)價(jià)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東技術(shù)師范大學(xué)《水文預(yù)報(bào)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東潮州衛(wèi)生健康職業(yè)學(xué)院《界面設(shè)計(jì)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 女員工培訓(xùn)課件
- 廣安職業(yè)技術(shù)學(xué)院《運(yùn)籌學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《巖石的破壞判據(jù)》課件
- 贛南師范大學(xué)《Moecuar》2023-2024學(xué)年第一學(xué)期期末試卷
- nfabe培訓(xùn)課件教學(xué)課件
- 甘孜職業(yè)學(xué)院《二外(法語-德語-俄語-阿拉伯語)》2023-2024學(xué)年第一學(xué)期期末試卷
- 鐵路試驗(yàn)檢測(cè)技術(shù)
- 2023-2024人教版小學(xué)2二年級(jí)數(shù)學(xué)下冊(cè)(全冊(cè))教案【新教材】
- 小學(xué)奧數(shù)基礎(chǔ)教程(附練習(xí)題和答案)
- 九年級(jí)語文上學(xué)期教學(xué)工作總結(jié)
- TWSJD 002-2019 醫(yī)用清洗劑衛(wèi)生要求
- GB/T 7324-2010通用鋰基潤(rùn)滑脂
- 杭州地鐵一號(hào)線工程某盾構(gòu)區(qū)間實(shí)施施工組織設(shè)計(jì)
- 帶式輸送機(jī)設(shè)計(jì)
- 闌尾炎的CT診斷課件
- 現(xiàn)代漢語常用詞匯表(兩字)
- 經(jīng)典分鏡教程-電影分鏡頭畫面設(shè)計(jì)機(jī)位圖設(shè)計(jì)課件
評(píng)論
0/150
提交評(píng)論