河北省保定市阜平中學(xué)2022年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
河北省保定市阜平中學(xué)2022年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
河北省保定市阜平中學(xué)2022年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
河北省保定市阜平中學(xué)2022年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
河北省保定市阜平中學(xué)2022年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題,,則是()A., B.,.C., D.,.2.已知函數(shù)()的部分圖象如圖所示.則()A. B.C. D.3.設(shè)集合,,則()A. B.C. D.4.在天文學(xué)中,天體的明暗程度可以用星等或亮度來(lái)描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽(yáng)的星等是–26.7,天狼星的星等是–1.45,則太陽(yáng)與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.15.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競(jìng)賽,其中甲不能參加生物競(jìng)賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.966.在平面直角坐標(biāo)系中,已知是圓上兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)到直線的距離之和的最大值為,若數(shù)列的前項(xiàng)和恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.已知定義在上的函數(shù),若函數(shù)為偶函數(shù),且對(duì)任意,,都有,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.陀螺是中國(guó)民間較早的娛樂(lè)工具之一,但陀螺這個(gè)名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書(shū)中才正式出現(xiàn).如圖所示的網(wǎng)格紙中小正方形的邊長(zhǎng)均為1,粗線畫(huà)出的是一個(gè)陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.9.如圖,正方形網(wǎng)格紙中的實(shí)線圖形是一個(gè)多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對(duì) B.3對(duì)C.4對(duì) D.5對(duì)10.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個(gè)單位長(zhǎng)度后得到的圖象關(guān)于軸對(duì)稱;③若在上恰有7個(gè)零點(diǎn),則的取值范圍為;④若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個(gè)數(shù)為()A.1 B.2 C.3 D.411.設(shè)函數(shù)若關(guān)于的方程有四個(gè)實(shí)數(shù)解,其中,則的取值范圍是()A. B. C. D.12.一個(gè)由兩個(gè)圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時(shí),液面以上空余部分的高為,如圖2放置容器時(shí),液面以上空余部分的高為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則函數(shù)的最大值為_(kāi)_____.14.如圖,在一個(gè)倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個(gè)半徑為1的不銹鋼制的實(shí)心半球后,半球的大圓面、水面均與容器口相平,則的值為_(kāi)___________.15.已知數(shù)列的前項(xiàng)滿足,則______.16.如圖,在矩形中,為邊的中點(diǎn),,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積為.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù),.(1)解不等式;(2)若對(duì)任意的實(shí)數(shù)恒成立,求的取值范圍.18.(12分)如圖,在四棱錐中,底面是矩形,是的中點(diǎn),平面,且,.()求與平面所成角的正弦.()求二面角的余弦值.19.(12分)如圖,已知橢圓經(jīng)過(guò)點(diǎn),且離心率,過(guò)右焦點(diǎn)且不與坐標(biāo)軸垂直的直線與橢圓相交于兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右頂點(diǎn)為,線段的中點(diǎn)為,記直線的斜率分別為,求證:為定值.20.(12分)記無(wú)窮數(shù)列的前項(xiàng)中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項(xiàng)和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.21.(12分)如圖,正方形是某城市的一個(gè)區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設(shè)置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨(dú)立的循環(huán)運(yùn)行.小明上學(xué)需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時(shí)的兩條路線()等可能選擇,且總是走最近路線.(1)請(qǐng)問(wèn)小明上學(xué)的路線有多少種不同可能?(2)在保證通過(guò)紅綠燈路口用時(shí)最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過(guò)處,且全程不等紅綠燈的概率;(3)請(qǐng)你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設(shè)計(jì)一條最佳的上學(xué)路線,且應(yīng)盡量避開(kāi)哪條路線?22.(10分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點(diǎn)為重心,與相交于點(diǎn).(1)求證:平面;(2)求三棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù)全稱命題的否定為特稱命題,得到結(jié)果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項(xiàng):【點(diǎn)睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.2.C【解析】

由圖象可知,可解得,利用三角恒等變換化簡(jiǎn)解析式可得,令,即可求得.【詳解】依題意,,即,解得;因?yàn)樗?,?dāng)時(shí),.故選:C.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡(jiǎn)中的應(yīng)用,難度一般.3.A【解析】

解出集合,利用交集的定義可求得集合.【詳解】因?yàn)?,又,所?故選:A.【點(diǎn)睛】本題考查交集的計(jì)算,同時(shí)也考查了一元二次不等式的求解,考查計(jì)算能力,屬于基礎(chǔ)題.4.A【解析】

由題意得到關(guān)于的等式,結(jié)合對(duì)數(shù)的運(yùn)算法則可得亮度的比值.【詳解】?jī)深w星的星等與亮度滿足,令,.故選A.【點(diǎn)睛】本題以天文學(xué)問(wèn)題為背景,考查考生的數(shù)學(xué)應(yīng)用意識(shí)?信息處理能力?閱讀理解能力以及指數(shù)對(duì)數(shù)運(yùn)算.5.D【解析】因甲不參加生物競(jìng)賽,則安排甲參加另外3場(chǎng)比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場(chǎng)比賽時(shí),共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時(shí),共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點(diǎn)睛:本題以選擇學(xué)生參加比賽為載體,考查了分類計(jì)數(shù)原理、排列數(shù)與組合數(shù)公式等知識(shí),屬于基礎(chǔ)題.6.B【解析】

由于到直線的距離和等于中點(diǎn)到此直線距離的二倍,所以只需求中點(diǎn)到此直線距離的最大值即可。再得到中點(diǎn)的軌跡是圓,再通過(guò)此圓的圓心到直線距離,半徑和中點(diǎn)到此直線距離的最大值的關(guān)系可以求出。再通過(guò)裂項(xiàng)的方法求的前項(xiàng)和,即可通過(guò)不等式來(lái)求解的取值范圍.【詳解】由,得,.設(shè)線段的中點(diǎn),則,在圓上,到直線的距離之和等于點(diǎn)到該直線的距離的兩倍,點(diǎn)到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點(diǎn)睛】本題考查了向量數(shù)量積,點(diǎn)到直線的距離,數(shù)列求和等知識(shí),是一道不錯(cuò)的綜合題.7.A【解析】

根據(jù)題意,分析可得函數(shù)的圖象關(guān)于對(duì)稱且在上為減函數(shù),則不等式等價(jià)于,解得的取值范圍,即可得答案.【詳解】解:因?yàn)楹瘮?shù)為偶函數(shù),所以函數(shù)的圖象關(guān)于對(duì)稱,因?yàn)閷?duì)任意,,都有,所以函數(shù)在上為減函數(shù),則,解得:.即實(shí)數(shù)的取值范圍是.故選:A.【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性與單調(diào)性的綜合應(yīng)用,涉及不等式的解法,屬于綜合題.8.C【解析】

根據(jù)三視圖可知,該幾何體是由兩個(gè)圓錐和一個(gè)圓柱構(gòu)成,由此計(jì)算出陀螺的表面積.【詳解】最上面圓錐的母線長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,下面圓錐的母線長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,沒(méi)被擋住的部分面積為,中間圓柱的側(cè)面積為.故表面積為,故選C.【點(diǎn)睛】本小題主要考查中國(guó)古代數(shù)學(xué)文化,考查三視圖還原為原圖,考查幾何體表面積的計(jì)算,屬于基礎(chǔ)題.9.C【解析】

畫(huà)出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個(gè)四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對(duì).【點(diǎn)睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結(jié)構(gòu)特征,考查了面面垂直的證明,屬于中檔題.10.B【解析】

對(duì)函數(shù)化簡(jiǎn)可得,進(jìn)而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱性及平移變換,對(duì)四個(gè)命題逐個(gè)分析,可選出答案.【詳解】因?yàn)?,所以周?對(duì)于①,因?yàn)椋?,即,故①錯(cuò)誤;對(duì)于②,函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到的函數(shù)為,其圖象關(guān)于軸對(duì)稱,則,解得,故對(duì)任意整數(shù),,所以②錯(cuò)誤;對(duì)于③,令,可得,則,因?yàn)椋栽谏系?個(gè)零點(diǎn),且,所以第7個(gè)零點(diǎn),若存在第8個(gè)零點(diǎn),則,所以,即,解得,故③正確;對(duì)于④,因?yàn)椋?,所以,解得,又,所以,故④正確.故選:B.【點(diǎn)睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱性,考查學(xué)生的計(jì)算求解能力與推理能力,屬于中檔題.11.B【解析】

畫(huà)出函數(shù)圖像,根據(jù)圖像知:,,,計(jì)算得到答案.【詳解】,畫(huà)出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問(wèn)題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,畫(huà)出圖像是解題的關(guān)鍵.12.B【解析】

根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因?yàn)?,所?故選:B【點(diǎn)睛】本題考查圓柱的體積,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由三角函數(shù)圖象相位變換后表達(dá)函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達(dá)式,進(jìn)而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點(diǎn)睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡(jiǎn)函數(shù)式并求最值,屬于簡(jiǎn)單題.14.【解析】

由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:【點(diǎn)睛】本題考查圓錐的體積、球的體積的計(jì)算,考查學(xué)生空間想象能力與計(jì)算能力,是一道中檔題.15.【解析】

由已知寫(xiě)出用代替的等式,兩式相減后可得結(jié)論,同時(shí)要注意的求解方法.【詳解】∵①,∴時(shí),②,①-②得,∴,又,∴().故答案為:.【點(diǎn)睛】本題考查求數(shù)列通項(xiàng)公式,由已知條件.類比已知求的解題方法求解.16.【解析】由題意,可得所得到的幾何體是由一個(gè)圓柱挖去兩個(gè)半球而成;其中,圓柱的底面半徑為1,母線長(zhǎng)為2;體積為;兩個(gè)半球的半徑都為1,則兩個(gè)半球的體積為;則所求幾何體的體積為.考點(diǎn):旋轉(zhuǎn)體的組合體.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)【解析】試題分析:(1)將絕對(duì)值不等式兩邊平方,化為二次不等式求解.(2)將問(wèn)題化為分段函數(shù)問(wèn)題,通過(guò)分類討論并根據(jù)恒成立問(wèn)題的解法求解即可.試題解析:整理得解得①②解得③,且無(wú)限趨近于4,綜上的取值范圍是18.(1).(2).【解析】分析:(1)直接建立空間直角坐標(biāo)系,然后求出面的法向量和已知線的向量,再結(jié)合向量的夾角公式求解即可;(2)先分別得出兩個(gè)面的法向量,然后根據(jù)向量交角公式求解即可.詳解:()∵是矩形,∴,又∵平面,∴,,即,,兩兩垂直,∴以為原點(diǎn),,,分別為軸,軸,軸建立如圖空間直角坐標(biāo)系,由,,得,,,,,,則,,,設(shè)平面的一個(gè)法向量為,則,即,令,得,,∴,∴,故與平面所成角的正弦值為.()由()可得,設(shè)平面的一個(gè)法向量為,則,即,令,得,,∴,∴,故二面角的余弦值為.點(diǎn)睛:考查空間立體幾何的線面角,二面角問(wèn)題,一般直接建立坐標(biāo)系,結(jié)合向量夾角公式求解即可,但要注意坐標(biāo)的正確性,坐標(biāo)錯(cuò)則結(jié)果必錯(cuò),務(wù)必細(xì)心,屬于中檔題.19.(1);(2)詳見(jiàn)解析.【解析】

(1)由橢圓離心率、系數(shù)關(guān)系和已知點(diǎn)坐標(biāo)構(gòu)建方程組,求得,代入標(biāo)準(zhǔn)方程中即可;(2)依題意,直線的斜率存在,且不為0,設(shè)其為,則直線的方程為,設(shè),,通過(guò)聯(lián)立直線方程與橢圓方程化簡(jiǎn)整理和中點(diǎn)的坐標(biāo)表示用含k的表達(dá)式表示,,進(jìn)而表示;由韋達(dá)定理表示根與系數(shù)的關(guān)系進(jìn)而表示用含k的表達(dá)式表示,最后做比即得證.【詳解】(1)設(shè)橢圓的焦距為,則,即,所以.依題意,,即,解得,所以,.所以橢圓的標(biāo)準(zhǔn)方程為.(2)證明:依題意,直線的斜率存在,且不為0,設(shè)其為,則直線的方程為,設(shè),.與橢圓聯(lián)立整理得,故所以,,所以.又,所以為定值,得證.【點(diǎn)睛】本題考查由離心率求橢圓的標(biāo)準(zhǔn)方程,還考查了橢圓中的定值問(wèn)題,屬于較難題.20.(1)(2)證明見(jiàn)解析(3)證明見(jiàn)解析【解析】

(1)由是遞增數(shù)列,得,由此能求出的前項(xiàng)和.(2)推導(dǎo)出,,由此能證明的“極差數(shù)列”仍是.(3)證當(dāng)數(shù)列是等差數(shù)列時(shí),設(shè)其公差為,,是一個(gè)單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【詳解】(1)解:∵無(wú)窮數(shù)列的前項(xiàng)中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項(xiàng)和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當(dāng)數(shù)列是等差數(shù)列時(shí),設(shè)其公差為,,根據(jù),的定義,得:,,且兩個(gè)不等式中至少有一個(gè)取等號(hào),當(dāng)時(shí),必有,∴,∴是一個(gè)單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當(dāng)時(shí),則必有,∴,∴是一個(gè)單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當(dāng)時(shí),,∵,中必有一個(gè)為0,根據(jù)上式,一個(gè)為0,為一個(gè)必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【點(diǎn)睛】本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查等差數(shù)列的證明,考查數(shù)列的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.21.(1)6種;(2);(3).【解析】

(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經(jīng)過(guò)處,共有4條路線,即,,,,分別對(duì)4條路線進(jìn)行分析計(jì)算概率;(3)分別對(duì)小明上學(xué)的6條路線進(jìn)行分析求均值,均值越大的應(yīng)避免.【詳解】(1)路途中可以看成必須走過(guò)2條

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論