版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
直接證明與間接證明綜合法和分析法[學習目標]1.了解直接證明的兩種基本方法——綜合法和分析法.2.理解綜合法和分析法的思考過程、特點,會用綜合法和分析法證明數(shù)學問題.[知識鏈接]1.綜合法與分析法的推理過程是合情推理還是演繹推理?答綜合法與分析法的推理過程是演繹推理,因為綜合法與分析法的每一步推理都是嚴密的邏輯推理,從而得到的每一個結(jié)論都是正確的,不同于合情推理中的“猜想”2.必修五中基本不等式eq\f(a+b,2)≥eq\r(ab)(a>0,b>0)是怎樣證明的?答要證eq\f(a+b,2)≥eq\r(ab),只需證a+b≥2eq\r(ab),只需證a+b-2eq\r(ab)≥0,只需證(eq\r(a)-eq\r(b))2≥0,因為(eq\r(a)-eq\r(b))2≥0顯然成立,所以原不等式成立.[預習導引]1.綜合法一般地,利用已知條件和某些數(shù)學定義、公理、定理等,經(jīng)過一系列的推理論證,最后推導出所要證明的結(jié)論成立,這種證明方法叫做綜合法.2.分析法分析法是從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個明顯成立的條件(已知條件、定理、定義、公理等)為止.要點一綜合法的應用例1在△ABC中,三個內(nèi)角A、B、C對應的邊分別為a、b、c,且A、B、C成等差數(shù)列,a、b、c成等比數(shù)列,求證:△ABC為等邊三角形.證明由A、B、C成等差數(shù)列,有2B=A+C. ①因為A、B、C為△ABC的內(nèi)角,所以A+B+C=π. ②由①②,得B=eq\f(π,3). ③由a、b、c成等比數(shù)列,有b2=ac.④由余弦定理及③,可得b2=a2+c2-2accosB=a2+c2-ac.再由④,得a2+c2-ac=ac,即(a-c)2=0,因此a=c,從而有A=C.⑤由②③⑤,得A=B=C=eq\f(π,3).所以△ABC為等邊三角形.規(guī)律方法利用綜合法證明問題的步驟:(1)分析條件選擇方向:仔細分析題目的已知條件(包括隱含條件),分析已知與結(jié)論之間的聯(lián)系與區(qū)別,選擇相關的公理、定理、公式、結(jié)論,確定恰當?shù)慕忸}方法.(2)轉(zhuǎn)化條件組織過程:把題目的已知條件,轉(zhuǎn)化成解題所需要的語言,主要是文字、符號、圖形三種語言之間的轉(zhuǎn)化,組織過程時要有嚴密的邏輯,簡潔的語言,清晰的思路.(3)適當調(diào)整回顧反思:解題后回顧解題過程,可對部分步驟進行調(diào)整,并對一些語言進行適當?shù)男揎?,反思總結(jié)解題方法的選?。櫻菥?已知a,b是正數(shù),且a+b=1,求證:eq\f(1,a)+eq\f(1,b)≥4.證明法一∵a,b是正數(shù)且a+b=1,∴a+b≥2eq\r(ab),∴eq\r(ab)≤eq\f(1,2),∴eq\f(1,a)+eq\f(1,b)=eq\f(a+b,ab)=eq\f(1,ab)≥4.法二∵a,b是正數(shù),∴a+b≥2eq\r(ab)>0,eq\f(1,a)+eq\f(1,b)≥2eq\r(\f(1,ab))>0,∴(a+b)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)+\f(1,b)))≥4.又a+b=1,∴eq\f(1,a)+eq\f(1,b)≥4.法三eq\f(1,a)+eq\f(1,b)=eq\f(a+b,a)+eq\f(a+b,b)=1+eq\f(b,a)+eq\f(a,b)+1≥2+2eq\r(\f(b,a)·\f(a,b))=4.當且僅當a=b時,取“=”號.要點二分析法的應用例2設a,b為實數(shù),求證:eq\r(a2+b2)≥eq\f(\r(2),2)(a+b).證明當a+b≤0時,∵eq\r(a2+b2)≥0,∴eq\r(a2+b2)≥eq\f(\r(2),2)(a+b)成立.當a+b>0時,用分析法證明如下:要證eq\r(a2+b2)≥eq\f(\r(2),2)(a+b),只需證(eq\r(a2+b2))2≥eq\b\lc\[\rc\](\a\vs4\al\co1(\f(\r(2),2)a+b))2,即證a2+b2≥eq\f(1,2)(a2+b2+2ab),即證a2+b2≥2ab.∵a2+b2≥2ab對一切實數(shù)恒成立,∴eq\r(a2+b2)≥eq\f(\r(2),2)(a+b)成立.綜上所述,不等式得證.規(guī)律方法用分析法證明不等式時應注意(1)分析法證明不等式的依據(jù)是不等式的基本性質(zhì)、已知的重要不等式和邏輯推理的基本理論;(2)分析法證明不等式的思維是從要證不等式出發(fā),逐步尋求使它成立的充分條件,最后得到的充分條件是已知(或已證)的不等式;(3)用分析法證明數(shù)學命題時,一定要恰當?shù)赜煤谩耙C明”、“只需證明”、“即證明”等詞語.跟蹤演練2已知a,b是正實數(shù),求證:eq\f(a,\r(b))+eq\f(b,\r(a))≥eq\r(a)+eq\r(b).證明要證eq\f(a,\r(b))+eq\f(b,\r(a))≥eq\r(a)+eq\r(b),只要證aeq\r(a)+beq\r(b)≥eq\r(ab)·(eq\r(a)+eq\r(b)).即證(a+b-eq\r(ab))(eq\r(a)+eq\r(b))≥eq\r(ab)(eq\r(a)+eq\r(b)),因為a,b是正實數(shù),即證a+b-eq\r(ab)≥eq\r(ab),也就是要證a+b≥2eq\r(ab),即(eq\r(a)-eq\r(b))2≥0.該式顯然成立,所以eq\f(a,\r(b))+eq\f(b,\r(a))≥eq\r(a)+eq\r(b).要點三綜合法和分析法的綜合應用例3已知a、b、c是不全相等的正數(shù),且0<x<1.求證:logxeq\f(a+b,2)+logxeq\f(b+c,2)+logxeq\f(a+c,2)<logxa+logxb+logxc.證明要證明:logxeq\f(a+b,2)+logxeq\f(b+c,2)+logxeq\f(a+c,2)<logxa+logxb+logxc,只需要證明logxeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)·\f(b+c,2)·\f(a+c,2)))<logx(abc).由已知0<x<1,只需證明eq\f(a+b,2)·eq\f(b+c,2)·eq\f(a+c,2)>abc.由公式eq\f(a+b,2)≥eq\r(ab)>0,eq\f(b+c,2)≥eq\r(bc)>0,eq\f(a+c,2)≥eq\r(ac)>0,又∵a,b,c是不全相等的正數(shù),∴eq\f(a+b,2)·eq\f(b+c,2)·eq\f(a+c,2)>eq\r(a2b2c2)=abc.即eq\f(a+b,2)·eq\f(b+c,2)·eq\f(a+c,2)>abc成立.∴l(xiāng)ogxeq\f(a+b,2)+logxeq\f(b+c,2)+logxeq\f(a+c,2)<logxa+logxb+logxc成立.規(guī)律方法綜合法推理清晰,易于書寫,分析法從結(jié)論入手,易于尋找解題思路,在實際證明命題時,常把分析法與綜合法結(jié)合起來使用,稱為分析綜合法,其結(jié)構特點是:根據(jù)條件的結(jié)構特點去轉(zhuǎn)化結(jié)論,得到中間結(jié)論Q;根據(jù)結(jié)論的結(jié)構特點去轉(zhuǎn)化條件,得到中間結(jié)論P;若由P可推出Q,即可得證.跟蹤演練3設實數(shù)a,b,c成等比數(shù)列,非零實數(shù)x,y分別為a與b,b與c的等差中項,試證:eq\f(a,x)+eq\f(c,y)=2.證明由已知條件得b2=ac, ①2x=a+b,2y=b+c. ②要證eq\f(a,x)+eq\f(c,y)=2,只要證ay+cx=2xy,只要證2ay+2cx=4xy.由①②得2ay+2cx=a(b+c)+c(a+b)=ab+2ac+bc4xy=(a+b)(b+c)=ab+b2+ac+bc=ab+2ac+bc所以2ay+2cx=4xy.命題得證.1.已知y>x>0,且x+y=1,那么()A.x<eq\f(x+y,2)<y<2xy B.2xy<x<eq\f(x+y,2)<yC.x<eq\f(x+y,2)<2xy<y D.x<2xy<eq\f(x+y,2)<y答案D解析∵y>x>0,且x+y=1,∴設y=eq\f(3,4),x=eq\f(1,4),則eq\f(x+y,2)=eq\f(1,2),2xy=eq\f(3,8),∴x<2xy<eq\f(x+y,2)<y,故選D.2.欲證eq\r(2)-eq\r(3)<eq\r(6)-eq\r(7)成立,只需證()A.(eq\r(2)-eq\r(3))2<(eq\r(6)-eq\r(7))2B.(eq\r(2)-eq\r(6))2<(eq\r(3)-eq\r(7))2C.(eq\r(2)+eq\r(7))2<(eq\r(3)+eq\r(6))2D.(eq\r(2)-eq\r(3)-eq\r(6))2<(-eq\r(7))2答案C解析根據(jù)不等式性質(zhì),a>b>0時,才有a2>b2,∴只需證:eq\r(2)+eq\r(7)<eq\r(6)+eq\r(3),只需證:(eq\r(2)+eq\r(7))2<(eq\r(3)+eq\r(6))2.3.求證:eq\f(1,log519)+eq\f(2,log319)+eq\f(3,log219)<2.證明因為eq\f(1,logba)=logab,所以左邊=log195+2log193+3log192=log195+log1932+log1923=log19(5×32×23)=log19360.因為log19360<log19361=2,所以eq\f(1,log519)+eq\f(2,log319)+eq\f(3,log219)<2.4.已知eq\f(1-tanα,2+tanα)=1,求證:cosα-sinα=3(cosα+sinα).證明要證cosα-sinα=3(cosα+sinα),只需證eq\f(cosα-sinα,cosα+sinα)=3,只需證eq\f(1-tanα,1+tanα)=3,只需證1-tanα=3(1+tanα),只需證tanα=-eq\f(1,2),∵eq\f(1-tanα,2+tanα)=1,∴1-tanα=2+tanα,即2tanα=-1.∴tanα=-eq\f(1,2)顯然成立,∴結(jié)論得證.1.綜合法證題是從條件出發(fā),由因?qū)Ч环治龇ㄊ菑慕Y(jié)論出發(fā),執(zhí)果索因.2.分析法證題時,一定要恰當?shù)剡\用“要證”、“只需證”、“即證”等詞語.3.在實際證題過程中,分析法與綜合法是統(tǒng)一運用的,把分析法和綜合法孤立起來運用是脫離實際的.沒有分析就沒有綜合;沒有綜合也沒有分析.問題僅在于,在構建命題的證明路徑時,有時分析法居主導地位,綜合法伴隨著它;有時卻恰恰相反,是綜合法居主導地位,而分析法伴隨著它.一、基礎達標1.已知a,b,c∈R,那么下列命題中正確的是()A.若a>b,則ac2>bc2B.若eq\f(a,c)>eq\f(b,c),則a>bC.若a3>b3且ab<0,則eq\f(1,a)>eq\f(1,b)D.若a2>b2且ab>0,則eq\f(1,a)<eq\f(1,b)答案C解析對于A:若c=0,則A不成立,故A錯;對于B:若c<0,則B不成立,B錯;對于C:若a3>b3且ab<0,則eq\b\lc\{\rc\(\a\vs4\al\co1(a>0,b<0)),所以eq\f(1,a)>eq\f(1,b),故C對;對于D:若eq\b\lc\{\rc\(\a\vs4\al\co1(a<0,b<0)),則D不成立.2.A、B為△ABC的內(nèi)角,A>B是sinA>sinB的()A.充分不必要條件B.必要不充分條件C.充要條件D.即不充分也不必要條件答案C解析由正弦定理eq\f(a,sinA)=eq\f(b,sinB),又A、B為三角形的內(nèi)角,∴sinA>0,sinB>0,∴sinA>sinB?2RsinA>2RsinB?a>b?A>B.3.已知直線l,m,平面α,β,且l⊥α,m?β,給出下列四個命題:①若α∥β,則l⊥m;②若l⊥m,則α∥β;③若α⊥β,則l⊥m;④若l∥m,則α⊥β.其中正確命題的個數(shù)是()A.1 B.2C.3 D.4答案B解析若l⊥α,m?β,α∥β,則l⊥β,所以l⊥m,①正確;若l⊥α,m?β,l⊥m,α與β可能相交,②不正確;若l⊥α,m?β,α⊥β,l與m可能平行或異面,③不正確;若l⊥α,m?β,l∥m,則m⊥α,所以α⊥β,④正確.4.設a,b∈R+,且a≠b,a+b=2,則必有()A.1≤ab≤eq\f(a2+b2,2) B.a(chǎn)b<1<eq\f(a2+b2,2)C.a(chǎn)b<eq\f(a2+b2,2)<1 D.eq\f(a2+b2,2)<ab<1答案B解析因為a≠b,故eq\f(a2+b2,2)>ab.又因為a+b=2>2eq\r(ab),故ab<1,eq\f(a2+b2,2)=eq\f(a+b2-2ab,2)=2-ab>1,即eq\f(a2+b2,2)>1>ab.5.要證明eq\r(3)+eq\r(7)<2eq\r(5),可選擇的方法有很多,最合理的應為________.答案分析法6.設a=eq\r(2),b=eq\r(7)-eq\r(3),c=eq\r(6)-eq\r(2),則a,b,c的大小關系為________.答案a>c>b解析∵a2-c2=2-(8-4eq\r(3))=4eq\r(3)-6=eq\r(48)-eq\r(36)>0,∴a>c.∵eq\f(c,b)=eq\f(\r(6)-\r(2),\r(7)-\r(3))=eq\f(\r(7)+\r(3),\r(6)+\r(2))>1,∴c>b.7.設a≥b>0,求證:3a3+2b3≥3a2b+2ab證明法一3a3+2b3-(3a2b+2ab2)=3a2(a-b)+2b2(b-a)=(3a2-2b2)(a因為a≥b>0,所以a-b≥0,3a2-2b2>0,從而(3a2-2b2)(a-b)≥所以3a3+2b3≥3a2b+2ab法二要證3a3+2b3≥3a2b+2ab2,只需證3a2(a-b)-2b2(a-b)只需證(3a2-2b2)(a-b)≥0,∵a≥b>0.∴a-b≥0,3a2-2b2>2a2-2b2∴上式成立.二、能力提升8.設0<x<1,則a=eq\r(2)x,b=1+x,c=eq\f(1,1-x)中最大的一個是()A.a(chǎn) B.bC.c D.不能確定答案C解析∵b-c=(1+x)-eq\f(1,1-x)=eq\f(1-x2-1,1-x)=-eq\f(x2,1-x)<0,∴b<c.又∵b=1+x>eq\r(2)x=a,∴a<b<c.9.已知a,b為非零實數(shù),則使不等式:eq\f(a,b)+eq\f(b,a)≤-2成立的一個充分不必要條件是()A.a(chǎn)b>0 B.a(chǎn)b<0C.a(chǎn)>0,b<0 D.a(chǎn)>0,b>0答案C解析∵eq\f(a,b)與eq\f(b,a)同號,由eq\f(a,b)+eq\f(b,a)≤-2,知eq\f(a,b)<0,eq\f(b,a)<0,即ab<0.又若ab<0,則eq\f(a,b)<0,eq\f(b,a)<0.∴eq\f(a,b)+eq\f(b,a)=-eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,b)))+\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,a)))))≤-2eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,b)))·\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,a))))=-2,綜上,ab<0是eq\f(a,b)+eq\f(b,a)≤-2成立的充要條件,∴a>0,b<0是eq\f(a,b)+eq\f(b,a)≤-2成立的一個充分而不必要條件.10.如圖所示,在直四棱柱A1B1C1D1-ABCD中,當?shù)酌嫠倪呅蜛BCD滿足條件________時,有A1C⊥B1D1(注:填上你認為正確的一個條件即可,不必考慮所有可能的情形答案對角線互相垂直解析本題答案不唯一,要證A1C⊥B1D1,只需證B1D1垂直于A1C所在的平面A1CC1,因為該四棱柱為直四棱柱,所以B1D1⊥CC1,故只需證B1D1⊥A1C11.已知a>0,b>0,eq\f(1,b)-eq\f(1,a)>1.求證:eq\r(1+a)>eq\f(1,\r(1-b)).證明要證eq\r(1+a)>eq\f(1,\r(1-b))成立,只需證1+a>eq\f(1,1-b),只需證(1+a)(1-b)>1(1-b>0),即1-b+a-ab>1,∴a-b>ab,只需證:eq\f(a-b,ab)>1,即eq\f(1,b)-eq\f(1,a)>1.由已知a>0,eq\f(1,b)-eq\f(1,a)>1成立,∴eq\r(1+a)>eq\f(1,\r(1-b))成立.12.求證拋物線y2=2px(p>0),以過焦點的弦為直徑的圓必與x=-eq\f(p,2)相切.證明如圖,作AA′、BB′垂直準線,取AB的中點M,作MM′垂直準線.要證明以AB為直徑的圓與準線相切,只需證|MM′|=eq\f(1,2)|AB|,由拋物線的定義:|AA′|=|AF|,|BB′|=|BF|,所以|AB|=|AA′|+|BB′|,因此只需證|MM′|=eq\f(1,2)(|AA′|+|BB′|)根據(jù)梯形的中位線定理可知上式是成立的.所以以過焦點的弦為直徑的圓必與x=-eq\f(p,2)相切.三、探究與創(chuàng)新13.(2023·廣東)設數(shù)列{an}的前n項和為Sn,已知a1=1,eq\f(2Sn,n)=an+1-eq\f(1,3)n2-n-eq\f(2,3),n∈N*.(1)求a2的值;(2)求數(shù)列{an}的通項公式;(3)證明:對一切正整數(shù)n,有eq\f(1,a1)+eq
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐車買賣合同范本
- 北京市科技 技術開發(fā)合同模板 申請免稅
- 重慶市第九十四中學校2024-2025學年高二上學期期中考試英語試題(含答案無聽力原文及音頻)
- 柳州市2025屆高三第一次模擬考試(一模)數(shù)學試卷(含答案)
- 湖北省武漢市江夏實驗高級中學2024-2025學年高三上學期11月模擬歷史試題(含答案)
- 廣東省深圳高級中學北校區(qū)等多校2024-2025學年七年級上學期期中生物學試題(含答案)
- 郵政專用機械及器材相關行業(yè)投資方案
- 環(huán)保特種電線電纜相關行業(yè)投資方案范本
- 民宿旅游相關行業(yè)投資規(guī)劃報告范本
- 溫控儀表相關項目投資計劃書范本
- 2023年中國鐵塔招聘考試真題
- 英文2024 年的全球支付 - 更簡單的界面復雜的現(xiàn)實
- 和平積弊分析檢查報告和整改方案
- 醫(yī)院對口支援實施方案
- 遼寧交投物產(chǎn)有限責任公司招聘筆試題庫2024
- 4.2.2指數(shù)函數(shù)的圖像和性質(zhì)教學說課課件高一上學期數(shù)學人教A版
- DB37T 5284-2024 建筑施工現(xiàn)場塔式起重機安裝拆卸安全技術規(guī)程
- GB/T 44464-2024汽車數(shù)據(jù)通用要求
- 羽毛球運動教學與訓練智慧樹知到答案2024年黑龍江農(nóng)業(yè)工程職業(yè)學院
- 老舊小區(qū)整體改造施工投標方案(技術標)
- 新湘教版八年級上數(shù)學復習計劃
評論
0/150
提交評論