2022-2023學(xué)年山東省濟(jì)南市商河縣中考數(shù)學(xué)全真模擬試題含解析_第1頁
2022-2023學(xué)年山東省濟(jì)南市商河縣中考數(shù)學(xué)全真模擬試題含解析_第2頁
2022-2023學(xué)年山東省濟(jì)南市商河縣中考數(shù)學(xué)全真模擬試題含解析_第3頁
2022-2023學(xué)年山東省濟(jì)南市商河縣中考數(shù)學(xué)全真模擬試題含解析_第4頁
2022-2023學(xué)年山東省濟(jì)南市商河縣中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.在半徑等于5cm的圓內(nèi)有長為cm的弦,則此弦所對(duì)的圓周角為A.60° B.120° C.60°或120° D.30°或120°2.下列各數(shù)中,最小的數(shù)是A. B. C.0 D.3.如圖,有5個(gè)相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.4.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時(shí)針轉(zhuǎn)動(dòng)15°到AC′的位置,此時(shí)露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m5.將三粒均勻的分別標(biāo)有,,,,,的正六面體骰子同時(shí)擲出,朝上一面上的數(shù)字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.6.在直角坐標(biāo)系中,設(shè)一質(zhì)點(diǎn)M自P0(1,0)處向上運(yùn)動(dòng)一個(gè)單位至P1(1,1),然后向左運(yùn)動(dòng)2個(gè)單位至P2處,再向下運(yùn)動(dòng)3個(gè)單位至P3處,再向右運(yùn)動(dòng)4個(gè)單位至P4處,再向上運(yùn)動(dòng)5個(gè)單位至P5處……,如此繼續(xù)運(yùn)動(dòng)下去,設(shè)Pn(xn,yn),n=1,2,3,……,則x1+x2+……+x2018+x2019的值為()A.1 B.3 C.﹣1 D.20197.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個(gè)半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?.如圖,△ABC中,D為BC的中點(diǎn),以D為圓心,BD長為半徑畫一弧交AC于E點(diǎn),若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.9.在快速計(jì)算法中,法國的“小九九”從“一一得一”到“五五二十五”和我國的“小九九”算法是完全一樣的,而后面“六到九”的運(yùn)算就改用手勢(shì)了.如計(jì)算8×9時(shí),左手伸出3根手指,右手伸出4根手指,兩只手伸出手指數(shù)的和為7,未伸出手指數(shù)的積為2,則8×9=10×7+2=1.那么在計(jì)算6×7時(shí),左、右手伸出的手指數(shù)應(yīng)該分別為()A.1,2 B.1,3C.4,2 D.4,310.如圖,平面直角坐標(biāo)中,點(diǎn)A(1,2),將AO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)O的對(duì)應(yīng)點(diǎn)B恰好落在雙曲線y=kxA.2 B.3 C.4 D.6二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.計(jì)算:2(a-b)+3b=___________.12.若實(shí)數(shù)m、n在數(shù)軸上的位置如圖所示,則(m+n)(m-n)________0,(填“>”、“<”或“=”)13.如圖,點(diǎn)C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,DF⊥DE于點(diǎn)D,并交EC的延長線于點(diǎn)F.下列結(jié)論:①CE=CF;②線段EF的最小值為;③當(dāng)AD=2時(shí),EF與半圓相切;④若點(diǎn)F恰好落在BC上,則AD=;⑤當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段EF掃過的面積是.其中正確結(jié)論的序號(hào)是.14.如圖所示,平行四邊形ABCD中,E、F是對(duì)角線BD上兩點(diǎn),連接AE、AF、CE、CF,添加__________條件,可以判定四邊形AECF是平行四邊形.(填一個(gè)符合要求的條件即可)15.如圖,在正五邊形ABCDE中,AC與BE相交于點(diǎn)F,則∠AFE的度數(shù)為_____.16.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點(diǎn)B,C,E在同一條直線上,點(diǎn)D在CG上,BC=1,CE=3,H是AF的中點(diǎn),則CH的長為________.三、解答題(共8題,共72分)17.(8分)如果一條拋物線與軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.(1)“拋物線三角形”一定是三角形;(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點(diǎn)為對(duì)稱中心的矩形?若存在,求出過三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.18.(8分)如圖,在中,,是角平分線,平分交于點(diǎn),經(jīng)過兩點(diǎn)的交于點(diǎn),交于點(diǎn),恰為的直徑.求證:與相切;當(dāng)時(shí),求的半徑.19.(8分)先化簡(jiǎn),再求值:,其中m是方程的根.20.(8分)如圖,△ABC中,∠C=90°,AC=BC,∠ABC的平分線BD交AC于點(diǎn)D,DE⊥AB于點(diǎn)E.(1)依題意補(bǔ)全圖形;(2)猜想AE與CD的數(shù)量關(guān)系,并證明.21.(8分)小張同學(xué)嘗試運(yùn)用課堂上學(xué)到的方法,自主研究函數(shù)y=的圖象與性質(zhì).下面是小張同學(xué)在研究過程中遇到的幾個(gè)問題,現(xiàn)由你來完成:(1)函數(shù)y=自變量的取值范圍是;(2)下表列出了y與x的幾組對(duì)應(yīng)值:x…﹣2﹣m﹣﹣12…y…1441…表中m的值是;(3)如圖,在平面直角坐標(biāo)系xOy中,描出以表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),試由描出的點(diǎn)畫出該函數(shù)的圖象;(4)結(jié)合函數(shù)y=的圖象,寫出這個(gè)函數(shù)的性質(zhì):.(只需寫一個(gè))22.(10分)如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,∠BAC=60°,∠ABE=25°.求∠DAC的度數(shù).23.(12分)某校有3000名學(xué)生.為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問卷調(diào)查的學(xué)生只能從以下六個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.種類ABCDEF上學(xué)方式電動(dòng)車私家車公共交通自行車步行其他某校部分學(xué)生主要上學(xué)方式扇形統(tǒng)計(jì)圖某校部分學(xué)生主要上學(xué)方式條形統(tǒng)計(jì)圖根據(jù)以上信息,回答下列問題:參與本次問卷調(diào)查的學(xué)生共有____人,其中選擇B類的人數(shù)有____人.在扇形統(tǒng)計(jì)圖中,求E類對(duì)應(yīng)的扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.若將A、C、D、E這四類上學(xué)方式視為“綠色出行”,請(qǐng)估計(jì)該校每天“綠色出行”的學(xué)生人數(shù).24.一艘貨輪往返于上下游兩個(gè)碼頭之間,逆流而上需要6小時(shí),順流而下需要4小時(shí),若船在靜水中的速度為20千米/時(shí),則水流的速度是多少千米/時(shí)?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)題意畫出相應(yīng)的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點(diǎn),由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠AOD的度數(shù),進(jìn)而確定出∠AOB的度數(shù),利用同弧所對(duì)的圓心角等于所對(duì)圓周角的2倍,即可求出弦AB所對(duì)圓周角的度數(shù).【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點(diǎn),即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內(nèi)接四邊形AEBC對(duì)角互補(bǔ),∴∠AEB=120°,則此弦所對(duì)的圓周角為60°或120°.故選C.【點(diǎn)睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數(shù)值,以及銳角三角函數(shù)定義,熟練掌握垂徑定理是解本題的關(guān)鍵.2、A【解析】

應(yīng)明確在數(shù)軸上,從左到右的順序,就是數(shù)從小到大的順序,據(jù)此解答.【詳解】解:因?yàn)樵跀?shù)軸上-3在其他數(shù)的左邊,所以-3最??;故選A.【點(diǎn)睛】此題考負(fù)數(shù)的大小比較,應(yīng)理解數(shù)字大的負(fù)數(shù)反而?。?、C【解析】試題解析:左視圖如圖所示:故選C.4、B【解析】

因?yàn)槿切蜛BC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對(duì)邊,所以根據(jù)正弦來解題,求出∠CAB,進(jìn)而得出∠C′AB′的度數(shù),然后可以求出魚線B'C'長度.【詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【點(diǎn)睛】此題主要考查了解直角三角形的應(yīng)用,解本題的關(guān)鍵是把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.5、C【解析】

三粒均勻的正六面體骰子同時(shí)擲出共出現(xiàn)216種情況,而邊長能構(gòu)成直角三角形的數(shù)字為3、4、5,含這三個(gè)數(shù)字的情況有6種,故由概率公式計(jì)算即可.【詳解】解:因?yàn)閷⑷>鶆虻姆謩e標(biāo)有1,2,3,4,5,6的正六面體骰子同時(shí)擲出,按出現(xiàn)數(shù)字的不同共=216種情況,其中數(shù)字分別為3,4,5,是直角三角形三邊長時(shí),有6種情況,所以其概率為,故選C.【點(diǎn)睛】本題考查的是概率的求法.如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.6、C【解析】

根據(jù)各點(diǎn)橫坐標(biāo)數(shù)據(jù)得出規(guī)律,進(jìn)而得出x+x+…+x;經(jīng)過觀察分析可得每4個(gè)數(shù)的和為2,把2019個(gè)數(shù)分為505組,即可得到相應(yīng)結(jié)果.【詳解】解:根據(jù)平面坐標(biāo)系結(jié)合各點(diǎn)橫坐標(biāo)得出:x1、x2、x3、x4、x5、x6、x7、x8的值分別為:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分別為:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故選C.【點(diǎn)睛】此題主要考查規(guī)律型:點(diǎn)的坐標(biāo),解題關(guān)鍵在于找到其規(guī)律7、C【解析】

根據(jù)圓錐的底面周長等于側(cè)面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長是:,

設(shè)圓錐的底面半徑是rcm,

則,

解得:.

即這個(gè)圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.

圓錐形冰淇淋紙?zhí)椎母邽椋?/p>

故選:C.【點(diǎn)睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算解題思路:解決此類問題時(shí)要緊緊抓住兩者之間的兩個(gè)對(duì)應(yīng)關(guān)系:圓錐的母線長等于側(cè)面展開圖的扇形半徑;圓錐的底面周長等于側(cè)面展開圖的扇形弧長正確對(duì)這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.8、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點(diǎn)睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識(shí),解題的關(guān)鍵是記住扇形的面積公式:S=.9、A【解析】試題分析:通過猜想得出數(shù)據(jù),再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和為3×10=30,30+4×3=42,故選A.點(diǎn)評(píng):此題是定義新運(yùn)算題型.通過閱讀規(guī)則,得出一般結(jié)論.解題關(guān)鍵是對(duì)號(hào)入座不要找錯(cuò)對(duì)應(yīng)關(guān)系.10、B【解析】

作AC⊥y軸于C,ADx軸,BD⊥y軸,它們相交于D,有A點(diǎn)坐標(biāo)得到AC=1,OC=1,由于AO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)O的對(duì)應(yīng)B點(diǎn),所以相當(dāng)是把△AOC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ABD,根據(jù)旋轉(zhuǎn)的性質(zhì)得AD=AC=1,BD=OC=1,原式可得到B點(diǎn)坐標(biāo)為(2,1),然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征計(jì)算k的值.【詳解】作AC⊥y軸于C,AD⊥x軸,BD⊥y軸,它們相交于D,如圖,∵A點(diǎn)坐標(biāo)為(1,1),∴AC=1,OC=1.∵AO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)O的對(duì)應(yīng)B點(diǎn),即把△AOC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B點(diǎn)坐標(biāo)為(2,1),∴k=2×1=2.故選B.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征:反比例函數(shù)y=kx(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、2a+b.【解析】

先去括號(hào),再合并同類項(xiàng)即可得出答案.【詳解】原式=2a-2b+3b=2a+b.故答案為:2a+b.12、>【解析】

根據(jù)數(shù)軸可以確定m、n的大小關(guān)系,根據(jù)加法以及減法的法則確定m+n以及m?n的符號(hào),可得結(jié)果.【詳解】解:根據(jù)題意得:m<1<n,且|m|>|n|,∴m+n<1,m?n<1,∴(m+n)(m?n)>1.故答案為>.【點(diǎn)睛】本題考查了整式的加減和數(shù)軸,熟練掌握運(yùn)算法則是解題的關(guān)鍵.13、①③⑤.【解析】試題分析:①連接CD,如圖1所示,∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴結(jié)論“CE=CF”正確;②當(dāng)CD⊥AB時(shí),如圖2所示,∵AB是半圓的直徑,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根據(jù)“點(diǎn)到直線之間,垂線段最短”可得:點(diǎn)D在線段AB上運(yùn)動(dòng)時(shí),CD的最小值為.∵CE=CD=CF,∴EF=2CD.∴線段EF的最小值為.∴結(jié)論“線段EF的最小值為”錯(cuò)誤;③當(dāng)AD=2時(shí),連接OC,如圖3所示,∵OA=OC,∠CAB=60°,∴△OAC是等邊三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF經(jīng)過半徑OC的外端,且OC⊥EF,∴EF與半圓相切,∴結(jié)論“EF與半圓相切”正確;④當(dāng)點(diǎn)F恰好落在上時(shí),連接FB、AF,如圖4所示,∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圓的直徑,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴結(jié)論“AD=”錯(cuò)誤;⑤∵點(diǎn)D與點(diǎn)E關(guān)于AC對(duì)稱,點(diǎn)D與點(diǎn)F關(guān)于BC對(duì)稱,∴當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E的運(yùn)動(dòng)路徑AM與AB關(guān)于AC對(duì)稱,點(diǎn)F的運(yùn)動(dòng)路徑NB與AB關(guān)于BC對(duì)稱,∴EF掃過的圖形就是圖5中陰影部分,∴S陰影=2S△ABC=2×AC?BC=AC?BC=4×=,∴EF掃過的面積為,∴結(jié)論“EF掃過的面積為”正確.故答案為①③⑤.考點(diǎn):1.圓的綜合題;2.等邊三角形的判定與性質(zhì);3.切線的判定;4.相似三角形的判定與性質(zhì).14、BE=DF【解析】可以添加的條件有BE=DF等;證明:∵四邊形ABCD是平行四邊形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.

∴∠AEF=∠CFE.∴AE∥CF;∴四邊形AECF是平行四邊形.(一組對(duì)邊平行且相等的四邊形是平行四邊形)故答案為BE=DF.15、72°【解析】

首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【點(diǎn)睛】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵16、【解析】

連接AC、CF,GE,根據(jù)菱形性質(zhì)求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:如圖,連接AC、CF、GE,CF和GE相交于O點(diǎn)∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的對(duì)角線,∴,∴,∴∵==,∴在,又∵H是AF的中點(diǎn)∴.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),菱形的性質(zhì),勾股定理,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)等腰(2)(3)存在,【解析】解:(1)等腰(2)∵拋物線的“拋物線三角形”是等腰直角三角形,∴該拋物線的頂點(diǎn)滿足.∴.(3)存在.如圖,作△與△關(guān)于原點(diǎn)中心對(duì)稱,則四邊形為平行四邊形.當(dāng)時(shí),平行四邊形為矩形.又∵,∴△為等邊三角形.作,垂足為.∴.∴.∴.∴,.∴,.設(shè)過點(diǎn)三點(diǎn)的拋物線,則解之,得∴所求拋物線的表達(dá)式為.18、(1)證明見解析;(2).【解析】

(1)連接OM,證明OM∥BE,再結(jié)合等腰三角形的性質(zhì)說明AE⊥BE,進(jìn)而證明OM⊥AE;(2)結(jié)合已知求出AB,再證明△AOM∽△ABE,利用相似三角形的性質(zhì)計(jì)算.【詳解】(1)連接OM,則OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵點(diǎn)M在圓O上,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=4,cosC=∴BE=2,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB==6,設(shè)⊙O的半徑為r,則AO=6-r,∵OM∥BC,∴△AOM∽△ABE,∴∴,∴,解得,∴的半徑為.【點(diǎn)睛】本題考查了切線的判定;等腰三角形的性質(zhì);相似三角形的判定與性質(zhì);解直角三角形等知識(shí),綜合性較強(qiáng),正確添加輔助線,熟練運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.19、原式=.∵m是方程的根.∴,即,∴原式=.【解析】試題分析:先通分計(jì)算括號(hào)里的,再計(jì)算括號(hào)外的,化為最簡(jiǎn),由于m是方程的根,那么,可得的值,再把的值整體代入化簡(jiǎn)后的式子,計(jì)算即可.試題解析:原式=.∵m是方程的根.∴,即,∴原式=.考點(diǎn):分式的化簡(jiǎn)求值;一元二次方程的解.20、(1)見解析;(2)見解析.【解析】

(1)根據(jù)題意畫出圖形即可;(2)利用等腰三角形的性質(zhì)得∠A=45°.則∠ADE=∠A=45°,所以AE=DE,再根據(jù)角平分線性質(zhì)得CD=DE,從而得到AE=CD.【詳解】解:(1)如圖:(2)AE與CD的數(shù)量關(guān)系為AE=CD.證明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE=∠A=45°.∴AE=DE,∵BD平分∠ABC,∴CD=DE,∴AE=CD.【點(diǎn)睛】此題考查等腰三角形的性質(zhì),角平分線的性質(zhì),解題關(guān)鍵在于根據(jù)題意作輔助線.21、(1)x≠0;(2)﹣1;(3)見解析;(4)圖象關(guān)于y軸對(duì)稱.【解析】

(1)由分母不等于零可得答案;(2)求出y=1時(shí)x的值即可得;(3)根據(jù)表格中的數(shù)據(jù),描點(diǎn)、連線即可得;(4)由函數(shù)圖象即可得.【詳解】(1)函數(shù)y=的定義域是x≠0,故答案為x≠0;(2)當(dāng)y=1時(shí),=1,解得:x=1或x=﹣1,∴m=﹣1,故答案為﹣1;(3)如圖所示:(4)圖象關(guān)于y軸對(duì)稱,故答案為圖象關(guān)于y軸對(duì)稱.【點(diǎn)睛】本題主要考查反比例函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是掌握反比例函數(shù)自變量的取值范圍、函數(shù)值的求法、列表描點(diǎn)畫函數(shù)圖象及反比

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論