




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第三章
靜態(tài)分析指標
第三節(jié)平均指標
2.特點-數(shù)量抽象性-集中趨勢代表性1.概念
平均指標是指在同質(zhì)總體內(nèi)將各單位某一數(shù)量標志的差異抽象化,用以反映總體在具體條件下的一般水平。
一、平均指標的意義和作用
-比較作用
a.利用平均指標可以進行同類現(xiàn)象在不同空間的對比。b.利用平均指標可以進行同一總體在不同時間上的比較。
-利用平均指標可以分析現(xiàn)象之間的依存關(guān)系-利用平均指標還可以進行數(shù)量上的推算,還可以作為論斷事物的一種數(shù)量標準或參考3.作用
4.種類
算術(shù)平均數(shù)
數(shù)值平均數(shù) 調(diào)和平均數(shù)幾何平均數(shù) 眾數(shù)
位置平均數(shù)
中位數(shù)1.算術(shù)平均數(shù)的基本公式二、算術(shù)平均數(shù)
式中:——算術(shù)平均數(shù)X——各單位的標志值n——總體單位數(shù)——總和符號2.簡單算術(shù)平均數(shù)式中:——算術(shù)平均數(shù)X——各組數(shù)值f——各組數(shù)值出現(xiàn)的次數(shù)(即權(quán)數(shù))3.加權(quán)算術(shù)平均數(shù)設(shè)某廠職工按日產(chǎn)量分組后所得組距數(shù)列如下,據(jù)此求平均日產(chǎn)量。按日產(chǎn)量分組(千克)組中值X(千克)工人數(shù)f(人)Xf60以下551055060–706519123570–807550375080–908536306090–10095272565100–110105141470110以上1158920合計-16413550例在掌握比重權(quán)數(shù)的情況下,可以直接利用權(quán)數(shù)系數(shù)來求加權(quán)算術(shù)平均數(shù),其公式為:按日產(chǎn)量分組(千克)組中值X(千克)工人數(shù)f(人)ff/∑f
60以下55100.063.360–7065190.127.870–8075500.3022.580–9085360.2218.790–10095270.1615.2100–110105140.099.45110以上11580.055.75合計-1641.0082.7加權(quán)算術(shù)平均數(shù)受兩因數(shù)的影響:
變量值大小的影響。次數(shù)多少的影響。次數(shù)大的標志值對影響大;
反之,影響小。而簡單算術(shù)平均數(shù)只反映變量值大小這一因素的影響。加權(quán)算術(shù)平均數(shù)與簡單算術(shù)平均數(shù)不同在于:①
各個變量值與算術(shù)平均數(shù)離差之和等于零4.算術(shù)平均數(shù)的數(shù)學性質(zhì)②各個變量值與算術(shù)平均數(shù)離差平方之和
等于最小值△算術(shù)平均數(shù)的特點算術(shù)平均數(shù)適合用代數(shù)方法運算,因此運用比較廣泛;易受極端變量值的影響,使的代表性變小;受極大值的影響大于受極小值的影響;當組距數(shù)列為開口組時,由于組中點不易確定,使的代表性也不很可靠。調(diào)和平均數(shù)是各個變量值倒數(shù)的算術(shù)平均數(shù)的倒數(shù)。三、調(diào)和平均數(shù)(又稱“倒數(shù)平均數(shù)”)
其計算方法如下:在社會經(jīng)濟統(tǒng)計學中經(jīng)常用到的僅是一種特定權(quán)數(shù)的加權(quán)調(diào)和平均數(shù)。即有以下數(shù)學關(guān)系式成立:m是一種特定權(quán)數(shù),它不是各組變量值出現(xiàn)的次數(shù),而是各組標志值總量。已知某商品在三個集市貿(mào)易市場上的平均價格及銷售額資料如下:市場平均價格(元)X銷售額(元)m=Xf銷售額(元)÷平均價格(元)(即銷售量)
甲1.003000030000乙1.503000020000丙1.403500025000合計-95000750001.由平均數(shù)計算平均數(shù)時調(diào)和平均數(shù)法的應(yīng)用:例某公司有四個工廠,已知其計劃完成程度(%)及實際產(chǎn)值資料如下:工廠計劃完成程度(%)X實際產(chǎn)值(萬元)m=Xf實際產(chǎn)值÷計劃完成程度(%)(即計劃產(chǎn)值)(萬元)
甲9090100乙100200200丙110330300丁120480400合計-1,1001,0002.由相對數(shù)計算平均數(shù)時調(diào)和平均數(shù)法的應(yīng)用:例△調(diào)和平均數(shù)的特點如果數(shù)列中有一標志值等于零,則無法計算;它作為一種數(shù)值平均數(shù),受所有標志值的影響;但較之算術(shù)平均數(shù),受極端值的影響要小,適用范圍較小。1.簡單幾何平均數(shù)四、幾何平均數(shù)(又稱“對數(shù)平均數(shù)”)2.加權(quán)幾何平均數(shù)投資銀行某筆投資的年利率是按復利計算的,25年的年利率分配是:有1年為3%,有4年為5%,有8年為8%,有10年為10%,有2年為15%,求平均年利率。本利率(%)X年數(shù)f本利率的對數(shù)lgXf·lgX10312.01282.012810542.02128.084810882.033416.2672110102.041420.414011522.06074.1214合計25-50.9002例這就是說,25年的平均本利率為108.6%,年平均利率即為8.6%?!鲙缀纹骄鶖?shù)的特點如果數(shù)列中有一個標志值等于零或負值,就無法計算;受極端值的影響較和小;它適用于反映特定現(xiàn)象的平均水平,即現(xiàn)象的總標志值是各單位標志值的連乘積。由定義可看出眾數(shù)存在的條件:1.概念:在總體中出現(xiàn)次數(shù)最多的那個標志值就是眾數(shù)。五、眾數(shù)M0M0M0M0M0M0若有兩個次數(shù)相等的眾數(shù),則稱復眾數(shù)。①只有總體單位數(shù)比較多,而且又有明顯的集中趨勢時才存在眾數(shù)。下三圖無眾數(shù):②在單位數(shù)很少,或單位數(shù)雖多但無明顯集中趨勢時,
計算眾數(shù)是沒有意義的。①根據(jù)單項數(shù)列確定眾數(shù);價格(元)銷售數(shù)量(千克)2.00202.40603.001404.0080合計300某種商品的價格情況眾數(shù)M0=3.00(元)例2.眾數(shù)的計算方法②根據(jù)組距數(shù)列確定眾數(shù)⑵
利用比例插值法推算眾數(shù)的近似值。⑴
由最多次數(shù)來確定眾數(shù)所在組;按日產(chǎn)量分組(千克)工人人數(shù)(人)60以下1060-701970-805080-903690-10027100-11014110以上8表中70-80,即眾數(shù)所在組。例計算眾數(shù)的近似值:計算GEFDCABfXf3f2f1dXLXUM0Δ1Δ2眾數(shù)的兩個計算公式可以從幾何圖形得到證明:△眾數(shù)的特點
眾數(shù)是一個位置平均數(shù),它只考慮總體分布中最頻繁出現(xiàn)的變量值,而不受各單位標志值的影響,從而增強了對變量數(shù)列一般水平的代表性。不受極端值和開口組數(shù)列的影響。
眾數(shù)是一個不容易確定的平均指標,當分布數(shù)列沒有明顯的集中趨勢而趨均勻分布時,則無眾數(shù)可言;當變量數(shù)列是不等距分組時,眾數(shù)的位置也不好確定。①由未分組資料確定中位數(shù)2.中位數(shù)的計算方法1.概念:將總體中各單位標志值按大小順序排列,居于中間位置的那個標志值就是中位數(shù)。六、中位數(shù)Me⑴n為奇數(shù)時,則居于中間位置的那個標志值就是中位數(shù)。例⑵n為偶數(shù)時,則中間位置的兩個標志值的算術(shù)平均數(shù)為中位數(shù)。②由單項數(shù)列確定中位數(shù)某企業(yè)按日產(chǎn)零件分組如下:按日產(chǎn)零件分組(件)工人數(shù)(人)較小制累計較大制累計26338031101377321427673427545336187226418808合計80--例③由組距數(shù)列確定中位數(shù)按日產(chǎn)量分組(千克)工人數(shù)(人)較小制累計較大制累計50–60101016460–70192915470–80507913580–90361158590–1002714249100-1101415622110以上81648合計164--①中位數(shù)也是一種位置平均數(shù),它也不受極端值及開口組的影響,具有穩(wěn)健性。②各單位標志值與中位數(shù)離差的絕對值之和是個最小值。③對某些不具有數(shù)學特點或不能用數(shù)字測定的現(xiàn)象,可以用中位數(shù)求其一般水平。3.中位數(shù)的特點①標志變動度是評價平均數(shù)代表性的依據(jù)。第四節(jié)標志變動度2.作用:1.概念:標志變動度是指總體中各單位標志值差別大小的程度,又稱離散程度或離中程度。一、標志變動度的意義、作用和種類
甲、乙兩學生某次考試成績列表語文數(shù)學物理化學政治英語甲959065707585乙1107095508075甲、乙兩學生的平均成績?yōu)?0分,集中趨勢一樣,但是他們偏離平均數(shù)的程度卻不一樣。乙組數(shù)據(jù)的離散程度大,數(shù)據(jù)分布越分散,平均數(shù)的代表性就越差;甲組數(shù)據(jù)的離散程度小,數(shù)據(jù)分布越集中,平均數(shù)的代表性越大。例②標志變動度可用來反映社會生產(chǎn)和其他社會經(jīng)濟活動過程的均衡性或協(xié)調(diào)性,以及產(chǎn)品質(zhì)量的穩(wěn)定程度。
供貨計劃完成百分比(%)季度總供貨計劃執(zhí)行結(jié)果一月二月三月鋼廠甲100323434乙100203050例3.種類即測定標志變動度的方法,主要有:全距、四分位差、平均差、標準差、離散系數(shù)等。
全距 R四分位差 Q.D.平均差 A.D.標準差 S.D.(σ)離散系數(shù) Vσ①優(yōu)點:計算方便,易于理解。②缺點:全距只考慮數(shù)列兩端數(shù)值差異,它是測定標志變動度的一種粗略方法,不能全面反映總體各單位標志的變異程度。1.全距是總體各單位標志值最大值和最小值之差,2.全距的特點二、全距R①根據(jù)未分組資料求Q.D.2.計算:1.概念:將總體各單位的標志值按大小順序排列,然后將數(shù)列分為四等分,形成三個分割點(Q1、Q2、Q3),這三個分割點稱為四分位數(shù),(其中第二個四分位數(shù)Q2就是數(shù)列的中位數(shù)Me)。
四分位差Q.D.=Q3-Q1三、四分位差Q.D.例②根據(jù)分組資料求Q.D.
2)若單項數(shù)列,則Q1與Q3所在組的標志值就是Q1與Q3的數(shù)值;
若組距數(shù)列,確定了Q1與Q3所在組后,還要用以下公式求近似值:根據(jù)某車間工人日產(chǎn)零件分組資料,求Q.D.按日產(chǎn)零件分組(件)工人數(shù)(人)累計工人數(shù)(人)(較小制)5-10121210-15465815-20369420-256100合計100-這表明有一半工人的日產(chǎn)量分布在11.41件至17.36件之間,且相差5.95件。例①四分位差不受兩端各25%數(shù)值的影響,能對開口組數(shù)列的差異程度進行測定;②用四分位差可以衡量中位數(shù)的代表性高低;③四分位差不反映所有標志值的差異程度,它所描述的只是次數(shù)分配中一半的離差,所以也是一個比較粗略的指標。3.四分位差的特點平均差是數(shù)列中各單位標志值與平均數(shù)之間絕對離差的平均數(shù)。1.概念和計算:四、平均差A.D.以某車間100個工人按日產(chǎn)量編成變量數(shù)列的資料:工人按日產(chǎn)量分組(千克)工人數(shù)(人)f組中值XXf20-30525125-178530-4035351225-724540-5045452025313550-60155582513195合計100-4200-660例①平均差是根據(jù)全部標志值與平均數(shù)離差而計算出來的變異指標,能全面反映標志值的差異程度;②平均差計算有絕對值符號,不適合代數(shù)方法的演算使其應(yīng)用受到限制。2.平均差的特點標準差是離差平方平均數(shù)的平方根,故又稱“均方差”。其意義與平均差基本相同。1.概念和計算:五、標準差S.D.(σ)計算σ的一般步驟:①算出每個變量值對平均數(shù)的離差;②將每個離差平方;③計算這些平方數(shù)值的算術(shù)平均數(shù);④把得到的數(shù)值開平方,即得到σ。
工人按日產(chǎn)量分組(千克)工人數(shù)(人)f組中值X50-601055-27.627628.64460-701965-17.625898.823670-805075-7.622903.918480-9036852.38203.918490-100279512.384138.1388100-1101410522.387012.1016110以上811532.388387.7152合計164--36172.5616例
在組距數(shù)列中,結(jié)合算術(shù)平均數(shù)的簡捷公式,可得標準差的簡捷法公式如下:工人按日產(chǎn)量分組(千克)工人數(shù)(人)f組中值X50-601055-3-3099060-701965-2-3847670-8050
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學生心理健康教育之婚戀觀指導
- 預防校園安全課件
- 《機械設(shè)計基礎(chǔ)》課件-第3章 平面連桿機構(gòu)
- 項鏈課件教學課件
- 農(nóng)村電商培訓:助力鄉(xiāng)村振興與農(nóng)業(yè)轉(zhuǎn)型
- 《旅行社經(jīng)營管理》課件-第一章 概 述
- xx河流排水防澇設(shè)施建設(shè)項目風險管理方案(范文模板)
- 2025年新型全液壓鉆機項目合作計劃書
- 2025年自動酸雨采樣器及測定儀項目發(fā)展計劃
- 健康飲食產(chǎn)業(yè)園項目資金申請報告(范文模板)
- DZ/T 0261-2014滑坡崩塌泥石流災害調(diào)查規(guī)范(1∶50 000)
- T/CQAP 3014-2024研究者發(fā)起的抗腫瘤體細胞臨床研究細胞制劑制備和質(zhì)量控制規(guī)范
- 初中體育教學中德育教育的現(xiàn)狀、問題與突破路徑探究
- 基層供銷社管理制度
- 農(nóng)業(yè)供應(yīng)鏈管理考試試題及答案
- 人行雨棚施工方案
- 2025-2030中國晶圓鍵合系統(tǒng)行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析研究報告
- 從校園到職場:新員工角色轉(zhuǎn)換與職業(yè)化塑造
- 奶茶服務(wù)協(xié)議合同
- 學生食堂維修改造工程施工組織設(shè)計
- 2025年章魚小丸子項目可行性研究報告
評論
0/150
提交評論