版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在平面直角坐標系中,⊙P的圓心坐標是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長為4,則a的值是()A.4 B.3+ C.3 D.2.如圖所示的幾何體的左視圖是()A. B. C. D.3.如圖,由5個完全相同的小正方體組合成一個立體圖形,它的左視圖是()A. B. C. D.4.如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則()A.DE=EB B.DE=EB C.DE=DO D.DE=OB5.如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y(tǒng)=a(x﹣k)2+h.已知球與D點的水平距離為6m時,達到最高2.6m,球網(wǎng)與D點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是()A.球不會過網(wǎng) B.球會過球網(wǎng)但不會出界C.球會過球網(wǎng)并會出界 D.無法確定6.一元二次方程x2﹣8x﹣2=0,配方的結果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=147.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m8.如圖,在菱形ABCD中,E是AC的中點,EF∥CB,交AB于點F,如果EF=3,那么菱形ABCD的周長為()A.24 B.18 C.12 D.99.隨著“中國詩詞大會”節(jié)目的熱播,《唐詩宋詞精選》一書也隨之熱銷.如果一次性購買10本以上,超過10本的那部分書的價格將打折,并依此得到付款金額y(單位:元)與一次性購買該書的數(shù)量x(單位:本)之間的函數(shù)關系如圖所示,則下列結論錯誤的是()A.一次性購買數(shù)量不超過10本時,銷售價格為20元/本B.a(chǎn)=520C.一次性購買10本以上時,超過10本的那部分書的價格打八折D.一次性購買20本比分兩次購買且每次購買10本少花80元10.實數(shù)a在數(shù)軸上的位置如圖所示,則化簡后為()A.7 B.﹣7 C.2a﹣15 D.無法確定11.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元12.如圖,任意轉動正六邊形轉盤一次,當轉盤停止轉動時,指針指向大于3的數(shù)的概率是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果a,b分別是2016的兩個平方根,那么a+b﹣ab=___.14.已知x=2是關于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個根,則k的值為_____.15.不等式組的解集是_____________.16.如果兩圓的半徑之比為,當這兩圓內切時圓心距為3,那么當這兩圓相交時,圓心距d的取值范圍是__________.17.規(guī)定:,如:,若,則=__.18.已知:如圖,△ABC的面積為12,點D、E分別是邊AB、AC的中點,則四邊形BCED的面積為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)科研所計劃建一幢宿舍樓,因為科研所實驗中會產(chǎn)生輻射,所以需要有兩項配套工程.①在科研所到宿舍樓之間修一條高科技的道路;②對宿含樓進行防輻射處理;已知防輻射費y萬元與科研所到宿舍樓的距離xkm之間的關系式為y=ax+b(0≤x≤3).當科研所到宿舍樓的距離為1km時,防輻射費用為720萬元;當科研所到宿含樓的距離為3km或大于3km時,輻射影響忽略不計,不進行防輻射處理,設修路的費用與x2成正比,且比例系數(shù)為m萬元,配套工程費w=防輻射費+修路費.(1)當科研所到宿舍樓的距離x=3km時,防輻射費y=____萬元,a=____,b=____;(2)若m=90時,求當科研所到宿舍樓的距離為多少km時,配套工程費最少?(3)如果最低配套工程費不超過675萬元,且科研所到宿含樓的距離小于等于3km,求m的范圍?20.(6分)如圖,正方形ABCD中,E,F(xiàn)分別為BC,CD上的點,且AE⊥BF,垂足為G.(1)求證:AE=BF;(2)若BE=,AG=2,求正方形的邊長.21.(6分)已知點E為正方形ABCD的邊AD上一點,連接BE,過點C作CN⊥BE,垂足為M,交AB于點N.(1)求證:△ABE≌△BCN;(2)若N為AB的中點,求tan∠ABE.22.(8分)如圖,四邊形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足為E,求證:AE=CE.23.(8分)某校初三體育考試選擇項目中,選擇籃球項目和排球項目的學生比較多.為了解學生掌握籃球技巧和排球技巧的水平情況,進行了抽樣調查,過程如下,請補充完整.收集數(shù)據(jù):從選擇籃球和排球的學生中各隨機抽取16人,進行了體育測試,測試成績(十分制)如下:排球109.59.510899.5971045.5109.59.510籃球9.598.58.5109.510869.5109.598.59.56整理、描述數(shù)據(jù):按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):(說明:成績8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格)分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:項目平均數(shù)中位數(shù)眾數(shù)排球8.759.510籃球8.819.259.5得出結論:(1)如果全校有160人選擇籃球項目,達到優(yōu)秀的人數(shù)約為_________人;(2)初二年級的小明和小軍看到上面數(shù)據(jù)后,小明說:排球項目整體水平較高.小軍說:籃球項目整體水平較高.你同意_______的看法,理由為____________________________.(至少從兩個不同的角度說明推斷的合理性)24.(10分)如圖,拋物線交X軸于A、B兩點,交Y軸于點C,.(1)求拋物線的解析式;(2)平面內是否存在一點P,使以A,B,C,P為頂點的四邊形為平行四邊形,若存在直接寫出P的坐標,若不存在請說明理由。25.(10分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大??;(2)若AP=6,求AE+AF的值.26.(12分)為響應國家的“一帶一路”經(jīng)濟發(fā)展戰(zhàn)略,樹立品牌意識,我市質檢部門對A、B、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.抽查D廠家的零件為件,扇形統(tǒng)計圖中D廠家對應的圓心角為;抽查C廠家的合格零件為件,并將圖1補充完整;通過計算說明合格率排在前兩名的是哪兩個廠家;若要從A、B、C、D四個廠家中,隨機抽取兩個廠家參加德國工業(yè)產(chǎn)品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.27.(12分)已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯(lián)結AE并延長,交邊BC于點F.(1)求∠EAD的余切值;(2)求的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結PB,如圖,∵⊙P的圓心坐標是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D點坐標為(3,3),∴CD=3,∴△OCD為等腰直角三角形,∴△PED也為等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故選B.考點:1.垂徑定理;2.一次函數(shù)圖象上點的坐標特征;3.勾股定理.2、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.3、B【解析】試題分析:從左面看易得第一層有2個正方形,第二層最左邊有一個正方形.故選B.考點:簡單組合體的三視圖.4、D【解析】
解:連接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故選D.5、C【解析】分析:(1)將點A(0,2)代入求出a的值;分別求出x=9和x=18時的函數(shù)值,再分別與2.43、0比較大小可得.詳解:根據(jù)題意,將點A(0,2)代入得:36a+2.6=2,解得:∴y與x的關系式為當x=9時,∴球能過球網(wǎng),當x=18時,∴球會出界.故選C.點睛:考查二次函數(shù)的應用題,求范圍的問題,可以利用臨界點法求出自變量的值,根據(jù)題意確定范圍.6、C【解析】x2-8x=2,
x2-8x+16=1,
(x-4)2=1.
故選C.【點睛】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.7、D【解析】
利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上小明同學的身高即可求得樹高AB.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.【點睛】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.8、A【解析】【分析】易得BC長為EF長的2倍,那么菱形ABCD的周長=4BC問題得解.【詳解】∵E是AC中點,∵EF∥BC,交AB于點F,∴EF是△ABC的中位線,∴BC=2EF=2×3=6,∴菱形ABCD的周長是4×6=24,故選A.【點睛】本題考查了三角形中位線的性質及菱形的周長公式,熟練掌握相關知識是解題的關鍵.9、D【解析】
A、根據(jù)單價=總價÷數(shù)量,即可求出一次性購買數(shù)量不超過10本時,銷售單價,A選項正確;C、根據(jù)單價=總價÷數(shù)量結合前10本花費200元即可求出超過10本的那部分書的單價,用其÷前十本的單價即可得出C正確;B、根據(jù)總價=200+超過10本的那部分書的數(shù)量×16即可求出a值,B正確;D,求出一次性購買20本書的總價,將其與400相減即可得出D錯誤.此題得解.【詳解】解:A、∵200÷10=20(元/本),∴一次性購買數(shù)量不超過10本時,銷售價格為20元/本,A選項正確;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性購買10本以上時,超過10本的那部分書的價格打八折,C選項正確;B、∵200+16×(30﹣10)=520(元),∴a=520,B選項正確;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性購買20本比分兩次購買且每次購買10本少花40元,D選項錯誤.故選D.【點睛】考查了一次函數(shù)的應用,根據(jù)一次函數(shù)圖象結合數(shù)量關系逐一分析四個選項的正誤是解題的關鍵.10、C【解析】
根據(jù)數(shù)軸上點的位置判斷出a﹣4與a﹣11的正負,原式利用二次根式性質及絕對值的代數(shù)意義化簡,去括號合并即可得到結果.【詳解】解:根據(jù)數(shù)軸上點的位置得:5<a<10,∴a﹣4>0,a﹣11<0,則原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故選:C.【點睛】此題考查了二次根式的性質與化簡,以及實數(shù)與數(shù)軸,熟練掌握運算法則是解本題的關鍵.11、C【解析】
用單價乘數(shù)量得出買2千克蘋果和3千克香蕉的總價,再進一步相加即可.【詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【點睛】本題主要考查列代數(shù)式,總價=單價乘數(shù)量.12、D【解析】分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:∵共6個數(shù),大于3的有3個,∴P(大于3)=.故選D.點睛:本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
先由平方根的應用得出a,b的值,進而得出a+b=0,代入即可得出結論.【詳解】∵a,b分別是1的兩個平方根,∴∵a,b分別是1的兩個平方根,∴a+b=0,∴ab=a×(﹣a)=﹣a2=﹣1,∴a+b﹣ab=0﹣(﹣1)=1,故答案為:1.【點睛】此題主要考查了平方根的性質和意義,解本題的關鍵是熟練掌握平方根的性質.14、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因為k≠0,所以k的值為﹣1.故答案為:﹣1.【點睛】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.15、x<-1【解析】解不等式①得:x<5,解不等式②得:x<-1所以不等式組的解集是x<-1.故答案是:x<-1.16、.【解析】
先根據(jù)比例式設兩圓半徑分別為,根據(jù)內切時圓心距列出等式求出半徑,然后利用相交時圓心距與半徑的關系求解.【詳解】解:設兩圓半徑分別為,由題意,得3x-2x=3,解得,則兩圓半徑分別為,所以當這兩圓相交時,圓心距d的取值范圍是,即,故答案為.【點睛】本題考查了圓和圓的位置與兩圓的圓心距、半徑的數(shù)量之間的關系,熟練掌握圓心距與圓位置關系的數(shù)量關系是解決本題的關鍵.17、1或-1【解析】
根據(jù)a?b=(a+b)b,列出關于x的方程(2+x)x=1,解方程即可.【詳解】依題意得:(2+x)x=1,整理,得x2+2x=1,所以(x+1)2=4,所以x+1=±2,所以x=1或x=-1.故答案是:1或-1.【點睛】用配方法解一元二次方程的步驟:①把原方程化為ax2+bx+c=0(a≠0)的形式;②方程兩邊同除以二次項系數(shù),使二次項系數(shù)為1,并把常數(shù)項移到方程右邊;③方程兩邊同時加上一次項系數(shù)一半的平方;④把左邊配成一個完全平方式,右邊化為一個常數(shù);⑤如果右邊是非負數(shù),就可以進一步通過直接開平方法來求出它的解,如果右邊是一個負數(shù),則判定此方程無實數(shù)解.18、1【解析】【分析】設四邊形BCED的面積為x,則S△ADE=12﹣x,由題意知DE∥BC且DE=BC,從而得,據(jù)此建立關于x的方程,解之可得.【詳解】設四邊形BCED的面積為x,則S△ADE=12﹣x,∵點D、E分別是邊AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,則=,即,解得:x=1,即四邊形BCED的面積為1,故答案為1.【點睛】本題主要考查相似三角形的判定與性質,解題的關鍵是掌握中位線定理及相似三角形的面積比等于相似比的平方的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)0,﹣360,101;(2)當距離為2公里時,配套工程費用最少;(3)0<m≤1.【解析】
(1)當x=1時,y=720,當x=3時,y=0,將x、y代入y=ax+b,即可求解;(2)根據(jù)題目:配套工程費w=防輻射費+修路費分0≤x≤3和x≥3時討論.①當0≤x≤3時,配套工程費W=90x2﹣360x+101,②當x≥3時,W=90x2,分別求最小值即可;(3)0≤x≤3,W=mx2﹣360x+101,(m>0),其對稱軸x=,然后討論:x==3時和x=>3時兩種情況m取值即可求解.【詳解】解:(1)當x=1時,y=720,當x=3時,y=0,將x、y代入y=ax+b,解得:a=﹣360,b=101,故答案為0,﹣360,101;(2)①當0≤x≤3時,配套工程費W=90x2﹣360x+101,∴當x=2時,Wmin=720;②當x≥3時,W=90x2,W隨x最大而最大,當x=3時,Wmin=810>720,∴當距離為2公里時,配套工程費用最少;(3)∵0≤x≤3,W=mx2﹣360x+101,(m>0),其對稱軸x=,當x=≤3時,即:m≥60,Wmin=m()2﹣360()+101,∵Wmin≤675,解得:60≤m≤1;當x=>3時,即m<60,當x=3時,Wmin=9m<675,解得:0<m<60,故:0<m≤1.【點睛】本題考查了二次函數(shù)的性質在實際生活中的應用.最值問題常利函數(shù)的增減性來解答.20、(1)見解析;(2)正方形的邊長為.【解析】
(1)由正方形的性質得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA證得△ABE≌△BCF即可得出結論;(2)證出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG?AE,設EG=x,則AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出結果.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足為G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE與△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵四邊形ABCD為正方形,∴∠ABC=90°,∵AE⊥BF,∴∠BGE=∠ABE=90°,∵∠BEG=∠AEB,∴△BGE∽△ABE,∴=,即:BE2=EG?AE,設EG=x,則AE=AG+EG=2+x,∴()2=x?(2+x),解得:x1=1,x2=﹣3(不合題意舍去),∴AE=3,∴AB===.【點睛】本題考查了正方形的性質、全等三角形的判定與性質、相似三角形的判定與性質、勾股定理等知識,熟練掌握正方形的性質,證明三角形全等與相似是解題的關鍵.21、(1)證明見解析;(2)1【解析】
(1)根據(jù)正方形的性質得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根據(jù)垂線和三角形內角和定理得到∠2+∠3=90°,推出∠1=∠3,根據(jù)ASA推出△ABE≌△BCN;(2)tan∠ABE=AEAB【詳解】(1)證明:∵四邊形ABCD為正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∠A=∴△ABE≌△BCN(ASA);(2)∵N為AB中點,∴BN=12又∵△ABE≌△BCN,∴AE=BN=12在Rt△ABE中,tan∠ABE═AEAB【點睛】本題主要考查了正方形的性質、三角形的內角和定理、垂線、全等三角形的性質和判定以及銳角三角函數(shù)等知識點的掌握和理解,證出△ABE≌△BCN是解此題的關鍵.22、證明見解析.【解析】
過點B作BF⊥CE于F,根據(jù)同角的余角相等求出∠BCF=∠D,再利用“角角邊”證明△BCF和△CDE全等,根據(jù)全等三角形對應邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據(jù)矩形的對邊相等可得AE=BF,從而得證.【詳解】證明:如圖,過點B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D,在△BCF和△CDE中,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四邊形AEFB是矩形,∴AE=BF,∴AE=CE.23、130小明平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高.【解析】
根據(jù)抽取的16人中成績達到優(yōu)秀的百分比,即可得到全校達到優(yōu)秀的人數(shù);根據(jù)平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高,即可得到結論.【詳解】解:補全表格成績:人數(shù)項目10排球11275籃球021103達到優(yōu)秀的人數(shù)約為(人);故答案為130;同意小明的看法,理由為:平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高答案不唯一,理由需支持判斷結論故答案為小明,平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高.【點睛】本題考查眾數(shù)、中位數(shù),平均數(shù)的應用,解題的關鍵是掌握眾數(shù)、中位數(shù)、平均數(shù)的定義以及用樣本估計總體.24、(1);(2)(3,-4)或(5,4)或(-5,4)【解析】
(1)設|OA|=1,確定A,B,C三點坐標,然后用待定系數(shù)法即可完成;(2)先畫出存在的點,然后通過平移和計算確定坐標;【詳解】解:(1)設|OA|=1,則A(-1,0),B(4,0)C(0,4)設拋物線的解析式為y=ax2+bx+c則有:解得所以函數(shù)解析式為:(2)存在,(3,-4)或(5,4)或(-5,4)理由如下:如圖:P1相當于C點向右平移了5個單位長度,則坐標為(5,4);P2相當于C點向左平移了5個單位長度,則坐標為(-5,4);設P3坐標為(m,n)在第四象限,要使AP3BC是平行四邊形,則有AP3=BC,BP3=AC∴即(舍去)P3坐標為(3,-4)【點睛】本題主要考查了二次函數(shù)綜合題,此題涉及到待定系數(shù)法求二次函數(shù)解析式,通過作圖確認平行四邊形存在,然后通過觀察和計算確定P點坐標;解題的關鍵在于規(guī)范作圖,以便于樹形結合.25、(1)∠EPF=120°;(2)AE+AF=6.【解析】試題分析:(1)過點P作PG⊥EF于G,解直角三角形即可得到結論;
(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.試題解析:(1)如圖1,過點P作PG⊥EF于G,
∵PE=PF,
∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,
在△FPG中,sin∠FPG=,
∴∠FPG=60°,
∴∠EPF=2∠FPG=120°;
(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,
∵四邊形ABCD是菱形,
∴AD=AB,DC=BC,
∴∠DAC=∠BAC,
∴PM=PN,
在Rt△PME于Rt△PNF中,,
∴Rt△PME≌Rt△PNF,
∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,
∴AM=AP?c
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信息論與編碼第八章1
- 校園數(shù)據(jù)中臺技術方案
- 人教部編版四年級語文上冊第22課《為中華之崛起而讀書》精美課件
- 2024年寧夏客運資格證考試考什么
- 算法設計與分析 課件 5.6.1-動態(tài)規(guī)劃應用-最長公共子序列-問題描述和分析
- 2024年新疆客運資格證需要什么條件
- 2024年武漢申請客運從業(yè)資格證2024年試題
- 2024年贛州客運從業(yè)資格證培訓資料
- 2024年寧夏客運資格證考幾科
- 2024-2025學年山東省濰坊市寒亭區(qū)統(tǒng)編版六年級上冊第一次月考語文試卷(含答案解析)
- (5.3.1)-5.3奧斯本檢核表法
- 心理咨詢與心理治療:第6章 來訪者中心療法的理論與技術
- 馬克思主義哲學期末考試試題題庫含答案
- m301標桿車freed動力學kc對標分析報告
- GB/T 9724-2007化學試劑pH值測定通則
- GA/T 1968-2021法醫(yī)學死亡原因分類及其鑒定指南
- 小學數(shù)學西南師大五年級上冊四小數(shù)混合運算 選擇話費標準教學
- 校園足球班級聯(lián)賽秩序冊完整版
- 工程項目部績效考核方案
- 小學數(shù)學西南師大五年級上冊五多邊形面積的計算西師版公開課《三角形的面積》PPT
- 和君創(chuàng)業(yè) 企業(yè)管理咨詢課件
評論
0/150
提交評論