定性數(shù)據(jù)研究方法chap6_第1頁(yè)
定性數(shù)據(jù)研究方法chap6_第2頁(yè)
定性數(shù)據(jù)研究方法chap6_第3頁(yè)
定性數(shù)據(jù)研究方法chap6_第4頁(yè)
定性數(shù)據(jù)研究方法chap6_第5頁(yè)
已閱讀5頁(yè),還剩43頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第六章用于多項(xiàng)式分布Logit模型

MulticategoryLogitModels6.1名義因變量logit模型6.2有序因變量的累積logit模型6.3配對(duì)分類有序logit模型6.4檢驗(yàn)條件獨(dú)立性設(shè),()是因變量的J個(gè)類別的結(jié)果發(fā)生的概率J個(gè)類別分布是多項(xiàng)分布

6.1名義因變量logit模型

LOGITMODELSFORNOMINALRESPONSESBaseline-CategoryLogitsModel當(dāng)把第J類j結(jié)果作為Baseline(基線),Logits模型有J-1個(gè)方程利用軟件可同時(shí)給出這J-1個(gè)方程的參數(shù)估計(jì),和其它統(tǒng)計(jì)量對(duì)結(jié)果落在a類和b類的概率的比也是線性形式,與基線的選取無(wú)關(guān)其中例Y三種基本食物:F,I,O,x:長(zhǎng)度

F=fishI=InvertebratesO=otherAnalysisofMaximumLikelihoodEstimatesFunctionStandardChi-ParameterNumberEstimateErrorSquarePr>ChiSq-------------------------------------------------------------------Intercept11.61771.30731.530.215925.69741.793710.090.0015length1-0.11010.51710.050.83142-2.46540.89967.510.0061

即結(jié)論:1.檢驗(yàn):食物的選擇與鱷魚長(zhǎng)度無(wú)關(guān)假設(shè)檢驗(yàn)表6.2,p值0.0002,拒絕零假設(shè).2.在魚和無(wú)脊椎動(dòng)物之間,大鱷魚易選前者.X增加1單位,勝算比為:exp(2.355)=10.5EstimatingResponseProbabilities計(jì)算各類概率它滿足例中其中,1可以看為:對(duì)每個(gè)給定x,如最長(zhǎng)鱷而,即此鱷吃魚的可能性最大0.76,吃無(wú)脊椎動(dòng)物的可能性是0.005,吃其它的可能性為0.23

dataAlligator;inputsizetype$@@;cards;1.24I1.30I1.30I1.32F1.32F1.40F1.42I1.42F1.45I1.45O1.47I1.47F1.50I1.52I1.55I1.60I1.63I1.65O1.65I1.65F1.65F1.68F1.70I1.73O1.78I1.78I1.78O1.80I1.80F1.85F1.88I1.93I1.98I2.03F2.03F2.16F2.26F2.31F2.31F2.36F2.36F2.39F2.41F2.44F2.46F2.56O2.67F2.72I2.79F2.84F3.25O3.28O3.33F3.56F3.58F3.66F3.68O3.71F3.89F;proclogistic;modeltype(ref='O')=size/link=glogitexpb;run;SAS程序TheLOGISTICProcedureType3AnalysisofEffectsWaldEffectDFChi-SquarePr>ChiSqsize28.93600.0115AnalysisofMaximumLikelihoodEstimatesStandardWaldParametertypeDFEstimateErrorChi-SquarePr>ChiSqExp(Est)InterceptF11.61771.30731.53140.21595.042InterceptI15.69741.793810.08810.0015298.104sizeF1-0.11010.51710.04530.83140.896sizeI1-2.46540.89977.51010.00610.085OddsRatioEstimatesPoint95%WaldEffecttypeEstimateConfidenceLimitssizeF0.8960.3252.468sizeI0.0850.0150.496

點(diǎn)擊gator.sav選Analyze–regression–MultinomialLogisticRegression將food放到dependent,選定referencecategory(last),把length放到CovariateSPSS程序例2:Y信仰(是、不確定、否);X1性別;X2種族具體模型為(最終模型與前面相同):你有可能得到下面的SPSS輸出具體模型為:模型檢驗(yàn):

如去掉genderDeviance:8.0-0.8=7.2(df=2)

P值0.03檢驗(yàn):如果去掉raceDeviance:

2.8-0.8=2(df=2)

P值0.368各類人beliefinafterlife的概率datacatbelief;inputrace$gender$belief$count@@;cards;WhiteFY371WhiteFU49WhiteFN74WhiteMY250WhiteMU45WhiteMN71BlackFY64BlackFU9BlackFN15BlackMY25BlackMU5BlackMN13;proc

logistic;freqcount;classgender(ref='M')race(ref='Black')/param=ref;modelbelief(ref='N')=genderrace/link=glogitexpb;run;SAS程序TestingGlobalNullHypothesis:BETA=0TestChi-SquareDFPr>ChiSqLikelihoodRatio8.743740.0678Score8.849840.0650Wald8.781840.0668Type3AnalysisofEffectsWaldEffectDFChi-SquarePr>ChiSqgender27.20740.0272race22.08240.3530AnalysisofMaximumLikelihoodEstimates

StandardWaldParameterbeliefDFEstimateErrorChi-SquarePr>ChiSqExp(Est)InterceptU1-0.75820.36144.40310.03590.468InterceptY10.88280.242613.23900.00032.418genderFU10.10510.24650.18170.66991.111genderFY10.41860.17135.97370.01451.520raceWhiteU10.27120.35410.58630.44381.311raceWhiteY10.34200.23702.08140.14911.408OddsRatioEstimatesPoint95%WaldEffectbeliefEstimateConfidenceLimitsgenderFvsMU1.1110.6851.801genderFvsMY1.5201.0862.126raceWhitevsBlackU1.3110.6552.6256.2有序因變量的累積logit模型CUMULATIVELOGITMODELSFORORDINALRESPONSES模型:

X軸是否出錯(cuò)了?概率:

對(duì)所有j上述似然比的log值

log似然比為例1:

x=1是demo模型統(tǒng)計(jì)推斷的95%置信區(qū)間即:=模型擬合Noevidenceoflackoffit擬合不充分時(shí),可把原模型中用代替datapoliti;inputgenderpartybeliefcount@@;cards;00144002470031180042300532011180122801386014390154810136102341035310418105231111211218113621144511551;proclogistic;freqcount;classparty(param=refref='1');modelbelief=party;run;SAS程序TheLOGISTICProcedureModelFitStatisticsInterceptInterceptandCriterionOnlyCovariatesAIC2541.6302484.985SC2560.5402508.622-2LogL2533.6302474.985TestingGlobalNullHypothesis:BETA=0TestChi-SquareDFPr>ChiSqLikelihoodRatio58.64511<.0001Score57.24481<.0001Wald57.01821<.0001

Type3AnalysisofEffectsWaldEffectDFChi-SquarePr>ChiSqparty157.0182<.0001AnalysisofMaximumLikelihoodEstimatesStandardWaldParameterDFEstimateErrorChi-SquarePr>ChiSqIntercept11-2.46900.1318350.8122<.0001Intercept21-1.47450.1091182.7151<.0001Intercept310.23710.09486.24970.0124Intercept411.06950.1046104.6082<.0001

party010.97450.129157.0182<.0001OddsRatioEstimatesPoint95%WaldEffectEstimateConfidenceLimitsparty0vs12.6502.0583.412

SPSS輸出例2:SES:(1high,0low);lifeevents:過(guò)去三年Birthofchild,newjob,divorce,deathoffamily模型:給定lifeevents值,對(duì)高SES水平的人得輕一級(jí)別精神損傷的勝算是e(1.111)=3對(duì)給定SES,Lifeevents的數(shù)目多的人易得更嚴(yán)重的精神病

用更復(fù)雜的模型:發(fā)現(xiàn)交叉項(xiàng)不顯著AnalysisofMaximumLikelihoodEstimatesStandardWaldParameterDFEstimateErrorChi-SquarePr>ChiSqIntercept110.09810.81100.01460.9037Intercept211.59250.83723.61860.0571Intercept312.60660.90978.21110.0042life1-0.42040.19034.88110.0272SES10.37091.13020.10770.7428life*SES10.18130.23610.58960.4426datamental;inputnummentalSESlife@@;cards;11112121921192220331142321341132421151022530061102631471012730381132830991132931610117303041110131303121023241813215334121420634417152133540516201364041721837404182123841819205394082021540409;proclogistic;modelmental=lifeses;run;proclogistic;modelmental=lifeseslife*ses;run;SAS程序TheLOGISTICProcedureTestingGlobalNullHypothesis:BETA=0TestChi-SquareDFPr>ChiSqLikelihoodRatio9.944220.0069Score9.143120.0103Wald8.501820.0143AnalysisofMaximumLikelihoodEstimatesStandardWaldParameterDFEstimateErrorChi-SquarePr>ChiSqIntercept11-0.28180.6231

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論