版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a>b>cB.一次函數(shù)y=ax+c的圖象不經第四象限C.m(am+b)+b<a(m是任意實數(shù))D.3b+2c>02.如圖,在平面直角坐標系中,△ABC位于第二象限,點B的坐標是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關于于x軸對稱的△A2B2C2,則點B的對應點B2的坐標是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)3.下列各式中計算正確的是A. B. C. D.4.剪紙是我國傳統(tǒng)的民間藝術,下列剪紙作品中既不是軸對稱圖形,也不是中心對稱圖形的是()A. B. C. D.5.下列計算中,錯誤的是()A.; B.; C.; D..6.若M(2,2)和N(b,﹣1﹣n2)是反比例函數(shù)y=的圖象上的兩個點,則一次函數(shù)y=kx+b的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限7.一個不透明的袋子里裝著質地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.8.如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于()A.20 B.15 C.10 D.59.如右圖是用八塊完全相同的小正方體搭成的幾何體,從正面看幾何體得到的圖形是()A. B.C. D.10.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm11.某美術社團為練習素描,他們第一次用120元買了若干本相同的畫冊,第二次用240元在同一家商店買與上一次相同的畫冊,這次商家每本優(yōu)惠4元,結果比上次多買了20本.求第一次買了多少本畫冊?設第一次買了x本畫冊,列方程正確的是()A. B.C. D.12.如圖,、是的切線,點在上運動,且不與,重合,是直徑.,當時,的度數(shù)是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知等邊△ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),使AE=CF,連接AF、BE相交于點P,當點E從點A運動到點C時,點P經過點的路徑長為__.14.如圖的三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點B的直線折疊三角形,使點C落在AB邊的點E處,折痕為BD.則△AED的周長為____cm.15.一個斜面的坡度i=1:0.75,如果一個物體從斜面的底部沿著斜面方向前進了20米,那么這個物體在水平方向上前進了_____米.16.將一張長方形紙片折疊成如圖所示的形狀,若∠DBC=56°,則∠1=_____°.17.下表記錄了甲、乙、丙、丁四名跳遠運動員選拔賽成績的平均數(shù)與方差s2:甲乙丙丁平均數(shù)(cm)561560561560方差s2(cm2)3.53.515.516.5根據(jù)表中數(shù)據(jù),要從中選擇一名成績好又發(fā)揮穩(wěn)定的運動員參加比賽,應該選擇_____.18.將直角邊長為5cm的等腰直角△ABC繞點A逆時針旋轉15°后,得到△AB′C′,則圖中陰影部分的面積是_____cm1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應建在離A站多少千米的地方?20.(6分)如圖,在方格紙中.(1)請在方格紙上建立平面直角坐標系,使,,并求出點坐標;(2)以原點為位似中心,相似比為2,在第一象限內將放大,畫出放大后的圖形;(3)計算的面積.21.(6分)已知關于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實數(shù)m取何值,方程總有兩個實數(shù)根;(2)若方程兩個根均為正整數(shù),求負整數(shù)m的值.22.(8分)趙亮同學想利用影長測量學校旗桿的高度,如圖,他在某一時刻立1米長的標桿測得其影長為1.2米,同時旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測得其長度為9.6米和2米,則學校旗桿的高度為________米.23.(8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求證:△ABC≌△AED;當∠B=140°時,求∠BAE的度數(shù).24.(10分)已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.(1)試判斷直線DE與CF的位置關系,并說明理由;(2)若∠A=30°,AB=4,求的長.25.(10分)如圖,某反比例函數(shù)圖象的一支經過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.求該反比例函數(shù)的解析式;若△ABC的面積為6,求直線AB的表達式.26.(12分)如圖,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點均在小正方形的頂點上.在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點C和點D均在小正方形的頂點上;在圖中畫出以線段AB為一腰,底邊長為2的等腰三角形ABE,點E在小正方形的頂點上,連接CE,請直接寫出線段CE的長.27.(12分)如圖①,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關系,并說明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】解:A.由二次函數(shù)的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項錯誤;B.∵a>0,c<0,∴一次函數(shù)y=ax+c的圖象經一、三、四象限,故此選項錯誤;C.當x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當x=1,y>0,∴當x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項正確;故選D.點睛:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關系,二次函數(shù)與方程之間的轉換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據(jù)圖象判斷其值.2、D【解析】
首先利用平移的性質得到△A1B1C1中點B的對應點B1坐標,進而利用關于x軸對稱點的性質得到△A2B2C2中B2的坐標,即可得出答案.【詳解】解:把△ABC向右平移4個單位長度得到△A1B1C1,此時點B(-5,2)的對應點B1坐標為(-1,2),則與△A1B1C1關于于x軸對稱的△A2B2C2中B2的坐標為(-1,-2),故選D.【點睛】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關鍵.3、B【解析】
根據(jù)完全平方公式對A進行判斷;根據(jù)冪的乘方與積的乘方對B、C進行判斷;根據(jù)合并同類項對D進行判斷.【詳解】A.,故錯誤.B.,正確.C.,故錯誤.D.,故錯誤.故選B.【點睛】考查完全平方公式,合并同類項,冪的乘方與積的乘方,熟練掌握它們的運算法則是解題的關鍵.4、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;D、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤,故選C.【點睛】本題主要考查軸對稱圖形和中心對稱圖形,在平面內,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內,如果把一個圖形繞某個點旋轉180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.5、B【解析】分析:根據(jù)零指數(shù)冪、有理數(shù)的乘方、分數(shù)指數(shù)冪及負整數(shù)指數(shù)冪的意義作答即可.詳解:A.,故A正確;B.,故B錯誤;C..故C正確;D.,故D正確;故選B.點睛:本題考查了零指數(shù)冪、有理數(shù)的乘方、分數(shù)指數(shù)冪及負整數(shù)指數(shù)冪的意義,需熟練掌握且區(qū)分清楚,才不容易出錯.6、C【解析】
把(2,2)代入得k=4,把(b,﹣1﹣n2)代入得,k=b(﹣1﹣n2),即根據(jù)k、b的值確定一次函數(shù)y=kx+b的圖象經過的象限.【詳解】解:把(2,2)代入,得k=4,把(b,﹣1﹣n2)代入得:k=b(﹣1﹣n2),即,∵k=4>0,<0,∴一次函數(shù)y=kx+b的圖象經過第一、三、四象限,故選C.【點睛】本題考查了反比例函數(shù)圖象的性質以及一次函數(shù)經過的象限,根據(jù)反比例函數(shù)的性質得出k,b的符號是解題關鍵.7、A【解析】
列表或畫樹狀圖得出所有等可能的結果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:
紅
紅
紅
綠
綠
紅
﹣﹣﹣
(紅,紅)
(紅,紅)
(綠,紅)
(綠,綠)
紅
(紅,紅)
﹣﹣﹣
(紅,紅)
(綠,紅)
(綠,紅)
紅
(紅,紅)
(紅,紅)
﹣﹣﹣
(綠,紅)
(綠,紅)
綠
(紅,綠)
(紅,綠)
(紅,綠)
﹣﹣﹣
(綠,綠)
綠
(紅,綠)
(紅,綠)
(紅,綠)
(綠,綠)
﹣﹣﹣
∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.8、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等邊三角形.∴△ABC的周長=3AB=1.故選B9、B【解析】
找到從正面看所得到的圖形即可,注意所有從正面看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從正面看該幾何體,有3列正方形,分別有:2個,2個,2個,如圖.故選B.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看到的視圖,屬于基礎題型.10、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據(jù)底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點:圓錐的計算.11、A【解析】分析:由設第一次買了x本資料,則設第二次買了(x+20)本資料,由等量關系:第二次比第一次每本優(yōu)惠4元,即可得到方程.詳解:設他上月買了x本筆記本,則這次買了(x+20)本,根據(jù)題意得:.故選A.點睛:本題考查了分式方程的應用,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程解答即可.12、B【解析】
連接OB,由切線的性質可得,由鄰補角相等和四邊形的內角和可得,再由圓周角定理求得,然后由平行線的性質即可求得.【詳解】解,連結OB,∵、是的切線,∴,,則,∵四邊形APBO的內角和為360°,即,∴,又∵,,∴,∵,∴,∵,∴,故選:B.【點睛】本題主要考查了切線的性質、圓周角定理、平行線的性質和四邊形的內角和,解題的關鍵是靈活運用有關定理和性質來分析解答.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、π.【解析】
由等邊三角形的性質證明△AEB≌△CFA可以得出∠APB=120°,點P的路徑是一段弧,由弧線長公式就可以得出結論.【詳解】:∵△ABC為等邊三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,,
∴△ABE≌△CAF(SAS),
∴∠ABE=∠CAF.
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°.
∴∠APB=180°-∠APE=120°.
∴當AE=CF時,點P的路徑是一段弧,且∠AOB=120°,
又∵AB=6,
∴OA=2,
點P的路徑是l=,
故答案為.【點睛】本題考查了等邊三角形的性質的運用,全等三角形的判定及性質的運用,弧線長公式的運用,解題的關鍵是證明三角形全等.14、7【解析】
根據(jù)翻折變換的性質可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周長=AC+AE.【詳解】∵折疊這個三角形點C落在AB邊上的點E處,折痕為BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案為:7.【點睛】本題考查了翻折變換的性質,翻折前后對應邊相等,對應角相等.15、1.【解析】
直接根據(jù)題意得出直角邊的比值,即可表示出各邊長進而得出答案.【詳解】如圖所示:∵坡度i=1:0.75,∴AC:BC=1:0.75=4:3,∴設AC=4x,則BC=3x,∴AB==5x,∵AB=20m,∴5x=20,解得:x=4,故3x=1,故這個物體在水平方向上前進了1m.故答案為:1.【點睛】此題主要考查坡度的運用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關系是.16、62【解析】
根據(jù)折疊的性質得出∠2=∠ABD,利用平角的定義解答即可.【詳解】解:如圖所示:由折疊可得:∠2=∠ABD,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∵AE//BC,∴∠1=∠2=62°,故答案為62.【點睛】本題考查了折疊變換的知識以及平行線的性質的運用,根據(jù)折疊的性質得出∠2=∠ABD是關鍵.17、甲【解析】
首先比較平均數(shù),平均數(shù)相同時選擇方差較小的運動員參加.【詳解】∵,∴從甲和丙中選擇一人參加比賽,∵,∴選擇甲參賽,故答案為甲.【點睛】此題考查了平均數(shù)和方差,關鍵是根據(jù)方差反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.18、【解析】∵等腰直角△ABC繞點A逆時針旋轉15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴陰影部分的面積=×5×tan30°×5=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、20千米【解析】
由勾股定理兩直角邊的平方和等于斜邊的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜邊相等兩次利用勾股定理得到AD2+AE2=BE2+BC2,設AE為x,則BE=10﹣x,將DA=8,CB=2代入關系式即可求得.【詳解】解:設基地E應建在離A站x千米的地方.則BE=(50﹣x)千米在Rt△ADE中,根據(jù)勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根據(jù)勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D兩村到E點的距離相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E應建在離A站20千米的地方.考點:勾股定理的應用.20、(1)作圖見解析;.(2)作圖見解析;(3)1.【解析】分析:(1)直接利用A,C點坐標得出原點位置進而得出答案;(2)利用位似圖形的性質即可得出△A'B'C';(3)直接利用(2)中圖形求出三角形面積即可.詳解:(1)如圖所示,即為所求的直角坐標系;B(2,1);(2)如圖:△A'B'C'即為所求;(3)S△A'B'C'=×4×8=1.點睛:此題主要考查了位似變換以及三角形面積求法,正確得出對應點位置是解題的關鍵.畫位似圖形的一般步驟為:①確定位似中心;②分別連接并延長位似中心和關鍵點;③根據(jù)位似比,確定位似圖形的關鍵點;④順次連接上述各點,得到放大或縮小的圖形.21、(1)見解析;(2)m=-1.【解析】
(1)根據(jù)方程的系數(shù)結合根的判別式,即可得出△=1>1,由此即可證出:無論實數(shù)m取什么值,方程總有兩個不相等的實數(shù)根;
(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根據(jù)已知條件即可得出結論.【詳解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴無論m取何值,(m+1)2恒大于等于1∴原方程總有兩個實數(shù)根(2)原方程可化為:(x-1)(x-m-2)=1∴x1=1,x2=m+2∵方程兩個根均為正整數(shù),且m為負整數(shù)∴m=-1.【點睛】本題考查了一元二次方程與根的判別式,解題的關鍵是熟練的掌握根的判別式與根據(jù)因式分解法解一元二次方程.22、10【解析】試題分析:根據(jù)相似的性質可得:1:1.2=x:9.6,則x=8,則旗桿的高度為8+2=10米.考點:相似的應用23、(1)詳見解析;(2)80°.【分析】(1)根據(jù)∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據(jù)全等三角形對應角相等,運用五邊形內角和,即可得到∠BAE的度數(shù).【解析】
(1)根據(jù)∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據(jù)全等三角形對應角相等,運用五邊形內角和,即可得到∠BAE的度數(shù).【詳解】證明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);解:(2)當∠B=140°時,∠E=140°,又∵∠BCD=∠EDC=90°,∴五邊形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【點睛】考點:全等三角形的判定與性質.24、(1)見解析;(2).【解析】
(1)先證明△OAC≌△ODC,得出∠1=∠2,則∠2=∠4,故OC∥DE,即可證得DE⊥CF;(2)根據(jù)OA=OC得到∠2=∠3=30°,故∠COD=120°,再根據(jù)弧長公式計算即可.【詳解】解:(1)DE⊥CF.理由如下:∵CF為切線,∴OC⊥CF,∵CA=CD,OA=OD,OC=OC,∴△OAC≌△ODC,∴∠1=∠2,而∠A=∠4,∴∠2=∠4,∴OC∥DE,∴DE⊥CF;(2)∵OA=OC,∴∠1=∠A=30°,∴∠2=∠3=30°,∴∠COD=120°,∴.【點睛】本題考查了全等三角形的判定與性質與弧長的計算,解題的關鍵是熟練的掌握全等三角形的判定與性質與弧長的公式.25、(1)y;(2)yx+1.【解析】
(1)把A的坐標代入反比例函數(shù)的解析式即可求得;(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長,然后利用三角形的面積公式即可得到一個關于b的方程,求得b的值,進而求得a的值,根據(jù)待定系數(shù)法,可得答案.【詳解】(1)由題意得:k=xy=2×3=6,∴反比例函數(shù)的解析式為y;(2)設B點坐標為(a,b),如圖,作AD⊥BC于D,則D(2,b),∵反比例函數(shù)y的圖象經過點B(a,b),∴b,∴AD=3,∴S△ABCBC?ADa(3)=6,解得a=6,∴b1,∴B(6,1),設AB的解析式為y=kx+b,將A(2,3),B(6,1)代入函數(shù)解析式,得,解得:,所以直線AB的解析式為yx+1.【點睛】本題考查了利用待定系數(shù)法求反比例函數(shù)以及一次函數(shù)解析式,熟練掌握待定系數(shù)法以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 名師個人年度工作計劃模板范文
- 體育部部長工作計劃
- 汽車銷售工作計劃書范文
- 九年級下學期數(shù)學教學計劃
- 初中生如何做好學習計劃
- 2025年度工作計劃書范本
- 《外圍設備》課件
- 淺談新時期計劃生育服務管理改革的思考
- 小班第一學期班級教學計劃
- 合規(guī)管理審計合同模板
- 五年級上冊數(shù)學試題試卷(8篇)
- 中國慢性腎臟病早期評價與管理指南課件
- 2024-2025學年四年級科學上冊第三單元《運動和力》測試卷(教科版)
- 安全漏洞挖掘技術
- 賽碼網行測題題庫2024
- 中國血液透析用血管通路專家共識(全文)
- 10S507 建筑小區(qū)埋地塑料給水管道施工
- DL∕T 5028.4-2015 電力工程制圖標準 第4部分:土建部分
- 2024年北京電子科技職業(yè)學院高職單招筆試歷年職業(yè)技能測驗典型例題與考點解析含答案
- DL5000-火力發(fā)電廠設計技術規(guī)程
- 八年級趣味數(shù)學100題
評論
0/150
提交評論