畢業(yè)論文英文文獻(xiàn)及翻譯 Novel Optical Sensor for Precise Tilt Angle Measurement(一種精確測量傾斜角度的光學(xué)傳感器)_第1頁
畢業(yè)論文英文文獻(xiàn)及翻譯 Novel Optical Sensor for Precise Tilt Angle Measurement(一種精確測量傾斜角度的光學(xué)傳感器)_第2頁
畢業(yè)論文英文文獻(xiàn)及翻譯 Novel Optical Sensor for Precise Tilt Angle Measurement(一種精確測量傾斜角度的光學(xué)傳感器)_第3頁
畢業(yè)論文英文文獻(xiàn)及翻譯 Novel Optical Sensor for Precise Tilt Angle Measurement(一種精確測量傾斜角度的光學(xué)傳感器)_第4頁
畢業(yè)論文英文文獻(xiàn)及翻譯 Novel Optical Sensor for Precise Tilt Angle Measurement(一種精確測量傾斜角度的光學(xué)傳感器)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

畢業(yè)設(shè)計說明書英文文獻(xiàn)及中文翻譯學(xué)生姓名:學(xué)號:學(xué)院:信息與通信工程學(xué)院專業(yè):通信工程指導(dǎo)教師:**大學(xué)英文文獻(xiàn)原文及翻譯第17頁共17頁NovelOpticalSensorforPreciseTiltAngleMeasurementABSTRACTAnovelopticalsensor,whichcanmeasureinclinationangleortiltangleoftwoaxessimultaneouslyandprecisely,isintroduced.Thissensorisbasedontheprincipleoflaserinterferencesoithasveryhighaccuracy.Aprototypesensorisdesigned,builtandevaluatedtodemonstratethenovelconcept.Itisanoptoelectronicsensor.Therearenomovingpartsinthesensor.Afluidhorizontalthatisabsolutelyperpendiculartothetrueverticalprovidesthereferenceplane.Theanglebetweenthesensorandtheabsolutehorizonchangeswiththeinclinationoftheobjectbeingmeasured.Thesechangesarereflectedinthewayoffringepattern’scentrepositionshift.Differentinterferencepatternscentrelocationsaregeneratedwhentiltanglevaried.Theinterferencefringepatternarerecordedandprocessedtotranslateintothetiltanglesoftwoaxes,horizontalandvertical.Theaccuracycanreachashighas+/-1arcsecondwiththemeasurementrangeof700arcsecondswhen1024by1024pixelsimagesensorisutilized.Keywords:tiltanglesensor,inclinometers,laserinterferenceI.INTRODUCTIONThereareseveralkindsofcommercialsensorfortiltanglemeasurement,whichareavailableinthemarket.Someknownastiltanglesensor,someareknownasinclinometers.Theybaseondifferentworkingprinciples.Electrolyticliquid[1],capacitance[2]andpendulum[3]arethethreemainworkingprinciplesthatmosttiltanglesensororinclinometerusuallybaseon.Hereweproposeanovelopticalmethodandbuildupanoptoelectronicsensorwithlaser,opticalcomponentsandimagesensor.Itcandoprecisetiltanglemeasurementsimultaneously.Thereisnomechanicalmovementpart.Theworkingprincipleisbasedonopticalinterferometry.Coherentlaserisusedasthelightingsource.Itwillgothroughaliquidoilbox,whichisbuiltbyaglasscontainerfilledwithliquidoil.Afluidhorizontalthatisabsolutelyperpendiculartothetrueverticalprovidesthereferenceplane.Whenlaserbeampassthroughtheoilboxtwobeamsarereflectedbackbysurfaceoftheliquidandcontainerglass.Interferencefringesareformedwiththesetwobeams.Thefringepatternswillshiftincorrespondingtothechangesofthetiltangles.Thefringepatternsiscapturedandprocessedtogivethetiltangleinformation.Opticalworkingprinciplemakesitinsensitivetomagneticfield.Thesensorcanmeasuretwoaxesinclinationanglesimultaneously.Afluidhorizontalmakesurethereferenceplaneisanabsolutehorizontalplane.Highsensitiveopticalinterferencemeasurementprincipleassuresthehighaccuracy.Aprototypeofthemethodhasbeenbuiltupandevaluated.Experimentalresultsshowthetiltanglechangesrelativetosealevelcanbedetectedattheaccuracyof+-1arcsecondwithinthemeasurementrangeof700arcseconds.II.PRINCIPLEFigure1illustratestheschematicdiagramofworkingprinciple.PointOisthefocalpointofbeamexpandinglens.PointOcanbeconsideredasapointlightsource.Itemitssphericalwave-front.Liquidoilsurfacewillalwaysmaintainhorizontallyduetothegravityforceoftheearth.Theoilsurfaceisusedasthereferenceplane.Thecontainerismadeofglass.Itsbottomsurfacewillinclinetogetherwiththetargetobjectwhenthesensorisplacedonthetarget.Thelightfromoilsurfaceandglasssurfacewillinterferencetoformcircularfringespattern(seeFig.4).Theinclineanglecanbemeasuredwiththecentrepositionchangesofcircularfringes.PisthemirrorimageofOagainsttoglass-airsurfaceandQisthemirrorimageofOagainsttooil-airsurface.Theoil-airsurfacerepresentsthehorizontalplane.WhentheglasssurfacepositionedparallelwithoilsurfacethePandQareinthesamelineperpendicularwithoilsurface.Thislineisalsotheopticalaxisoftheopticalsystem.Thefringesarecircularfringeswithcommoncenter.Whentheoilboxisinclinedtheglasssurfacehasatiltangleaagainsttotheoilsurface.(1)wherenistherefractionindexofglass.Whenthetiltangleistiny,theaboveequationcanbesimplifiedas(2)Wecanobtainthefollowingequationfromand(3)whereristhecenterpositionofcircularfringes.Disthedistanceofthereceivingscreentotheglasssurfaceofoilbox.histhethicknessofglassandoil.nistherefractionindexofglassandoil(hereweassumetheglassandoilhavesameindexsincetheyareveryclose).AssumethatsothathisnegligiblerelativetoD.(4)Fromequation(4)n,Dandharefixedoncethesetupisassembled.Let,calledsystemconstant.Thissystemparametercanbeobtainedthroughcalibrationprocess.Henceequation(4)canbewrittenas(5)wherercanbecalculatedwithimageprocessingtechniqueandhencedothetiltangle.Fig.1SchematicdiagramofmeasurementprincipleIII.DESCRIPTIONOFSENSORFigure2showsthedetaillayoutoftheopticalheadofthesensor.Itincludeslaser1,beamexpander2,beamsplitter3,mirror4andliquidoilbox5.Apointlightsourceemitssphericalwave-front.Thisbeamgoesthroughtheoilbox.Itisreflectedbytheglasssurfaceandoilsurfacerespectively.Thesetwowave-frontsmeettogetheragainaftertheypassdifferentopticalpaths.Ifthecoherentlengthofthepointlightsourceislongerthantheopticalpathdifference,thesetwobeamswillinterfereandformcircularfringes.Whenonesurfacetiltsthecenterofthecircularfringeswillshiftaccordingly.Whentheopticalpathchanges,thefringeswillbegeneratedorabsorbedaccordingly.Onefringechangeoccursincorrespondingtoopticalpathdifference,whereisthewavelengthofthelightsource.Fig.2LayoutofopticalsensorheadAsillustratedinFigure2,thelaser1emitsalaserbeam.Thislaserbeamisexpandedbyabeamexpander2toformasphericalwave-frontbeam.Subsequentlythisbeamgoesthroughtheliquidoilbox5perpendicularly.Thereflectionsoccurinthesurfacesformedbymediaslayerswithdifferentrefractionindexes.Thereflectionratioisdeterminedbytheformulawhenincidentdirectionisperpendicularlytothereflectionplan(6)Whereandrepresentthediffractionindexofthetwomedias.Thecloserthetworeflectionindexesthelesslightreflected.Whenequalstothereisnoreflectionoccurringatthissurface.Whilebuildingthesensoroneofthemostimportantrequirementsistomakesurethatthecentersofallopticalcomponentsarepositionedonthesameline,e.g.theopticalaxis.Duetomechanicaltoleranceandthepreciserequirementsofthesensorhead,afinetuneonthealignmentoftheopticalheadisnecessarytomakesurethesensorcanworkwell.Themethodbeginswithaligningthelasertoenablethelaserbeamparalleltothebaseplatethatalltheopticalcomponentswillbemountedon.Subsequentlyinstallthebeamsplitter.Thedirectionoflaserbeamwillbechangebyarightangleandincidenttotheliquidoilbox.Adjustthebeamsplitteruntilthelaserbeamincidenttotheliquidoilboxperpendicular.Installbeamexpandertoconverttheparallelbeamintoasphericallaserbeam.Alignthebeamexpanderaxiswiththesystemopticalaxis.Thereflectedwavefrontscomingfromglasssurfaceandoilsurfacewillgothroughbeamsplitterandchangeitsdirectionatrightanglebymirrortoentercamera.Thealignmentofcameramakesensurethelaserbeamtobeimagedatthecenteroftheimagingplane.Thatis,theimagingaxisisnormaltotheimagingplane.Furthermore,themethodneedstofurtheraligntheliquidoilboxwiththethreescrews10mountedintheoilboxtoensuretiltanglewithinthemeasurementrange.Apatternwithcircularfringeswillappear.Adjustthescrew10untilthecenterofthefringepatternpositionedinthecenterofimagesensorasillustratedinFigure4A.Fig.3SchematicdiagramofoilboxFigure3showsthedetailsofliquidoilbox.Thefirstsurfaceisformedbyair-glass,calledair-glasssurface;thereflectionratioisabout3%sincetherefractionindexofairis1andtheglassweusedisaround1.4.Thesecondsurfaceisformedbyglass-oil,calledglass-oilsurface.Thereisalmostnoreflectioninthissurfacesincewechooseproperoilwiththecloserefractionindexwiththeglass.Thethirdsurfaceisconstructedbytheoilandair.Sothereflectionratioisaboutthesameasthefirstsurface.Thetworeflectedwavefrontsbythefirstglass-airsurfaceandthethirdoil-airsurfacewillmeettogetherandinterferenceeachothertoformapatternwithcircularinterferencefringesasillustratedinFigure4.Whentheglasssurfaceisparallelwithoilsurfacethecenterwillbepositionedintheopticalaxis(Fig.4A).Thepositionofcenterofthecircularfringeswillshiftwhenthetiltanglevaries(Fig.4B).Fig.4AInterferencefringepatterns(centerposition,nontilted)Fig.4BInterferencefringepatterns(sideposition,tiltedangle)IV.CALIBRATIONItisvitalforcalibrationofthesensortoensureanaccurateandreliablemeasurement.Apropercalibrationmakessurethatthecenterofthecircularfringesispositionedinthecenterportionoftheimagesensorwhenthesensorisplacedhorizontally.Thepurposesofthecalibrationarenotonlyobtainingsystemconstanthofequation(6)butalsocorrectingerrorscausedbyopticalaberration.Theconceptofcalibrationistoputoursensorandthebenchmarksensorontothesameplatethenchangethetiltanglesoftheplatetorecordthereadingsofoursensorandthebenchmarksensors.Figure5showsschematicdiagramofourcalibrationworkstationforthecalibrationofthesensor.Theworkstationconsistsofaflatplatesupportedatthreepointsandtwohighaccuratesingleaxistiltanglesensorswithaccuracyashighas1arcsecond.Thetwosensorsarepositionedatarightangle,oneisalongwithx-axistomonitorthechangeinxdirectionandtheotherisalongwithy-axistomonitorthechangeinydirection.Fig.5SchematicdiagramofcalibrationplatformTheplateissupportedatthreepointswiththreescrews.Itiseasytochangethetiltangleoftheplatebyadjustingthethreescrews.Ouropticalsensorheadisplacedinthecenteroftheplateandalignedwithxandyaxisofthestation.First,adjustthebaseplateuntilthereadingsofthesensorequalto0tolettheworkstationplateisparalleltothesealevel.Second,mountouropticalsensorthatneedstobecalibratedontotheplate.Alignthexandyaxiswiththebenchmarksenor.Third,adjustthelevelofliquidoilboxwiththethreescrewsonthecoveroftheliquidoilboxuntilthecentercircularfringesmovetothecenteroftheimagesensor.Thisadjustcanmakesurethepropermeasurementrange.Forth,changedifferenttiltanglesbymeansofadjustingthedifferentheightsofscrew.Recordthereadingsofthebenchmarksensorandcalculatethetiltanglesoftwoaxeswithoursensor.Thereadingsshouldcoverthewholemeasurementrange.Calibrationcoefficientcanbeobtainedwiththiscalibrationdata.Afterinputthecalibrationcoefficientintosoftwareapplicationprogram,thecalibrationprocessisover.Fig.6AshowsthecalibrationlineinXaxis.Fig.6BshowsthecalibrationlineinYaxis.Fig.6AMeasurementresultsofXaxisFig.6BMeasurementresultsofYaxisV.CONLUSIONAnovelopticalsensorwasinvented.Aprototypehasbeenbuiltupandevaluated.Accuracyof+-1arcsecondwithinthemeasurementrangeof700arcsecondshasbeenachieved.Itcanmeasureinclinationangleortiltangleoftwoaxessimultaneouslyandprecisely.Thissensorisbasedontheprincipleoflaserinterference.Ithasthefollowingmainadvantagescomparewithotherinclinometers.(1)Highaccurate.Itisopticalinterferenceprinciplebasedsensor.Anyvariationlessthan,e.g.0.3microninopticalpathwillcausethemovementofinterferencefringepattern.Thistinychangeisdetectedandconvertedtotiltangle.(2)Insensitivetomagneticenvironment.(3)Optoelectronicsensor,nomechanicalmovingparts.(4)Twoaxesanglesmeasurementatthesametime.REFERENCES[1]Olson,JackR.,“Electrolytictiltsensorandmethodformanufacturingsame”,USpatent,US6802132B1,2004[2]Urano,Mitsuhiro,“Capacitancetypeliquidsensor”,PatentEP1515117A1,2005[3]Zabler,Erich,“Tiltsensor”,PatentEP0768513A2,1997**大學(xué)英文文獻(xiàn)原文及翻譯一種精確測量傾斜角度的光學(xué)傳感器摘要本文主要介紹了一種新型光學(xué)傳感器,它可以同時準(zhǔn)確地測量傾斜角或兩軸傾斜角度。這種傳感器是基于激光干涉原理,因此具有很高的精度。設(shè)計制作了一個傳感器的模型來論證這個新的方法,這是一個光電傳感器,傳感器中沒有移動的部分。由正交于鉛垂面的流動水平面提供參考面。傳感器和絕對水平面之間的角度隨著被測量的物體傾斜而改變,這些變化反映在條紋圖案的中心位置的轉(zhuǎn)移方式。不同的干涉條紋的中心位置隨傾斜角的變化而改變。干涉條紋圖案進(jìn)行記錄和處理,轉(zhuǎn)化為兩軸、水平和垂直傾斜角度。當(dāng)使用1024*1024像素的傳感器時,測量范圍為700弧秒,其精度可高達(dá)+/-1弧秒。關(guān)鍵詞:傾斜角度傳感器,傾斜儀,激光干涉I介紹市場上目前有幾種類型的商業(yè)傾斜角度測量傳感器。有些是角度傳感器,有些是傾斜儀,它們的工作原理不同。電解液體、電容和鐘擺是現(xiàn)在大多數(shù)傾斜角度傳感器和傾斜儀的三個主要工作原理。在這里,我們提出了一種新的光學(xué)方法,建立了一個用激光、光學(xué)元件和圖像傳感器的光電傳感器,它可以同時做精確的傾斜角度測量,不需要進(jìn)行機(jī)械的移動,其工作原理是基于光學(xué)干涉,相干激光作為光源。光線通過一個裝滿液態(tài)油的玻璃油盒。由正交于鉛垂面的流動水平面提供參考面。當(dāng)激光束穿過油箱有兩束光線反射回來,一束是液體的表面產(chǎn)生的,另一束是容器玻璃產(chǎn)生的,干涉條紋就是由這兩條光線形成的,條紋圖案將隨著傾斜角度的變化產(chǎn)生相應(yīng)的變化,條紋圖案采集和處理后將反映傾斜角度信息,光學(xué)工作原理使它不受磁場的影響。該傳感器可以同時測量兩軸傾角。流動的水平面確保了參考面是一個絕對的水平面。高靈敏度光學(xué)干涉測量原理,保證了較高的精度。II原理圖1說明了工作原理示意圖,O點是光線擴(kuò)大鏡頭的焦點,O點可以看作是點光源,它發(fā)出球面波。由于地球重力的影響,液體油面始終保持水平,因此用油面作為參考平面。該容器是玻璃材料的。當(dāng)傳感器被放在目標(biāo)表面時,其底部表面將連同目標(biāo)對象一起傾斜。圖1測量原理工作示意圖從油面和玻璃表面射出的光將干涉形成圓形圖案(見圖4)。傾斜角度可以通過圓形圖案中心位置的改變測量得出。P是點O在玻璃和空間之間形成的鏡像,點Q則是點O在油和空氣之間形成的鏡像,油—空氣平面代表了水平面。當(dāng)使玻璃面平行油面,點P和點Q在垂直于油面的同一條線上,這條線也是光學(xué)系統(tǒng)的軸線。邊緣與共同中心圓形邊緣。當(dāng)油箱傾斜玻璃表面有一對以油面的傾斜角,這是同心圓圖案。當(dāng)油盒傾斜時,玻璃面相對于油面有個傾斜角。(1)其中n是玻璃的折射率。當(dāng)傾斜角度很小,上面的方程可以簡化為 (2)我們可以從和得到以下方程:(3)其中是圓條紋中心的位置,

D是接收屏幕到油箱玻璃表面的距離,H是玻璃和油的厚度,

n是玻璃和油折射率(因為玻璃和油的折射率非常接近,這里假設(shè)它們相等)。

假設(shè)折射率nD遠(yuǎn)遠(yuǎn)大于h,因此相對于來說h可以忽略不計。(4)從方程(4)可知,一旦裝置安裝好后,n,d,h是固定的。令,為系統(tǒng)常量,系統(tǒng)參數(shù)可以通過校驗過程獲得。因此方程(4)可以寫成(5)其中可以通過圖像處理技術(shù)計算出,由此可以得出值。III.傳感器的描述圖2顯示了傳感器的光學(xué)頭部詳細(xì)布局。它包括激光1,擴(kuò)束2,光束分離器3,平面鏡4和液體油盒5。一個點光源發(fā)出球面波,這束光線穿過油箱。這束光線分別被玻璃表面和油的表面反射,兩束不同路線的光將再次相遇再次相聚。如果點光源相干長度大于長的光程差,這兩束光線將產(chǎn)生干涉形成環(huán)形條紋。當(dāng)一個表面發(fā)生傾斜,圓形條紋中心將相應(yīng)地轉(zhuǎn)變。當(dāng)光學(xué)路徑變化,條紋將相應(yīng)的出現(xiàn)或者被吸收。條紋變化發(fā)生在一個相對應(yīng)的光程差,其中為光源的波長。圖2光學(xué)傳感器布局如圖2所示,激光發(fā)射激光束1。激光束通過擴(kuò)束2被擴(kuò)大,形成一個球形波前束,隨后這束光線垂直穿過液

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論