版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年吉林城市職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.現(xiàn)有10個(gè)保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個(gè)名額,名額分配的方法共有______種(用數(shù)字作答).答案:根據(jù)題意,將10個(gè)名額,分配給7所學(xué)校,每校至少有1個(gè)名額,可以轉(zhuǎn)化為10個(gè)元素之間有9個(gè)間隔,要求分成7份,每份不空;相當(dāng)于用6塊檔板插在9個(gè)間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.2.在區(qū)間[-1,1]上任取兩個(gè)數(shù)s和t,則關(guān)于x的方程x2+sx+t=0的兩根都是正數(shù)的概率是[
]A.
B.
C.
D.答案:A3.已知、分別是的外接圓和內(nèi)切圓;證明:過(guò)上的任意一點(diǎn),都可作一個(gè)三角形,使得、分別是的外接圓和內(nèi)切圓.答案:略解析:證:如圖,設(shè),分別是的外接圓和內(nèi)切圓半徑,延長(zhǎng)交于,則,,延長(zhǎng)交于;則,即;過(guò)分別作的切線,在上,連,則平分,只要證,也與相切;設(shè),則是的中點(diǎn),連,則,,,所以,由于在角的平分線上,因此點(diǎn)是的內(nèi)心,(這是由于,,而,所以,點(diǎn)是的內(nèi)心).即弦與相切.4.參數(shù)方程(0<θ<2π)表示()
A.雙曲線的一支,這支過(guò)點(diǎn)(1,)
B.拋物線的一部分,這部分過(guò)(1,)
C.雙曲線的一支,這支過(guò)點(diǎn)(-1,)
D.拋物線的一部分,這部分過(guò)(-1,)答案:B5.命題“每一個(gè)素?cái)?shù)都是奇數(shù)”的否定是______.答案:原命題“每一個(gè)素?cái)?shù)都是奇數(shù)”是一個(gè)全稱(chēng)命題它的否定是一個(gè)特稱(chēng)命題,即“有的素?cái)?shù)不是奇數(shù)”故為:有的素?cái)?shù)不是奇數(shù)6.拋物線y2=4x上一點(diǎn)M與該拋物線的焦點(diǎn)F的距離|MF|=4,則點(diǎn)M的橫坐標(biāo)x=______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線的距離是相等的,∴|MF|=4=x+p2=4,∴x=3,故為:3.7.甲、乙兩人共同投擲一枚硬幣,規(guī)定硬幣正面朝上甲得1分,否則乙得1分,先積3分者獲勝,并結(jié)束游戲.
①求在前3次投擲中甲得2分,乙得1分的概率.
②設(shè)ξ表示到游戲結(jié)束時(shí)乙的得分,求ξ的分布列以及期望.答案:(1)由題意知本題是一個(gè)古典概型試驗(yàn)發(fā)生的事件是擲一枚硬幣3次,出現(xiàn)的所有可能情況共有以下8種.(正正正)、(正正反)、(正反反)、(反反反)、(正反正)、(反正正)、(反反正)、(反正反)、其中甲得(2分),乙得(1分)的情況有以下3種,(正正反)、(正反正)、(反正正)∴所求概率P=38(2)ξ的所有可能值為:0、1、2、3P(ξ=0)=12×12×12=18P(ξ=1)=C13×12×(12)2×12=316,P(ξ=2)=C24(12)2(12)212=316P(ξ=3)=12×12×12+C1312(12)212+C24(12)2(12)212=12∴ξ的分布列為:∴Eξ=1×316+2×316+3×12=33168.“a=2”是“直線ax+2y=0平行于直線x+y=1”的(
)
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件答案:C9.設(shè)過(guò)點(diǎn)A(p,0)(p>0)的直線l交拋物線y2=2px(p>0)于B、C兩點(diǎn),
(1)設(shè)直線l的傾斜角為α,寫(xiě)出直線l的參數(shù)方程;
(2)設(shè)P是BC的中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)軌跡的參數(shù)方程,并化為普通方程.答案:(1)l的參數(shù)方程為x=p+tcosαy=tsinα(t為參數(shù))其中α≠0(2)將直線的參數(shù)方程代入拋物線方程中有:t2sin2α-2ptcosα-2p2=0設(shè)B、C兩點(diǎn)對(duì)應(yīng)的參數(shù)為t1,t2,其中點(diǎn)P的坐標(biāo)為(x,y),則點(diǎn)P所對(duì)應(yīng)的參數(shù)為t1+t22,由t1+t2=2pcosαsin2αt1t2=-2p2sin2α,當(dāng)α≠90°時(shí),應(yīng)有x=p+t1+t22cosα=p+ptan2αy=t1+t22sinα=ptanα(α為參數(shù))消去參數(shù)得:y2=px-p2當(dāng)α=90°時(shí),P與A重合,這時(shí)P點(diǎn)的坐標(biāo)為(p,0),也是方程的解綜上,P點(diǎn)的軌跡方程為y2=px-p210.若A(-2,3),B(3,-2),C(,m)三點(diǎn)共線
則m的值為()
A.
B.-
C.-2
D.2答案:A11.設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過(guò)點(diǎn)(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標(biāo)軸相切,且都過(guò)點(diǎn)(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標(biāo)為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22
)
和(5-22,5-22
),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:812.從⊙O外一點(diǎn)P引圓的兩條切線PA,PB及一條割線PCD,A、B為切點(diǎn).求證:ACBC=ADBD.
答案:證明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得證.13.x=5
y=6
x+y=11
END
上面程序運(yùn)行時(shí)輸出的結(jié)果是()
A.x+y=11
B.11
C.x+y
D.出錯(cuò)信息答案:B14.直三棱柱ABC-A1B1C1
中,若CA=a,CB=b,CC1=c,則A1B=______.答案:向量加法的三角形法則,得到A1B=A1C+CB=A1C1+C1C+CB=-CA-CC1+CB=-a-c+b.故為:-a-c+b.15.若隨機(jī)向一個(gè)半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長(zhǎng)為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π16.設(shè)點(diǎn)P對(duì)應(yīng)的復(fù)數(shù)為-3+3i,以原點(diǎn)為極點(diǎn),實(shí)軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)為()
A.(3,π)
B.(-3,π)
C.(3,π)
D.(-3,π)答案:A17.為了調(diào)查甲、乙兩個(gè)網(wǎng)站受歡迎的程度,隨機(jī)選取了14天,統(tǒng)計(jì)上午8:00-10:00間各自的點(diǎn)擊量,得如下所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖:
(1)甲、乙兩個(gè)網(wǎng)站點(diǎn)擊量的極差,中位數(shù)分別是多少?
(2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是多少?(結(jié)果用分?jǐn)?shù)表示)
(3)甲、乙兩個(gè)網(wǎng)站哪個(gè)更受歡迎?并說(shuō)明理由。答案:解:(1)甲網(wǎng)站的極差為73-8=65,乙網(wǎng)站的極差為71-5=66;甲網(wǎng)站的中位數(shù)是56.5,乙網(wǎng)站的中位數(shù)是36.5。(2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是;(3)甲網(wǎng)站的點(diǎn)擊量集中在莖葉圖的下方,而乙網(wǎng)站的點(diǎn)擊量集中在莖葉圖的上方,從數(shù)據(jù)的分布情況來(lái)看,甲網(wǎng)站更受歡迎。18.已知雙曲線的兩漸近線方程為y=±32x,一個(gè)焦點(diǎn)坐標(biāo)為(0,-26),
(1)求此雙曲線方程;
(2)寫(xiě)出雙曲線的準(zhǔn)線方程和準(zhǔn)線間的距離.答案:(1)由題意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故該雙曲線的標(biāo)準(zhǔn)方程為y218-x28=1.(2)由(1)得,雙曲線的準(zhǔn)線方程為y=±1826x;準(zhǔn)線間的距離為2a2c=2×1826=182613.19.已知A(3,-2),B(-5,4),則以AB為直徑的圓的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB為直徑的圓的圓心為(-1,1),半徑r=(-1-3)2+(1+2)2=5,∴圓的方程為(x+1)2+(y-1)2=25故選B.20.點(diǎn)O是四邊形ABCD內(nèi)一點(diǎn),滿(mǎn)足OA+OB+OC=0,若AB+AD+DC=λAO,則λ=______.答案:設(shè)BC中點(diǎn)為E,連接OE.則OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三點(diǎn)都在BC邊的中線上,且|AO|=2|OE|,所以O(shè)為△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故為:3.21.若向量=(1,λ,2),=(2,-1,2)且與的夾角余弦為,則λ等于(
)
A.2
B.-2
C.-2或
D.2或答案:C22.曲線x=sinθy=sin2θ(θ為參數(shù))與直線y=a有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:曲線
x=sinθy=sin2θ
(θ為參數(shù)),為拋物線段y=x2(-1≤x≤1),借助圖形直觀易得0<a≤1.23.平面內(nèi)有n條直線,其中無(wú)任何兩條平行,也無(wú)任何三條共點(diǎn),求證:這n條直線把平面分割成12(n2+n+2)塊.答案:證明:(1)當(dāng)n=1時(shí),1條直線把平面分成2塊,又12(12+1+2)=2,命題成立.(2)假設(shè)n=k時(shí),k≥1命題成立,即k條滿(mǎn)足題設(shè)的直線把平面分成12(k2+k+2)塊,那么當(dāng)n=k+1時(shí),第k+1條直線被k條直線分成k+1段,每段把它們所在的平面塊又分成了2塊,因此,增加了k+1個(gè)平面塊.所以k+1條直線把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]塊,這說(shuō)明當(dāng)n=k+1時(shí),命題也成立.由(1)(2)知,對(duì)一切n∈N*,命題都成立.24.a=(2,1),b=(3,4),則向量a在向量b方向上的投影為_(kāi)_____.答案:根據(jù)向量在另一個(gè)向量上投影的定義向量a在向量b方向上的投影為a?b|b|∵a=(2,1),b=(3,4),∴a?b=10,|b|=5∴a?b|b|=2故為:225.若直線過(guò)點(diǎn)(1,2),(),則此直線的傾斜角是()
A.60°
B.45°
C.30°
D.90°答案:C26.設(shè)a,b,c是三個(gè)不共面的向量,現(xiàn)在從①a+b;②a-b;③a+c;④b+c;⑤a+b+c中選出使其與a,b構(gòu)成空間的一個(gè)基底,則可以選擇的向量為_(kāi)_____.答案:構(gòu)成基底只要三向量不共面即可,這里只要含有向量c即可,故③④⑤都是可以選擇的.故為:③④⑤(不唯一,也可以有其它的選擇)27.如圖程序輸出的結(jié)果是()
A.3,4
B.4,4
C.3,3
D.4,3
答案:B28.給出下列問(wèn)題:
(1)求面積為1的正三角形的周長(zhǎng);
(2)求鍵盤(pán)所輸入的三個(gè)數(shù)的算術(shù)平均數(shù);
(3)求鍵盤(pán)所輸入兩個(gè)數(shù)的最小數(shù);
(4)求函數(shù)f(x)=2xx2(x≥3)(x<3)當(dāng)自變量取相應(yīng)值時(shí)的函數(shù)值.
其中不需要用條件語(yǔ)句描述的算法的問(wèn)題有()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案:(1)求面積為1的正三角形的周長(zhǎng)用順序結(jié)構(gòu)即可,故不需要用條件語(yǔ)句描述;(2)求鍵盤(pán)所輸入的三個(gè)數(shù)的算術(shù)平均數(shù)用順序結(jié)構(gòu)即可解決問(wèn)題,不需要用條件語(yǔ)句描述;(3)求鍵盤(pán)所輸入兩個(gè)數(shù)的最小數(shù),由于要作出判斷,找出最小數(shù),故本問(wèn)題的解決要用到條件語(yǔ)句描述;(4)求函數(shù)f(x)=2xx2(x≥3)(x<3)當(dāng)自變量取相應(yīng)值時(shí)的函數(shù)值,由于此函數(shù)是一個(gè)分段函數(shù),所以要用條件結(jié)構(gòu)選擇相應(yīng)的函數(shù)解析式,需要用條件語(yǔ)句描述.綜上,(3)(4)兩個(gè)問(wèn)題要用到條件語(yǔ)句描述,(1),(2)不需要用條件語(yǔ)句描述故選B29.若A(x,5-x,2x-1),B(1,x+2,2-x),當(dāng)||取最小值時(shí),x的值等于(
)
A.
B.
C.
D.答案:C30.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動(dòng)點(diǎn)P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點(diǎn)P是以M(-2,0),N(2,0)為兩焦點(diǎn)的雙曲線的右支.故選B.31.已知橢圓(a>b>0)的焦點(diǎn)分別為F1,F(xiàn)2,b=4,離心率e=過(guò)F1的直線交橢圓于A,B兩點(diǎn),則△ABF2的周長(zhǎng)為()
A.10
B.12
C.16
D.20答案:D32.已知正方形ABCD的邊長(zhǎng)為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長(zhǎng)為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a33.若f(x)是定義在R上的函數(shù),滿(mǎn)足對(duì)任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,則f(8)=______.答案:由題意可知:對(duì)任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故為:81.34.曲線(θ為參數(shù))上的點(diǎn)到兩坐標(biāo)軸的距離之和的最大值是()
A.
B.
C.1
D.答案:D35.如圖算法輸出的結(jié)果是______.答案:當(dāng)I=1時(shí),滿(mǎn)足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=2,I=4;當(dāng)I=4時(shí),滿(mǎn)足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=4,I=7;當(dāng)I=7時(shí),滿(mǎn)足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=8,I=10;當(dāng)I=10時(shí),滿(mǎn)足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=16,I=13;當(dāng)I=13時(shí),不滿(mǎn)足循環(huán)的條件,退出循環(huán),輸出S值16故為:1636.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點(diǎn),并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長(zhǎng)交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C37.與直線3x+4y-3=0平行,并且距離為3的直線方程為_(kāi)_____.答案:設(shè)所求直線上任意一點(diǎn)P(x,y),由題意可得點(diǎn)P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.38.以下坐標(biāo)給出的點(diǎn)中,在曲線x=sin2θy=sinθ+cosθ上的點(diǎn)是()A.(12,-2)B.(2,3)C.(-34,12)D.(1,3)答案:把曲線x=sin2θy=sinθ+cosθ消去參數(shù)θ,化為普通方程為y2=1+x(-1≤x≤1),結(jié)合所給的選項(xiàng),只有C中的點(diǎn)在曲線上,故選C.39.已知拋物線C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設(shè)拋物線C的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設(shè)準(zhǔn)線和x軸的交點(diǎn)為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點(diǎn)A(0,43),把y=43代入拋物線求得x=6,∴點(diǎn)P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.40.如圖,四邊形OABC是邊長(zhǎng)為1的正方形,OD=3,點(diǎn)P為△BCD內(nèi)(含邊界)的動(dòng)點(diǎn),設(shè)(α,β∈R),則α+β的最大值等于
()
A.
B.
C.
D.1
答案:B41.設(shè)某種動(dòng)物由出生算起活到10歲的概率為0.9,活到15歲的概率為0.6.現(xiàn)有一個(gè)10歲的這種動(dòng)物,它能活到15歲的概率是______.答案:設(shè)活過(guò)10歲后能活到15歲的概率是P,由題意知0.9×P=0.6,解得P=23即一個(gè)10歲的這種動(dòng)物,它能活到15歲的概率是23故為:23.42.若P(A∪B)=P(A)+P(B)=1,則事件A與事件B的關(guān)系是()
A.互斥事件
B.對(duì)立事件
C.不是互斥事件
D.前者都不對(duì)答案:D43.已知命題p:“有的實(shí)數(shù)沒(méi)有平方根.”,則非p是______.答案:∵命題p:“有的實(shí)數(shù)沒(méi)有平方根.”,是一個(gè)特稱(chēng)命題,非P是它的否定,應(yīng)為全稱(chēng)命題“所有實(shí)數(shù)都有平方根”故為:所有實(shí)數(shù)都有平方根.44.將參數(shù)方程x=2sinθy=1+2cos2θ(θ為參數(shù),θ∈R)化為普通方程,所得方程是______.答案:由x=2sinθ
①y=1+2cos2θ
②,因?yàn)棣取蔙,所以-1≤sinθ≤1,則-2≤x≤2.由①兩邊平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故為y=-x2+3(-2≤x≤2).45.若方程sin2x+4sinx+m=0有實(shí)數(shù)解,則m的取值范圍是(
)
A、R
B、(-∞,-5]∪[3,+∞)
C、(-5,3)
D、[-5,3]答案:D46.(本小題滿(mǎn)分10分)選修4-1:幾何證明選講
如圖,的角平分線的延長(zhǎng)線交它的外接圓于點(diǎn).
(Ⅰ)證明:;
(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見(jiàn)解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關(guān)的定理及性質(zhì)的應(yīng)用、三角形相似及性質(zhì)的應(yīng)用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因?yàn)椤螦EB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因?yàn)椤鰽BE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.【點(diǎn)評(píng)】在圓的有關(guān)問(wèn)題中經(jīng)常要用到弦切角定理、圓周角定理、相交弦定理等結(jié)論,解題時(shí)要注意根據(jù)已知條件進(jìn)行靈活的選擇,同時(shí)三角形相似是證明一些與比例有關(guān)問(wèn)題的的最好的方法.47.以橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線方程是()
A.
B.
C.
D.答案:C48.在區(qū)間[0,1]產(chǎn)生的隨機(jī)數(shù)x1,轉(zhuǎn)化為[-1,3]上的均勻隨機(jī)數(shù)x,實(shí)施的變換為()
A.x=3x1-1
B.x=3x1+1
C.x=4x1-1
D.x=4x1+1答案:C49.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.50.如圖的算法的功能是______.輸出結(jié)果i=______,i+2=______.答案:框圖首先輸入變量i的值,判斷i(i+2)=624,執(zhí)行輸出i,i+2;否則,i=i+2.算法結(jié)束.故此算法執(zhí)行的是求積為624的兩個(gè)連續(xù)偶數(shù),i=24,i+2=26;故為:求積為624的兩個(gè)連續(xù)偶數(shù),24,26.第2卷一.綜合題(共50題)1.______稱(chēng)為向量的長(zhǎng)度(或稱(chēng)為模),記作
______,______稱(chēng)為零向量,記作
______,______稱(chēng)為單位向量.答案:向量AB所在線段AB的長(zhǎng)度,即向量AB的大小,稱(chēng)為向量AB的長(zhǎng)度(或成為模),記作|AB|;長(zhǎng)度為零的向量稱(chēng)為零向量,記作0;長(zhǎng)度等于1個(gè)單位的向量稱(chēng)為單位向量.故為:向量AB所在線段AB的長(zhǎng)度,即向量AB的大小,|AB|;長(zhǎng)度為零的向量,0;長(zhǎng)度等于1個(gè)單位的向量.2.若集合S={a,b,c}(a、b、c∈R)中三個(gè)元素為邊可構(gòu)成一個(gè)三角形,那么該三角形一定不可能是()
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.等腰三角形答案:D3.不論k為何實(shí)數(shù),直線y=kx+1與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:直線y=kx+1恒過(guò)(0,1)點(diǎn),與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),必須定點(diǎn)在圓上或圓內(nèi),即:a2+12
≤4+2a所以,-1≤a≤3故為:-1≤a≤3.4.在極坐標(biāo)系中,曲線p=4cos(θ-π3)上任意兩點(diǎn)間的距離的最大值為_(kāi)_____.答案:將原極坐標(biāo)方程p=4cos(θ-π3),化為:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐標(biāo)方程為:x2+y2-2x-23y=0,是一個(gè)半徑為2圓.圓上兩點(diǎn)間的距離的最大值即為圓的直徑,故填:4.5.若4名學(xué)生和3名教師站在一排照相,則其中恰好有2名教師相鄰的站法有______種.(用數(shù)字作答)答案:4名學(xué)生和3名教師站在一排照相,則其中恰好有2名教師相鄰,所以第一步應(yīng)先取兩個(gè)老師且綁定有C23×A22=6種方法,第二步將四名學(xué)生全排列,共有4!=24種方法,第三步將綁定的兩位老師與剩下的一位老師看作兩個(gè)元素,插入四個(gè)學(xué)生隔開(kāi)的五個(gè)空中,共有A25=20種方法故總的站法有6×24×20=2880種故為28806.圓x2+y2=1上的點(diǎn)到直線x=2的距離的最大值是
______.答案:根據(jù)題意,圓上點(diǎn)到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:37.在極坐標(biāo)系中,點(diǎn)(2,)到圓ρ=2cosθ的圓心的距離為()
A.2
B.
C.
D.答案:D8.對(duì)于任意空間四邊形,試證明它的一組對(duì)邊中點(diǎn)的連線與另一組對(duì)邊可平行于同一平面.答案:證明:如圖所示,空間四邊形ABCD,E、F分別為AB、CD的中點(diǎn),利用多邊形加法法則可得①又E、F分別是AB、CD的中點(diǎn),故有②將②代入①后,兩式相加得即與共面,∴EF與AD、BC可平行于同一平面.9.用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么b、c中至少有一個(gè)偶數(shù)時(shí),下列假設(shè)正確的是()
A.假設(shè)a、b、c都是偶數(shù)
B.假設(shè)a、b、c都不是偶數(shù)
C.假設(shè)a、b、c至多有一個(gè)偶數(shù)
D.假設(shè)a、b、c至多有兩個(gè)偶數(shù)答案:B10.某程序圖如圖所示,該程序運(yùn)行后輸出的結(jié)果是______.答案:由圖知運(yùn)算規(guī)則是對(duì)S=2S,故第一次進(jìn)入循環(huán)體后S=21,第二次進(jìn)入循環(huán)體后S=22=4,第三次進(jìn)入循環(huán)體后S=24=16,第四次進(jìn)入循環(huán)體后S=216>2012,退出循環(huán).故該程序運(yùn)行后輸出的結(jié)果是:k=4+1=5.故為:511.算法:第一步
x=a;第二步
若b>x則x=b;第三步
若c>x,則x=c;
第四步
若d>x,則x=d;
第五步
輸出x.則輸出的x表示()A.a(chǎn),b,c,d中的最大值B.a(chǎn),b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數(shù),故選A.12.某學(xué)校三個(gè)社團(tuán)的人員分布如下表(每名同學(xué)只參加一個(gè)社團(tuán)):
聲樂(lè)社排球社武術(shù)社高一4530a高二151020學(xué)校要對(duì)這三個(gè)社團(tuán)的活動(dòng)效果里等抽樣調(diào)查,按分層抽樣的方法從社團(tuán)成員中抽取30人,結(jié)果聲樂(lè)社被抽出12人,則a=______.答案:根據(jù)分層抽樣的定義和方法可得,1245+15=30120+a,解得a=30,故為3013.點(diǎn)(2,-2)的極坐標(biāo)為_(kāi)_____.答案:∵點(diǎn)(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(diǎn)(2,-2)的極坐標(biāo)為(22,-π4)故為(22,-π4).14.某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績(jī)合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績(jī)均合格方可獲得證書(shū).現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績(jī)合格的概率均為23,科目B每次考試成績(jī)合格的概率均為12.假設(shè)各次考試成績(jī)合格與否均互不影響.
(Ⅰ)求他不需要補(bǔ)考就可獲得證書(shū)的概率;
(Ⅱ)在這項(xiàng)考試過(guò)程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為ξ,求ξ的數(shù)學(xué)期望Eξ.答案:設(shè)“科目A第一次考試合格”為事件A1,“科目A補(bǔ)考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補(bǔ)考合格”為事件B2.(Ⅰ)不需要補(bǔ)考就獲得證書(shū)的事件為A1?B1,注意到A1與B1相互獨(dú)立,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補(bǔ)考就獲得證書(shū)的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數(shù)的數(shù)學(xué)期望為83.15.如圖,半徑為R的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時(shí),球的表面積與該圓柱的側(cè)面積之差是______.
答案:設(shè)圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當(dāng)且僅當(dāng)α=π4時(shí),sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR216.已知f(x)=,a≠b,
求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一
∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當(dāng)1+ab<0時(shí),∵>0,∴不等式1+ab<成立.從而原不等式成立.當(dāng)1+ab≥0時(shí),要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二
∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.17.向面積為S的△ABC內(nèi)任投一點(diǎn)P,則△PBC的面積小于S2的概率為_(kāi)_____.答案:記事件A={△PBC的面積小于S2},基本事件空間是三角形ABC的面積,(如圖)事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),因?yàn)殛幱安糠值拿娣e是整個(gè)三角形面積的34,所以P(A)=陰影部分的面積三角形ABC的面積=34.故為:34.18.將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.答案:向量解析:將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.19.甲、乙兩位運(yùn)動(dòng)員在5場(chǎng)比賽的得分情況如莖葉圖所示,記甲、乙兩人的平均得分分別為.x甲,.x乙,則下列判斷正確的是()A..x甲>.x乙;甲比乙成績(jī)穩(wěn)定B..x甲>.x乙;乙比甲成績(jī)穩(wěn)定C..x甲<.x乙;甲比乙成績(jī)穩(wěn)定D..x甲<.x乙;乙比甲成績(jī)穩(wěn)定答案:5場(chǎng)比賽甲的得分為16、17、28、30、34,5場(chǎng)比賽乙的得分為15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成績(jī)穩(wěn)定故選D.20.已知點(diǎn)P(3,m)在以點(diǎn)F為焦點(diǎn)的拋物線x=4t2y=4t(t為參數(shù))上,則|PF|的長(zhǎng)為_(kāi)_____.答案:∵拋物線x=4t2y=4t(t為參數(shù))上,∴y2=4x,∵點(diǎn)P(3,m)在以點(diǎn)F為焦點(diǎn)的拋物線x=4t2y=4t(t為參數(shù))上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故為4.21.在空間中,有如下命題:
①互相平行的兩條直線在同一個(gè)平面內(nèi)的射影必然是互相平行的兩條直線;
②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;
③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.
其中正確命題的個(gè)數(shù)為()個(gè).
A.0
B.1
C.2
D.3答案:B22.在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是橢圓x23+y2=1上的一個(gè)動(dòng)點(diǎn),求S=x+y的最大值.答案:因橢圓x23+y2=1的參數(shù)方程為x=3cos?y=sin?(?為參數(shù))故可設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,當(dāng)?=π6時(shí),S取最大值2.23.從一批羽毛球產(chǎn)品中任取一個(gè),質(zhì)量小于4.8
g的概率是0.3,質(zhì)量不小于4.85
g的概率是0.32,那么質(zhì)量在[4.8,4.85)g范圍內(nèi)的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B24.點(diǎn)(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是(
)
A.-1<a<1
B.0<a<1
C.a(chǎn)<-1或a>1
D.a(chǎn)=±1答案:A25.已知曲線C1,C2的極坐標(biāo)方程分別為ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),則曲線C1與C2交點(diǎn)的極坐標(biāo)為_(kāi)_____.答案:我們通過(guò)聯(lián)立解方程組ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即兩曲線的交點(diǎn)為(23,π6).故填:(23,π6).26.參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))的普通方程為_(kāi)_____.答案:把參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))利用同角三角函數(shù)的基本關(guān)系消去參數(shù)化為普通方程為y2=1+x,故為y2=1+x.27.在某電視歌曲大獎(jiǎng)賽中,最有六位選手爭(zhēng)奪一個(gè)特別獎(jiǎng),觀眾A,B,C,D猜測(cè)如下:A說(shuō):獲獎(jiǎng)的不是1號(hào)就是2號(hào);A說(shuō):獲獎(jiǎng)的不可能是3號(hào);C說(shuō):4號(hào)、5號(hào)、6號(hào)都不可能獲獎(jiǎng);D說(shuō):獲獎(jiǎng)的是4號(hào)、5號(hào)、6號(hào)中的一個(gè).比賽結(jié)果表明,四個(gè)人中恰好有一個(gè)人猜對(duì),則猜對(duì)者一定是觀眾
獲特別獎(jiǎng)的是
號(hào)選手.答案:C,3.解析:推理如下:因?yàn)橹挥幸蝗瞬聦?duì),而C與D互相否定,故C、D中一人猜對(duì)。假設(shè)D對(duì),則推出B也對(duì),與題設(shè)矛盾,故D猜錯(cuò),所以猜對(duì)者一定是C;于是B一定猜錯(cuò),故獲獎(jiǎng)?wù)呤?號(hào)選手(此時(shí)A錯(cuò)).28.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時(shí),a在e方向上的投影為
______.答案:a在e方向上的投影為a?e=|a||e|cosπ3=4故為:429.若數(shù)據(jù)x1,x2,x3…xn的平均數(shù).x=5,方差σ2=2,則數(shù)據(jù)3x1+1,3x2+1,3x3+1…,3xn+1的方差為_(kāi)_____.答案:∵x1,x2,x3,…,xn的方差為2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故為:18.30.橢圓x2+my2=1的焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,則m的值為()
A.
B.
C.2
D.4答案:A31.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()
A.k1<k2<k3
B.k2<k1<k3
C.k3<k2<k1
D.k1<k3<k2
答案:B32.已知某種從太空飛船中帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個(gè)小組分別獨(dú)立開(kāi)展該種子的發(fā)芽試驗(yàn),每次試驗(yàn)種一粒種子,假定某次試驗(yàn)種子發(fā)芽,則稱(chēng)該次試驗(yàn)是成功的,如果種子沒(méi)有發(fā)芽,則稱(chēng)該次試驗(yàn)是失敗的.
(1)第一個(gè)小組做了三次試驗(yàn),求至少兩次試驗(yàn)成功的概率;
(2)第二個(gè)小組進(jìn)行試驗(yàn),到成功了4次為止,求在第四次成功之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.答案:(1)(2)解析:(1)第一個(gè)小組做了三次試驗(yàn),至少兩次試驗(yàn)成功的概率是P(A)=·+=.(2)第二個(gè)小組在第4次成功前,共進(jìn)行了6次試驗(yàn),其中三次成功三次失敗,且恰有兩次連續(xù)失敗,其中各種可能的情況種數(shù)為=12.因此所求的概率為P(B)=12×·=.33.全稱(chēng)命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()
A.若2x+1是整數(shù),則x∈Z
B.若2x+1是奇數(shù),則x∈Z
C.若2x+1是偶數(shù),則x∈Z
D.若2x+1能被3整除,則x∈Z
E.若2x+1是整數(shù),則x∈Z答案:A34.雙曲線x29-y216=1的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在雙曲線上,若PF1⊥PF2,則點(diǎn)P到x軸的距離為_(kāi)_____.答案:設(shè)點(diǎn)P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5?y-0x-5=-1,∴x2+y2=25
①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x軸的距離是165.35.已知橢圓C:+y2=1的右焦點(diǎn)為F,右準(zhǔn)線l,點(diǎn)A∈l,線段AF交C于點(diǎn)B.若=3,則=(
)
A.
B.2
C.
D.3答案:A36.設(shè)復(fù)數(shù)z=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對(duì)應(yīng).
(1)設(shè)復(fù)數(shù)z滿(mǎn)足條件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常數(shù)a∈
(32
,
3)),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)P(x,y)的軌跡為C1;當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)P(x,y)的軌跡為C2,且兩條曲線都經(jīng)過(guò)點(diǎn)D(2,2),求軌跡C1與C2的方程;
(2)在(1)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x0,0)(x0>0)的最小距離不小于233,求實(shí)數(shù)x0的取值范圍.答案:(1)方法1:①當(dāng)n為奇數(shù)時(shí),|z+3|-|z-3|=2a,常數(shù)a∈
(32
,
3),軌跡C1為雙曲線,其方程為x2a2-y29-a2=1;…(3分)②當(dāng)n為偶數(shù)時(shí),|z+3|+|z-3|=4a,常數(shù)a∈
(32
,
3),軌跡C2為橢圓,其方程為x24a2+y24a2-9=1;…(6分)依題意得方程組44a2+24a2-9=14a2-29-a2=1?4a4-45a2+99=0a4-15a2+36=0
,解得a2=3,因?yàn)?2<a<3,所以a=3,此時(shí)軌跡為C1與C2的方程分別是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依題意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a?|z+3|=3a|z-3|=a…(3分)軌跡為C1與C2都經(jīng)過(guò)點(diǎn)D(2,2),且點(diǎn)D(2,2)對(duì)應(yīng)的復(fù)數(shù)z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23對(duì)應(yīng)的軌跡C1是雙曲線,方程為x23-y26=1(x>0);|z+3|+|z-3|=43對(duì)應(yīng)的軌跡C2是橢圓,方程為x212+y23=1.…(9分)(2)由(1)知,軌跡C2:x212+y23=1,設(shè)點(diǎn)A的坐標(biāo)為(x,y),則|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)當(dāng)0<43x0≤23即0<x0≤332時(shí),|AB|2min=3-13x20≥43?0<x0≤5當(dāng)43x0>23即x0>332時(shí),|AB|min=|x0-23|≥233?x0≥833,…(16分)綜上,0<x0≤5或x0≥833.…(18分)37.函數(shù)f(x)=x2+2的單調(diào)遞增區(qū)間為
______.答案:如圖所示:函數(shù)的遞增區(qū)間是:[0,+∞)故為:[0,+∞)38.曲線(θ為參數(shù))上的點(diǎn)到兩坐標(biāo)軸的距離之和的最大值是()
A.
B.
C.1
D.答案:D39.設(shè)拋物線y2=8x上一點(diǎn)P到y(tǒng)軸的距離是4,則點(diǎn)P到該拋物線焦點(diǎn)的距離是()A.4B.6C.8D.12答案:拋物線y2=8x的準(zhǔn)線為x=-2,∵點(diǎn)P到y(tǒng)軸的距離是4,∴到準(zhǔn)線的距離是4+2=6,根據(jù)拋物線的定義可知點(diǎn)P到該拋物線焦點(diǎn)的距離是6故選B40.已知f(x)=,若f(x0)>1,則x0的取值范圍是()
A.(0,1)
B.(-∞,0)∪(0,+∞)
C.(-∞,0)∪(1,+∞)
D.(1,+∞)答案:C41.設(shè)、、是三角形的邊長(zhǎng),求證:
≥答案:證明見(jiàn)解析解析:證明:由不等式的對(duì)稱(chēng)性,不防設(shè)≥≥,則≥左式-右式≥≥≥042.已知點(diǎn)A(1,0,-3)和向量AB=(-1,-2,0),則點(diǎn)B的坐標(biāo)為_(kāi)_____.答案:設(shè)B(x,y,z),根據(jù)向量的坐標(biāo)運(yùn)算,AB=(x,y,z)
-
(1,0,-3)=(x-1,y,z+3)=(-1,-2,0)∴x=0,y=-2,z=-3.故為:(0,-2,-3).43.比較大小:a=0.20.5,b=0.50.2,則()
A.0<a<b<1
B.0<b<a<1
C.1<a<b
D.1<b<a答案:A44.若拋物線y2=4x上一點(diǎn)P到其焦點(diǎn)的距離為3,則點(diǎn)P的橫坐標(biāo)等于______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線的距離是相等的,∴|MF|=3=x+p2=3,∴x=2,故為:2.45.已知拋物線C:y2=4x的焦點(diǎn)為F,點(diǎn)A在拋物線C上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)A,P滿(mǎn)足AP=-2FA,求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)M(m,0),其中m為常數(shù),m∈R+,點(diǎn)A到M的距離記為d,求d的最小值.答案:(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),點(diǎn)A的坐標(biāo)為(xA,yA),則AP=(x-xA,y-yA),因?yàn)镕的坐標(biāo)為(1,0),所以FA=(xA-1,yA),因?yàn)锳P=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到動(dòng)點(diǎn)P的軌跡方程為y2=8-4x;(2)由題意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0時(shí),dmin=m;m-2>0,即m>2,xA=m-2時(shí),dmin=-4-4m.46.如果隨機(jī)變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()
A.0.1
B.0.2
C.0.3
D.0.4答案:A47.已知向量,滿(mǎn)足:||=3,||=5,且=λ,則實(shí)數(shù)λ=()
A.
B.
C.±
D.±答案:C48.方程組的解集為()
A.{2,1}
B.{1,2}
C.{(2,1)}
D.(2,1)答案:C49.證明空間任意無(wú)三點(diǎn)共線的四點(diǎn)A、B、C、D共面的充分必要條件是:對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依題意知,B、C、D三點(diǎn)不共線,則由共面向量定理的推論知:四點(diǎn)A、B、C、D共面?對(duì)空間任一點(diǎn)O,存在實(shí)數(shù)x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,則有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四點(diǎn)A、B、C、D共面.所以,空間任意無(wú)三點(diǎn)共線的四點(diǎn)A、B、C、D共面的充分必要條件是:對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.50.在空間坐標(biāo)中,點(diǎn)B是A(1,2,3)在yOz坐標(biāo)平面內(nèi)的射影,O為坐標(biāo)原點(diǎn),則|OB|等于()
A.
B.
C.2
D.答案:B第3卷一.綜合題(共50題)1.已知斜二測(cè)畫(huà)法得到的直觀圖△A′B′C′是正三角形,畫(huà)出原三角形的圖形.答案:由斜二測(cè)法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長(zhǎng)度變?yōu)樵瓉?lái)的2倍,得到OA,由此得到原三角形的圖形ABC.2.如圖為某平面圖形用斜二測(cè)畫(huà)法畫(huà)出的直觀圖,則其原來(lái)平面圖形的面積是(
)
A.4
B.
C.
D.8
答案:A3.已知a=4,b=1,焦點(diǎn)在x軸上的橢圓方程是(
)
A.
B.
C.
D.答案:C4.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為_(kāi)_____.答案:如圖所示,因?yàn)榘霃綖?,圓心在y軸上,且與直線y=6相切,所以可知有兩個(gè)圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11)2=25.5.如圖為某公司的組織結(jié)構(gòu)圖,則后勤部的直接領(lǐng)導(dǎo)是______.
答案:有已知中某公司的組織結(jié)構(gòu)圖,可得專(zhuān)家辦公室直接領(lǐng)導(dǎo):財(cái)務(wù)部,后勤部和編輯部三個(gè)部門(mén),故后勤部的直接領(lǐng)導(dǎo)是專(zhuān)家辦公室.故為:專(zhuān)家辦公室.6.若直線x=1的傾斜角為α,則α等于()A.0°B.45°C.90°D.不存在答案:直線x=1與x軸垂直,故直線的傾斜角是90°,故選C.7.若直線l的方向向量為a,平面α的法向量為n,能使l∥α的是()A.a(chǎn)=(1,0,0),n=(-2,0,0)B.a(chǎn)=(1,3,5),n=(1,0,1)C.a(chǎn)=(0,2,1),n=(-1,0,-1)D.a(chǎn)=(1,-1,3),n=(0,3,1)答案:若l∥α,則a?n=0.而A中a?n=-2,B中a?n=1+5=6,C中a?n=-1,只有D選項(xiàng)中a?n=-3+3=0.故選D.8.設(shè)求證答案:證明略解析:左邊-右邊===
=
∴原不等式成立。證法二:左邊>0,右邊>0?!嘣坏仁匠闪?。9.方程.12
41x
x21-3
9.=0的解集為_(kāi)_____.答案:.12
41x
x21-3
9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集為{-3,2}.10.已知f(x)=1-(x-a)(x-b),并且m,n是方程f(x)=0的兩根,則實(shí)數(shù)a,b,m,n的大小關(guān)系可能是()
A.m<a<b<n
B.a(chǎn)<m<n<b
C.a(chǎn)<m<b<n
D.m<a<n<b答案:A11.兩不重合直線l1和l2的方向向量分別為答案:∵直線l1和l2的方向向量分別為12.不等式-x≤1的解集是(
)。答案:{x|0≤x≤2}13.已知兩個(gè)點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱(chēng)該直線為“B型直線”給出下列直線①y=x+1;②y=2;③y=x④y=2x+1;其中為“B型直線”的是()
A.①③
B.①②
C.③④
D.①④答案:B14.設(shè)O、A、B、C為平面上四個(gè)點(diǎn),(
)
A.2
B.2
C.3
D.3答案:C15.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因?yàn)橹本€的斜率是其傾斜角的正切值,當(dāng)傾斜角大于90°小于180°時(shí),斜率為負(fù)值,當(dāng)傾斜角大于0°小于90°時(shí)斜率為正值,且正切函數(shù)在(0°,90°)上為增函數(shù),由圖象三條直線的傾斜角可知,k2<k1<k3.故選C.16.下面五個(gè)命題:(1)所有的單位向量相等;(2)長(zhǎng)度不等且方向相反的兩個(gè)向量不一定是共線向量;(3)由于零向量的方向不確定,故0與任何向量不平行;(4)對(duì)于任何向量a,b,必有|a+b|≤|a|+|b|.其中正確命題的序號(hào)為:______.答案:(1)單位向量指模為1的向量,方向可為任意的,故錯(cuò)誤;(2)由共線向量的定義,方向相反的兩個(gè)向量一定是共線向量,故錯(cuò)誤;(3)規(guī)定:零向量與任何向量為平行向量,故錯(cuò)誤;(4)因?yàn)閨a+b|2=a2+b2+2a?b≤a2+b2+2|a|?|b|=(|a|+|b|)2,故正確故為:(4)17.不等式:>0的解集為A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集為(-2,1)∪(2,+∞),選C。18.已知F1(-2,0),F(xiàn)2(2,0)兩點(diǎn),曲線C上的動(dòng)點(diǎn)P滿(mǎn)足|PF1|+|PF2|
=32|F1F2|.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l經(jīng)過(guò)點(diǎn)M(0,3),交曲線C于A,B兩點(diǎn),且MA=12MB,求直線l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|
=32|F1F2|
=6>|F1F2|=4,故曲線C是以F1,F(xiàn)2為焦點(diǎn),長(zhǎng)軸長(zhǎng)為6的橢圓,其方程為x29+y25=1.(Ⅱ)方法一:設(shè)A(x1,y1),B(x2,y2),由條件可知A為MB的中點(diǎn),則有x129+y125=1,
(1)x229+y225=1,(2)2x1=x2,
(3)2y1=y2+3.
(4)將(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理為4x129+4y125-125y1+45=0.將(1)代入上式得y1=2,再代入橢圓方程解得x1=±35,故所求的直線方程為y=±53x+3.方法二:依題意,直線l的斜率存在,設(shè)其方程為y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.設(shè)A(x1,y1),B(x2,y2),則x1+x2=-54k5+9k2,①x1x2=365+9k2.②因?yàn)镸A=12MB,所以A為MB的中點(diǎn),從而x2=2x1.將x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直線l的方程為y=±53x+3.19.集合M={(x,y)|xy≤0,x,y∈R}的意義是()A.第二象限內(nèi)的點(diǎn)集B.第四象限內(nèi)的點(diǎn)集C.第二、四象限內(nèi)的點(diǎn)集D.不在第一、三象限內(nèi)的點(diǎn)的集合答案:∵xy≤0,∴xy<0或xy=0當(dāng)xy<0時(shí),則有x<0y>0或x>0y<0,點(diǎn)(x,y)在二、四象限,當(dāng)xy=0時(shí),則有x=0或y=0,點(diǎn)(x,y)在坐標(biāo)軸上,故選D.20.求過(guò)點(diǎn)A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設(shè)所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|
k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.21.如圖,在空間直角坐標(biāo)系中,已知直三棱柱的頂點(diǎn)A在x軸上,AB平行于y軸,側(cè)棱AA1平行于z軸.當(dāng)頂點(diǎn)C在y軸正半軸上運(yùn)動(dòng)時(shí),以下關(guān)于此直三棱柱三視圖的表述正確的是()
A.該三棱柱主視圖的投影不發(fā)生變化
B.該三棱柱左視圖的投影不發(fā)生變化
C.該三棱柱俯視圖的投影不發(fā)生變化
D.該三棱柱三個(gè)視圖的投影都不發(fā)生變化
答案:B22.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(
)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。23.(本小題滿(mǎn)分12分)
如圖,已知橢圓C1的中心在圓點(diǎn)O,長(zhǎng)軸左、右端點(diǎn)M、N在x軸上,橢圓C1的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點(diǎn),與C1交于兩點(diǎn),這四點(diǎn)按縱坐標(biāo)從大到小依次為A、B、C、D.
(I)設(shè)e=,求|BC|與|AD|的比值;
(II)當(dāng)e變化時(shí),是否存在直線l,使得BO//AN,并說(shuō)明理由.答案:(II)t=0時(shí)的l不符合題意,t≠0時(shí),BO//AN當(dāng)且僅當(dāng)BO的斜率kBO與AN的斜率kAN相等,即,解得。因?yàn)?,又,所以,解得。所以?dāng)時(shí),不存在直線l,使得BO//AN;當(dāng)時(shí),存在直線l使得BO//AN。解析:略24.已知矩陣A=12-14,向量a=74.
(1)求矩陣A的特征值λ1、λ2和特征向量α1、α2;
(2)求A5α的值.答案:(1)矩陣A的特征多項(xiàng)式為f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,當(dāng)λ1=2時(shí),得α1=21,當(dāng)λ2=3時(shí),得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)25.已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)M滿(mǎn)足|MA-MB|=4,則動(dòng)點(diǎn)M的軌跡為_(kāi)_____.答案:動(dòng)點(diǎn)M滿(mǎn)足|MA-MB|=4=|AB|,結(jié)合圖形思考判斷動(dòng)點(diǎn)M的軌跡為直線AB(不包括線段AB內(nèi)部的點(diǎn))上的兩條射線.故為直線AB(不包括線段AB內(nèi)部的點(diǎn))上的兩條射線.26.教學(xué)大樓共有五層,每層均有兩個(gè)樓梯,由一層到五層的走法有()
A.10種
B.25種
C.52種
D.24種答案:D27.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長(zhǎng)線上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α28.已知A,B兩點(diǎn)的極坐標(biāo)為(6,)和(8,),則線段AB中點(diǎn)的直角坐標(biāo)為()
A.(,-)
B.(-,)
C.(,-)
D.(-,-)答案:D29.把一枚硬幣連續(xù)拋擲兩次,事件A=“第一次出現(xiàn)正面”,事件B=“第二次出現(xiàn)正面”,則P(B|A)等于(
)
A.
B.
C.
D.答案:A30.設(shè)與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于與的敘述正確的是()
A.=
B.與同向
C.∥
D.與有相同的位置向量答案:C31.已知點(diǎn)P的坐標(biāo)為(3,4,5),試在空間直角坐標(biāo)系中作出點(diǎn)P.答案:由P(3,4,5)可知點(diǎn)P在Ox軸上的射影為A(3,0,0),在Oy軸上射影為B(0,4,0),以O(shè)A,OB為鄰邊的矩形OACB的頂點(diǎn)C是點(diǎn)P在xOy坐標(biāo)平面上的射影C(3,4,0).過(guò)C作直線垂直于xOy坐標(biāo)平面,并在此直線的xOy平面上方截取5個(gè)單位,得到的就是點(diǎn)P.32.已知|OA|=1,|OB|=3,OA?OB=0,點(diǎn)C在∠AOB內(nèi),且∠AOC=30°,設(shè)OC=mOA+nOB(m、n∈R),則mn等于______.答案:∵|OA|=1,|OB|=3,OA?OB=0,OA⊥OBOC?OB=OC×3cos60°=32OC=3×12
|OC
|OC?OA=|OC|×1×cos30°=32|OC|=1×32|OC|∴OC在x軸方向上的分量為12|OC|OC在y軸方向上的分量為32|OC|∵OC=mOA+nOB=3ni+mj∴12|OC|=3n,32|OC|=m兩式相比可得:mn=3.故為:333.已知橢圓的焦點(diǎn)是F1、F2,P是橢圓上的一個(gè)動(dòng)點(diǎn),如果延長(zhǎng)F1P到Q,使得|PQ|=|PF2|,那么動(dòng)點(diǎn)Q的軌跡是______.答案:解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a,∴動(dòng)點(diǎn)Q到定點(diǎn)F1的距離等于定長(zhǎng)2a,故動(dòng)點(diǎn)Q的軌跡是圓.故:圓.34.已知關(guān)于的不等式的解集為,且,求的值答案:,,解析:用數(shù)形結(jié)合法,如圖顯然解集是,即,從而此時(shí)=與交點(diǎn)橫坐標(biāo)為5,從而縱坐標(biāo)為4,將交點(diǎn)坐標(biāo)代入可得所以,,35.設(shè)A、B、C、D是半徑為r的球面上的四點(diǎn),且滿(mǎn)足AB⊥AC、AD⊥AC、AB⊥AD,則S△ABC+S△ABD+S△ACD的最大值是[
]A、r2
B、2r2
C、3r2
D、4r2答案:B36.H:x-y+z=2為坐標(biāo)空間中一平面,L為平面H上的一直線.已知點(diǎn)P(2,1,1)為L(zhǎng)上距離原點(diǎn)O最近的點(diǎn),則______為L(zhǎng)的方向向量.答案:∵x-y+z=2為坐標(biāo)空間中一平面∴平面的一個(gè)法向量是n=(1,-1,1)設(shè)直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點(diǎn)O最近的點(diǎn),∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)37.已知方程(1+k)x2-(1-k)y2=1表示焦點(diǎn)在x軸上的雙曲線,則k的取值范圍為(
)
A.-1<k<1
B.k>1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新型閥控型全密封免維護(hù)鉛酸蓄電池項(xiàng)目融資渠道探索
- 力程汽車(chē)銷(xiāo)售合同
- 通知供應(yīng)商合同終止協(xié)議
- 旅游業(yè)項(xiàng)目投資合同
- 旭日環(huán)保股份有限公司撬裝化設(shè)施處置含油污泥項(xiàng)目環(huán)境影響報(bào)告書(shū)
- 年度網(wǎng)絡(luò)安全維護(hù)服務(wù)合同
- 太陽(yáng)能光伏項(xiàng)目建設(shè)合同
- 旅游行業(yè)旅客安全保障合同協(xié)議
- 2024年污水處理MBR技術(shù)市場(chǎng)供需預(yù)測(cè)及投資戰(zhàn)略研究咨詢(xún)報(bào)告
- 美術(shù)設(shè)計(jì)聘用合同
- 中國(guó)儲(chǔ)備糧管理集團(tuán)有限公司蘭州分公司招聘筆試真題2024
- 第1課 隋朝統(tǒng)一與滅亡 課件(26張)2024-2025學(xué)年部編版七年級(jí)歷史下冊(cè)
- 【歷史】唐朝建立與“貞觀之治”課件-2024-2025學(xué)年統(tǒng)編版七年級(jí)歷史下冊(cè)
- 產(chǎn)業(yè)園區(qū)招商合作協(xié)議書(shū)
- 2021年高考真題-生物(湖南卷) 含解析
- 幼兒園2024-2025學(xué)年第二學(xué)期園務(wù)工作計(jì)劃
- 2024公路工程施工安全風(fēng)險(xiǎn)辨識(shí)與管控實(shí)施指南
- 新疆2024年新疆和田師范專(zhuān)科學(xué)校招聘70人筆試歷年典型考題及考點(diǎn)附答案解析
- 【正版授權(quán)】 ISO 15978:2002 EN Open end blind rivets with break pull mandrel and countersunk head - AIA/St
- 2024時(shí)事政治考試題庫(kù)(基礎(chǔ)題)
- 2024山西文旅投資集團(tuán)招聘117人公開(kāi)引進(jìn)高層次人才和急需緊缺人才筆試參考題庫(kù)(共500題)答案詳解版
評(píng)論
0/150
提交評(píng)論