版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年保山中醫(yī)藥高等??茖W校高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.柱坐標(2,,5)對應的點的直角坐標是
。答案:()解析:∵柱坐標(2,,5),且,2,∴對應直角坐標是()2.若方程mx2+(m+1)x+m=0有兩個不相等的實根,則實數m的取值范圍是()
A.m>0
B.-<m<1
C.-<m<0或0<m<1
D.不確定答案:C3.i是虛數單位,若(3+5i)x+(2-i)y=17-2i,則x、y的值分別為()
A.7,1
B.1,7
C.1,-7
D.-1,7答案:B4.5本不同的書全部分給3個學生,每人至少一本,共有()種分法.
A.60
B.150
C.300
D.210答案:B5.某航空公司經營A,B,C,D這四個城市之間的客運業(yè)務,它們之間的直線距離的部分機票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設這四個城在同一水平面上)()
A.1500元
B.1400元
C.1200元
D.1000元答案:A6.下列圖象中不能作為函數圖象的是()A.
B.
C.
D.
答案:根據函數的概念:如果在一個變化過程中,有兩個變量x、y,對于x的每一個值,y都有唯一確定的值與之對應,這時稱y是x的函數.結合選項可知,只有選項B中是一個x對應1或2個y故選B.7.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的()
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C8.(1)在數軸上求一點的坐標,使它到點A(9)與到點B(-15)的距離相等;
(2)在數軸上求一點的坐標,使它到點A(3)的距離是它到點B(-9)的距離的2倍.答案:(1)設該點為M(x),根據題意,得A、M兩點間的距離為d(A,M)=|x-9|,B、M兩點間的距離為d(M,B)=|-15-x|,結合題意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐標為-3故所求點的坐標為-3.(2)設該點為N(x'),則A、N兩點間的距離為d(A,N)=|x'-3|,B、N兩點間的距離為d(N,B)=|-9-x'|,根據題意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求點的坐標是-21或-5.9.某校為提高教學質量進行教改實驗,設有試驗班和對照班.經過兩個月的教學試驗,進行了一次檢測,試驗班與對照班成績統計如下的2×2列聯表所示(單位:人),則其中m=______,n=______.
80及80分以下80分以上合計試驗班321850對照班12m50合計4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.10.(幾何證明選做題)若A,B,C是⊙O上三點,PC切⊙O于點C,∠ABC=110°,∠BCP=40°,則∠AOB的大小為______.答案:∵PC切⊙O于點C,OC為圓的半徑∴OC⊥PC,即∠PCO=90°∵∠BCP=40°∴∠BCO=50°由弦切角定理及圓周角定理可知,∠BOC=2∠PCB=80°∵△BOC中,∠OBC=50°,∠ABC=110°∴∠OBA=60°∵OB=OA∴∠AOB=60°故為:60°11.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.12.(幾何證明選講選選做題)如圖,AC是⊙O的直徑,B是⊙O上一點,∠ABC的平分線與⊙O相交于.D已知BC=1,AB=3,則AD=______;過B、D分別作⊙O的切線,則這兩條切線的夾角θ=______.答案:∵AC是⊙O的直徑,B是⊙O上一點∴∠ABC=90°∵∠ABC的平分線與⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圓周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°設所作的兩切線交于點P,連接OB,OD,則可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴點ODPB共圓∴∠P+∠BOD=180°∴∠P=30°故為:2,30°13.已知一9行9列的矩陣中的元素是由互不相等的81個數組成,a11a12…a19a21a22…a29…………a91a92…a99若每行9個數與每列的9個數按表中順序分別構成等差數列,且正中間一個數a55=7,則矩陣中所有元素之和為______.答案:∵每行9個數按從左至右的順序構成等差數列,∴a11+a12+a13+…+a18+a19=9a15,a21+a22+a23+…+a28+a29=9a25,a31+a32+a33+…+a38+a39=9a35,a41+a42+a43+…+a48+a49=9a45,…a91+a92+a93+…+a98+a99=9a95,∵每列的9個數按從上到下的順序也構成等差數列,∴a15+a25+a35+…+a85+a95=9a55,∴表中所有數之和為81a55=567,故為567.14.已知一個球與一個正三棱柱的三個側面和兩個底面相切,若這個球的體積是32π3,則這個三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h=4.設其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48315.過點(2,4)作直線與拋物線y2=8x只有一個公共點,這樣的直線有()
A.1條
B.2條
C.3條
D.4條答案:B16.已知e1
,
e2是夾角為60°的兩個單位向量,且向量a=e1+2e2,則|a|=______.答案:由題意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故為:717.已知平面內的向量a,b,c兩兩所成的角相等,且|a|=2,|b|=3,|c|=5,則|a+b+c|的值的集合為______.答案:設平面內的向量a,b,c兩兩所成的角為α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,當α=0°時,|a+b+c|2=100,|a+b+c|=10,當α=120°時,|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合為{7,10}.故為:{7,10}.18.從單詞“equation”選取5個不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有()A.120個B.480個C.720個D.840個答案:要選取5個字母時首先從其它6個字母中選3個有C63種結果,再與“qu“組成的一個元素進行全排列共有C63A44=480,故選B.19.已知a、b、c為某一直角三角形的三條邊長,c為斜邊.若點(m,n)在直線ax+by+2c=0上,則m2+n2的最小值是______.答案:根據題意可知:當(m,n)運動到原點與已知直線作垂線的垂足位置時,m2+n2的值最小,由三角形為直角三角形,且c為斜邊,根據勾股定理得:c2=a2+b2,所以原點(0,0)到直線ax+by+2c=0的距離d=|0+0+2c|a2+b2=2,則m2+n2的最小值為4.故為:4.20.9、從4臺甲型和5臺乙型電視機中任意取出3臺,其中至少要有甲型與乙型電視機各1臺,則不同的取法共有()
A.140種
B.84種
C.70種
D.35種答案:C21.已知:集合A={x,y},B={2,2y},若A=B,則x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故為:2或622.圓的極坐標方程為ρ=2cos(θ+π3),則該圓的圓心的極坐標是______.答案:∵ρ=2cos(θ+π3),展開得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圓心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圓心的極坐標是(1,-π3).故為(1,-π3).23.如圖,直線AB是平面α的斜線,A為斜足,若點P在平面α內運動,使得點P到直線AB的距離為定值a(a>0),則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因為點P到直線AB的距離為定值a,所以,P點在以AB為軸的圓柱的側面上,又直線AB是平面α的斜線,且點P在平面α內運動,所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側面,所以得到的軌跡是橢圓.故選B.24.如圖,I表示南北方向的公路,A地在公路的正東2km處,B地在A地北偏東60°方向2km處,河流沿岸PQ(曲線)上任一點到公路l和到A地距離相等,現要在河岸PQ上選一處M建一座碼頭,向A,B兩地轉運貨物,經測算從M到A,B修建公路的費用均為a萬元/km,那么修建這兩條公路的總費用最低是(單位萬元)()
A.(2+)a
B.5a
C.2(+1)a
D.6a
答案:B25.若定義在正整數有序對集合上的二元函數f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D26.下列函數中,與函數y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函數y=x的定義域為R,選項中A,D定義域不是R,是A、D不正確.選項C的對應法則不同,C不正確.故選B.27.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.28.已知函數f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故為:7229.(選做題)某制藥企業(yè)為了對某種藥用液體進行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分數法進行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數為(
)。答案:730.已知隨機變量ξ~N(3,22),若ξ=2η+3,則Dη=()
A.0
B.1
C.2
D.4答案:B31.某校有學生1
200人,為了調查某種情況打算抽取一個樣本容量為50的樣本,問此樣本若采用簡單隨便機抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學生都編上號0001,0002,0003…用抽簽法做1200個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取50次,就得到一個容量為50的樣本.32.若(1+2)5=a+b2(a,b為有理數),則a+b=()A.45B.55C.70D.80答案:解析:由二項式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故選C33.曲線(t為參數)上的點與A(-2,3)的距離為,則該點坐標是()
A.(-4,5)
B.(-3,4)或(-1,2)
C.(-3,4)
D.(-4,5)或(0,1)答案:B34.甲、乙兩位同學都參加了由學校舉辦的籃球比賽,它們都參加了全部的7場比賽,平均得分均為16分,標準差分別為5.09和3.72,則甲、乙兩同學在這次籃球比賽活動中,發(fā)揮得更穩(wěn)定的是()
A.甲
B.乙
C.甲、乙相同
D.不能確定答案:B35.點(1,2)到原點的距離為()
A.1
B.5
C.
D.2答案:C36.如圖所示,已知點P為菱形ABCD外一點,且PA⊥面ABCD,PA=AD=AC,點F為PC中點,則二面角CBFD的正切值為()
A.
B.
C.
D.
答案:D37.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點B為原點,BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(1,0,1).∴=(0,2,1),=(1,-2,0).設平面BDF的一個法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.38.已知|a|=1,|b|=2,向量a與b的夾角為60°,則|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a與b的夾角為60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|
=7,故為7.39.如圖,AD是圓內接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于
______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.40.橢圓=1的焦點為F1,點P在橢圓上,如果線段PF1的中點M在y軸上,那么點M的縱坐標是()
A.±
B.±
C.±
D.±答案:A41.設z∈C,|z|≤2,則點Z表示的圖形是()A.直線x=2的左半平面B.半徑為2的圓面C.直線x=2的右半平面D.半徑為2的圓答案:由題意z∈C,|z|≤2,由得數的幾何意義知,點Z表示的圖形是半徑為2的圓面,故選B42.如圖,在直角坐標系中,A,B,C三點在x軸上,原點O和點B分別是線段AB和AC的中點,已知AO=m(m為常數),平面上的點P滿足PA+PB=6m.
(1)試求點P的軌跡C1的方程;
(2)若點(x,y)在曲線C1上,求證:點(x3,y22)一定在某圓C2上;
(3)過點C作直線l,與圓C2相交于M,N兩點,若點N恰好是線段CM的中點,試求直線l的方程.答案:(1)由題意可得點P的軌跡C1是以A,B為焦點的橢圓.…(2分)且半焦距長c=m,長半軸長a=3m,則C1的方程為x29m2+y28m2=1.…(5分)(2)若點(x,y)在曲線C1上,則x29m2+y28m2=1.設x3=x0,y22=y0,則x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以點(x3,y22)一定在某一圓C2上.…(10分)(3)由題意C(3m,0).…(11分)設M(x1,y1),則x12+y12=m2.…①因為點N恰好是線段CM的中點,所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②聯立①②,解得x1=-m,y1=0.…(15分)故直線l有且只有一條,方程為y=0.…(16分)(若只寫出直線方程,不說明理由,給1分)43.如圖是容量為150的樣本的頻率分布直方圖,則樣本數據落在[6,10)內的頻數為()A.12B.48C.60D.80答案:根據頻率分布直方圖,樣本數據落在[6,10)內的頻數為0.08×4×150=48故選B.44.隨機變量X的概率分布規(guī)律為P(X=n)=(n=1,2,3,4),其中a是常數,則P()的值為()
A.
B.
C.
D.
答案:D45.已知兩個力F1,F2的夾角為90°,它們的合力大小為20N,合力與F1的夾角為30°,那么F1的大小為()A.103NB.10
NC.20
ND.102N答案:設向F1,F2的對應向量分別為OA、OB以OA、OB為鄰邊作平行四邊形OACB如圖,則OC=OA+OB,對應力F1,F2的合力∵F1,F2的夾角為90°,∴四邊形OACB是矩形在Rt△OAC中,∠COA=30°,|OC|=20∴|OA|=|OC|cos30°=103故選:A46.把函數y=ex的圖像按向量=(2,3)平移,得到y=f(x)的圖像,則f(x)=(
)
A.ex+2+3
B.ex+2-3
C.ex-2+3
D.ex-2-3答案:C47.直線(t為參數)的傾斜角等于()
A.
B.
C.
D.答案:A48.若以(y+2)2=4(x-1)上任一點P為圓心作與y軸相切的圓,那么這些圓必定過平面內的點()
A.(1,-2)
B.(3,-2)
C.(2,-2)
D.不存在這樣的點答案:C49.在7塊并排、形狀大小相同的試驗田上進行施化肥量對水稻產量影響的試驗,得到如下表所示的一組數據(單位:kg).
(1)畫出散點圖;
(2)求y關于x的線性回歸方程;
(3)若施化肥量為38kg,其他情況不變,請預測水稻的產量.答案:(1)根據題表中數據可得散點圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據回歸直線方程系數的公式計算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預測,施化肥量為38kg,其他情況不變時,水稻的產量是438kg.50.某人從家乘車到單位,途中有3個交通崗亭.假設在各交通崗遇到紅燈的事件是相互獨立的,且概率都是0.4,則此人上班途中遇紅燈的次數的期望為()
A.0.4
B.1.2
C.0.43
D.0.6答案:B第2卷一.綜合題(共50題)1.方程組的解集是[
]A.{5,1}
B.{1,5}
C.{(5,1)}
D.{(1,5)}答案:C2.高二年級某班有男生36人,女生28人,從中任選一位同學為數學科代表,則不同選法的種數是()A.36B.28C.64D.1008答案:高二年級某班有男生36人,女生28人,即共有64人,從中任選一位同學為數學科代表,則不同選法的種數64,故選C.3.用數學歸納法證明“<n(n∈N*,n>1)”時,由n=k(k>1)不等式成立,推證n=k+1時,左邊應增加的項數是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C4.已知圓的極坐標方程為:ρ2-42ρcos(θ-π4)+6=0.
(1)將極坐標方程化為普通方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0
即
ρ2-42(22ρcosθ+22ρsinθ
),即x2+y2-4x-4y+6=0.(2)圓的參數方程為x=
2
+2cosαy=
2
+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.5.設a=log
132,b=log123,c=(12)0.3,則()A.a<b<cB.a<c<bC.b<c<aD.b<a<c答案:c=(12)0.3>0,a=log
132<0,b=log123
<0并且log
132>log133,log
133>log123所以c>a>b故選D.6.在平面直角坐標系xOy中,設P(x,y)是橢圓上的一個動點,則S=x+y的最大值是()
A.1
B.2
C.3
D.4答案:B7.在曲線(t為參數)上的點是()
A.(1,-1)
B.(4,21)
C.(7,89)
D.答案:A8.已知二項分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:19.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1.用反證法證明時可假設方程有一根x1的絕對值大于或等于1,即假設|x1|≥1,以下結論正確的是()
A.(1)的假設錯誤,(2)的假設正確
B.(1)與(2)的假設都正確
C.(1)的假設正確,(2)的假設錯誤
D.(1)與(2)的假設都錯誤答案:A10.設k>1,則關于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()
A.長軸在x軸上的橢圓
B.長軸在y軸上的橢圓
C.實軸在x軸上的雙曲線
D.實軸在y軸上的雙曲線答案:D11.
已知拋物線y2=2px(p>0)的焦點為F,過F的直線交y軸正半軸于點P,交拋物線于A,B兩點,其中點A在第一象限,若,,,則μ的取值范圍是()
A.[1,]
B.[,2]
C.[2,3]
D.[3,4]答案:B12.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據點到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為1513.已知圖形F上的點A按向量平移前后的坐標分別是和,若B()是圖形F上的又一點,則在F按向量平移后得到的圖形F,上B,的坐標是(
)A.B.C.D.答案:選D解析:設向量,則平移公式為依題意有∴平移公式為將B點坐標代入可得B,點的坐標為.所以選D.14.已知z1=5+3i,z2=5+4i,下列各式中正確的是()A.z1>z2B.z1<z2C.|z1|>|z2|D.|z1|<|z2|答案:∵z1=5+3i,z2=5+4i,∴z1與z2為虛數,故不能比較大小,可排除A,B;又|z1|=34,|z2|=52+42=41,∴|z1|<|z2|,可排除C.故選D.15.已知向量OA=(2,3),OB=(4,-1),P是線段AB的中點,則P點的坐標是()A.(2,-4)B.(3,1)C.(-2,4)D.(6,2)答案:由線段的中點公式可得OP=12(OA+OB)=(3,1),故P點的坐標是(3,1),故選B.16.如圖,已知C點在圓O直徑BE的延長線上,CA切圓O于A點,∠ACB的平分線分別交AE、AB于點F、D.
(Ⅰ)求∠ADF的度數;
(Ⅱ)若AB=AC,求ACBC的值.答案:解
(1)∵AC為圓O的切線,∴∠B=∠EAC,又CD是∠ACB的平分線,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE為圓O的直徑,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形內角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3317.設P1(4,-3),P2(-2,6),且P在P1P2的延長線上,使||=2||,則點P的坐標
()
A.(-8,15)
B.(0,3)
C.(-,)
D.(1,)答案:A18.如圖,PA切圓O于點A,割線PBC經過圓心O,OB=PB=1,OA繞點O逆時針旋轉600到OD,則PD的長為()
A.3
B.
C.
D.
答案:D19.某總體容量為M,其中帶有標記的有N個,現用簡單隨機抽樣方法從中抽出一個容量為m的樣本,則抽取的m個個體中帶有標記的個數估計為()A.mNMB.mMNC.MNmD.N答案:由題意知,總體中帶有標記的魚所占比例是NM,故樣本中帶有標記的個數估計為mNM,故選A.20.設a,b,c都是正數,求證:bca+cab+abc≥a+b+c.答案:證明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c當且僅當a=b=c時,等號成立.21.直線2x-3y+10=0的法向量的坐標可以是答案:C22.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過
B作BD⊥AC于D,BD交⊙O于E點,若AE平分∠BAD,則∠BAD=()
A.30°
B.45°
C.50°
D.60°
答案:D23.橢圓有這樣的光學性質:從橢圓的一個焦點出發(fā)的光線,經橢圓反射后,反射光線經過橢圓的另一焦點.一水平放置的橢圓形臺球盤,F1,F2是其焦點,長軸長2a,焦距為2c.一靜放在F1點處的小球(半徑忽略不計),受擊打后沿直線運動(不與直線F1F2重合),經橢圓壁反彈后再回到點F1時,小球經過的路程是()
A.4c
B.4a
C.2(a+c)
D.4(a+c)答案:B24.如圖,在復平面內,點A表示復數z的共軛復數,則復數z對應的點是()A.AB.BC.CD.D答案:兩個復數是共軛復數,兩個復數的實部相同,下部相反,對應的點關于x軸對稱.所以點A表示復數z的共軛復數的點是B.故選B.25.點P(2,5)關于直線x+y=1的對稱點的坐標是(
)。答案:(-4,-1)26.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據題意可知該循環(huán)體運行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因為i=5>4,結束循環(huán),輸出結果S=46.故為:46.27.已知拋物線y2=4x上兩定點A、B分別在對稱軸兩側,F為焦點,且|AF|=2,|BF|=5,在拋物線的AOB一段上求一點P,使S△ABP最大,并求面積最大值.答案:不妨設點A在第一象限,B點在第四象限.如圖.拋物線的焦點F(1,0),點A在第一象限,設A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線AB的方程為y-2-4-2=x-14-1,化簡得2x+y-4=0.…(8分)再設在拋物線AOB這段曲線上任一點P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點P到直線AB的距離d=|2x0+y0-4|1+4=|2×y0
24+y0-4|5=|12(y0+1)2-92|5
…(9分)所以當y0=-1時,d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274
…(11分)此時P點坐標為(14,-1).…(12分).28.在面積為S的△ABC的邊AB上任取一點P,則△PBC的面積大于S4的概率是()A.13B.12C.34D.14答案:記事件A={△PBC的面積大于S4},基本事件空間是線段AB的長度,(如圖)因為S△PBC>S4,則有12BC?PE>14×12BC?AD;化簡記得到:PEAD>14,因為PE平行AD則由三角形的相似性PEAD>14;所以,事件A的幾何度量為線段AP的長度,因為AP=34AB,所以△PBC的面積大于S4的概率=APAB=34.故選C.29.如圖,在△ABC中,D是AC的中點,E是BD的中點,AE交BC于F,則的值等于()
A.
B.
C.
D.
答案:A30.若集合A={1,2,3},則集合A的真子集共有()A.3個B.5個C.7個D.8個答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個.故選C.31.用反證法證明“a>b”時,反設正確的是()
A.a>b
B.a<b
C.a=b
D.以上都不對答案:D32.一個算法的流程圖如圖所示,則輸出S的值為
.答案:根據程序框圖,題意為求:s=1+2+3+4+5+6+7+8+9,計算得:s=45,故為:45.33.2008年9月25日下午4點30分,“神舟七號”載人飛船發(fā)射升空,其運行的軌道是以地球的中心F為一個焦點的橢圓,若這個橢圓的長軸長為2a,離心率為e,則“神舟七號”飛船到地球中心的最大距離為______.答案:如圖,根據橢圓的幾何性質可知,頂點B到橢圓的焦點F的距離最大.最大為a+c=a+ae.故為:a+ae.34.直線y=3的一個單位法向量是______.答案:直線y=3的方向向量是(a,0)(a≠0),不妨取(1,0)設直線y=3的法向量為n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直線y=3的一個單位法向量是(0,1)故為:(0,1)35.圓柱的底面積為S,側面展開圖為正方形,那么這個圓柱的側面積為()A.πSB.2πSC.3πSD.4πS答案:設圓柱的底面半徑是R,母線長是l,∵圓柱的底面積為S,側面展開圖為正方形,∴πR2=S,且l=2πR,∴圓柱的側面積為2πRl=4πS.故選D.36.與雙曲線x2-y24=1有共同的漸近線,且過點(2,2)的雙曲線的標準方程為______.答案:設雙曲線方程為x2-y24=λ∵過點(2,2),∴λ=3∴所求雙曲線方程為x23-y212=1故為x23-y212=137.四面體ABCD中,設M是CD的中點,則化簡的結果是()
A.
B.
C.
D.答案:A38.已知直線l:ax+by=1(ab>0)經過點P(1,4),則l在兩坐標軸上的截距之和的最小值是______.答案:∵直線l:ax+by=1(ab>0)經過點P(1,4),∴a+4b=1,故a、b都是正數.故直線l:ax+by=1,此直線在x、y軸上的截距分別為1a、1b,則l在兩坐標軸上的截距之和為1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,當且僅當4ba=ab時,取等號,故為9.39.已知一個幾何體是由上下兩部分構成的一個組合體,其三視圖如圖所示,則這個組合體的上下兩部分分別是(
)答案:A40.已知四邊形ABCD中,AB=12DC,且|AD|=|BC|,則四邊形ABCD的形狀是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即線段AB平行于線段CD,且線段AB長度是線段CD長度的一半∴四邊形ABCD為以AB為上底、CD為下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的兩腰相等,因此四邊形ABCD是等腰梯形.故為:等腰梯形41.已知二階矩陣A=2ab0屬于特征值-1的一個特征向量為1-3,求矩陣A的逆矩陣.答案:由矩陣A屬于特征值-1的一個特征向量為α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;
…(3分)解得A=2130,…(8分)∴A逆矩陣是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.42.若向量,則這兩個向量的位置關系是___________。答案:垂直43.圓ρ=2sinθ的圓心到直線2ρcosθ+ρsinθ+1=0的距離是______.答案:由ρ=2sinθ,化為直角坐標方程為x2+y2-2y=0,其圓心是A(0,1),由2ρcosθ+ρsinθ+1=0得:化為直角坐標方程為2x+y+1=0,由點到直線的距離公式,得+d=|1+1|5=255.故為255.44.已知O、A、M、B為平面上四點,且,則()
A.點M在線段AB上
B.點B在線段AM上
C.點A在線段BM上
D.O、A、M、B四點一定共線答案:B45.(每題6分共12分)解不等式
(1)(2)答案:(1)(2)解析:本試題主要是考查了分式不等式和一元二次不等式的求解,以及含有根式的二次不等式的求解運用。(1)移向,通分,合并,將分式化為整式,然后得到解集。(2)首先分析函數式有意義的x的取值,然后保證兩邊都有意義的時候,且都為正,兩邊平方求解得到。解:(2)當8-x<0顯然成立。當8-x》0時,則兩邊平方可得。所以46.若F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,則1|MF1|+1|MF2|的最小值為______.答案:∵F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值為a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故為:1.47.不等式﹣2x+1>0的解集是(
).答案:{x|x<}48.對于空間中的三個向量,
,
,它們一定是()
A.共面向量
B.共線向量
C.不共面向量
D.以上均不對答案:A49.如圖,已知PA是圓O的切線,切點為A,PO交圓O于B、C兩點,PA=3,PB=1,則∠C=______.答案:∵PA切圓O于A點,PBC是圓O的割線∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵點O在BC上,即BC是圓O的直徑,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根據正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是銳角,∴∠C=30°.故為:30°50.從集合M={1,2,3,…,10}選出5個數組成的子集,使得這5個數的任兩個數之和都不等于11,則這樣的子集有______個.答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,選出5個不同的數組成子集,就是從這5組中分別取一個數,而每組的取法有2種,所以這樣的子集有:2×2×2×2×2=32故這樣的子集有32個故為:32第3卷一.綜合題(共50題)1.參數方程中當t為參數時,化為普通方程為(
)。答案:x2-y2=12.設a,b,c是三個不共面的向量,現在從①a+b;②a-b;③a+c;④b+c;⑤a+b+c中選出使其與a,b構成空間的一個基底,則可以選擇的向量為______.答案:構成基底只要三向量不共面即可,這里只要含有向量c即可,故③④⑤都是可以選擇的.故為:③④⑤(不唯一,也可以有其它的選擇)3.已知x,y的取值如下表:
x0134y2.24.34.86.7從散點圖分析,y與x線性相關,則回歸方程為.y=bx+a必過點______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點的坐標為(2,92).故為:(2,92).4.已知||=3,A、B分別在x軸和y軸上運動,O為原點,則動點P的軌跡方程是()
A.
B.
C.
D.答案:B5.下列給出的輸入語句、輸出語句和賦值語句
(1)輸出語句INPUT
a;b;c
(2)輸入語句INPUT
x=3
(3)賦值語句3=B
(4)賦值語句A=B=2
則其中正確的個數是()
A.0個
B.1個
C.2個
D.3個答案:A6.已知一種材料的最佳加入量在l000g到2000g之間,若用0.618法安排試驗,則第一次試點的加入量可以是(
)g。答案:1618或13827.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因為向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.8.方程組的解集是(
)答案:{(5,-4)}9.已知函數f(x)滿足:x≥4,則f(x)=(12)x;當x<4時f(x)=f(x+1),則f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故應填12410.拋物線x=14ay2的焦點坐標為()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:拋物線x=14ay2可化為:y2=4ax,它的焦點坐標是(a,0)故選B.11.將函數進行平移,使得到的圖形與拋物線的兩個交點關于原點對稱,試求平移后的圖形對應的函數解析式.答案:函數解析式是解析:將函數進行平移,使得到的圖形與拋物線的兩個交點關于原點對稱,試求平移后的圖形對應的函數解析式.12.某項考試按科目A、科目B依次進行,只有當科目A成績合格時,才可繼續(xù)參加科目B的考試.已知每個科目只允許有一次補考機會,兩個科目成績均合格方可獲得證書.現某人參加這項考試,科目A每次考試成績合格的概率均為23,科目B每次考試成績合格的概率均為12.假設各次考試成績合格與否均互不影響.
(Ⅰ)求他不需要補考就可獲得證書的概率;
(Ⅱ)在這項考試過程中,假設他不放棄所有的考試機會,記他參加考試的次數為ξ,求ξ的數學期望Eξ.答案:設“科目A第一次考試合格”為事件A1,“科目A補考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補考合格”為事件B2.(Ⅰ)不需要補考就獲得證書的事件為A1?B1,注意到A1與B1相互獨立,根據相互獨立事件同時發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補考就獲得證書的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨立性與互斥性,根據相互獨立事件同時發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數的數學期望為83.13.用數學歸納法證明“(n+1)(n+2)…(n+n)=2n?1?2?…?(2n-1)”(n∈N+)時,從“n=k到n=k+1”時,左邊應增添的式子是______.答案:當n=k時,左邊等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),當n=k+1時,左邊等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故從“k”到“k+1”的證明,左邊需增添的代數式是(2k+1)(2k+2)(k+1)=2(2k+1),故為:2(2k+1).14.已知向量,,若與共線,則的值為
A
B
C
D
答案:D解析:,,由,得15.若A為m×n階矩陣,AB=C,則B的階數可以是下列中的______.
①m×m,②m×n,③n×m,④n×n.答案:兩個矩陣只有當前一個矩陣的列數與后一個矩陣的行數相等時,才能作乘法.矩陣A是n列矩陣,故矩陣B是n行的矩陣則B的階數可以是③n×m,④n×n故為:③④16.下表為廣州亞運會官方票務網站公布的幾種球類比賽的門票價格,某球迷賽前準備1200元,預訂15張下表中球類比賽的門票。比賽項目票價(元/場)足球
籃球
乒乓球100
80
60若在準備資金允許的范圍內和總票數不變的前提下,該球迷想預訂上表中三種球類比賽門票,其中籃球比賽門票數與乒乓球比賽門票數相同,且籃球比賽門票的費用不超過足球比賽門票的費用,求可以預訂的足球比賽門票數。答案:解:設預訂籃球比賽門票數與乒乓球比賽門票數都是n(n∈N*)張,則足球比賽門票預訂(15-2n)張,由題意得解得由n∈N*,可得n=5,∴15-2n=5∴可以預訂足球比賽門票5張。17.已知0<a<2,復數z的實部為a,虛部為1,則|z|的取值范圍是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故選C.18.①點P在△ABC所在的平面內,且②點P為△ABC內的一點,且使得取得最小值;③點P是△ABC所在平面內一點,且,上述三個點P中,是△ABC的重心的有()
A.0個
B.1個
C.2個
D.3個答案:D19.已知焦點在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()
A.
B.
C.
D.答案:A20.在空間直角坐標系中,已知A,B兩點的坐標分別是A(2,3,5),B(3,1,4),則這兩點間的距離|AB|=______.答案:∵A,B兩點的坐標分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.21.從甲乙丙三人中任選兩名代表,甲被選中的概率為()A.12B.13C.23D.1答案:從3個人中選出2個人當代表,則所有的選法共有3種,即:甲乙、甲丙、乙丙,其中含有甲的選法有兩種,故甲被選中的概率是23,故選C.22.參數方程x=sinθ+cosθy=sinθ?cosθ化為普通方程是______.答案:把x=sinθ+cosθy=sinθ?cosθ利用同角三角函數的基本關系消去參數θ,化為普通方程可得x2=1+2y,故為x2=1+2y.23.已知復數(m2-5m+6)+(m2-3m)i是純虛數,則實數m=______.答案:當m2-5m+6=0m2-3m≠0時,即m=2或m=3m≠0且m≠3?m=2時復數z為純虛數.故為:2.24.方程(x2-9)2(x2-y2)2=0表示的圖形是()
A.4個點
B.2個點
C.1個點
D.四條直線答案:D25.不等式-x≤1的解集是(
)。答案:{x|0≤x≤2}26.命題“三角形中最多只有一個內角是直角”的結論的否定是()
A.有兩個內角是直角
B.有三個內角是直角
C.至少有兩個內角是直角
D.沒有一個內角是直角答案:C27.若E,F,G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點,證明:四邊形EFGH是平行四邊形.答案:證明:∵E,F,G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點,∴EF是△ABC的中位線,∴EF∥AC,且EF=12AC.同理可證,GH∥AC,且GH=12AC,故有
EF∥GH,且EF=GH,∴四邊形EFGH是平行四邊形.28.某工廠生產A,B,C三種不同型號的產品,產品數量之比依次為2:3:5.現用分層抽樣方法抽出一個容量為n的樣本,樣本中A型號產品有16件,則此樣本的容量為()
A.40
B.80
C.160
D.320答案:B29.若根據10名兒童的年齡
x(歲)和體重
y(㎏)數據用最小二乘法得到用年齡預報體重的回歸方程是
y=2x+7,已知這10名兒童的年齡分別是
2、3、3、5、2、6、7、3、4、5,則這10名兒童的平均體重是()
A.17㎏
B.16㎏
C.15㎏
D.14㎏答案:C30.對變量x,y
有觀測數據(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v
有觀測數據(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()
A.變量x
與y
正相關,u
與v
正相關
B.變量x
與y
負相關,u
與v
正相關
C.變量x
與y
正相關,u
與v
負相關
D.變量x
與y
負相關,u
與v
負相關答案:B31.已知a,b
,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.32.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(
)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。33.若函數,則下列結論正確的是(
)A.,在上是增函數B.,在上是減函數C.,是偶函數D.,是奇函數答案:C解析:對于時有是一個偶函數34.已知x與y之間的一組數據:
x0123y1357則y與x的線性回歸方程為y=bx+a必過點______.答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4,∴本組數據的樣本中心點是(1.5,4),∴y與x的線性回歸方程為y=bx+a必過點(1.5,4)故為:(1.5,4)35.求下列函數的定義域及值域.
(1)y=234x+1;
(2)y=4-8x.答案:(1)要使函數y=234x+1有意義,只需4x+1≠0,即x≠-14,所以,函數的定義域為{x|x≠-14}.設y=2u,u=34x+1≠0,則u>0,由函數y=2u,得y≠20=1,所以函數的值域為{y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函數的定義域為{x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論