版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年廣東江門幼兒師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知向量a、b的夾角為60°,且|a|=2,|b|=1,則|a+2b|=______;向量a與向量a+2b的夾角的大小為______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,設(shè)向量a與向量a+2b的夾角的大小為θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故為23,30°.2.下列說法:
①在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選擇的模型比較合適;
②用相關(guān)指數(shù)可以刻畫回歸的效果,值越大說明模型的擬和效果越好;
③比較兩個(gè)模型的擬和效果,可以比較殘差平方和的大小,殘差平方和越小的模型擬和效果越好.
其中說法正確的個(gè)數(shù)為()
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)答案:C3.若直線ax+by+1=0與圓x2+y2=1相離,則點(diǎn)P(a,b)的位置是()
A.在圓上
B.在圓外
C.在圓內(nèi)
D.以上都有可能答案:C4.已知圓的極坐標(biāo)方程為:ρ2-42ρcos(θ-π4)+6=0.
(1)將極坐標(biāo)方程化為普通方程;
(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0
即
ρ2-42(22ρcosθ+22ρsinθ
),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=
2
+2cosαy=
2
+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.5.高二年級某班有男生36人,女生28人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)是()A.36B.28C.64D.1008答案:高二年級某班有男生36人,女生28人,即共有64人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)64,故選C.6.將兩枚質(zhì)地均勻透明且各面分別標(biāo)有1,2,3,4的正四面體玩具各擲一次,設(shè)事件A={兩個(gè)玩具底面點(diǎn)數(shù)不相同},B={兩個(gè)玩具底面點(diǎn)數(shù)至少出現(xiàn)一個(gè)2點(diǎn)},則P(B|A)=______.答案:設(shè)事件A={兩個(gè)玩具底面點(diǎn)數(shù)不相同},包括以下12個(gè)基本事件:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件B={兩個(gè)玩具底面點(diǎn)數(shù)至少出現(xiàn)一個(gè)2點(diǎn)},則包括以下6個(gè)基本事件:(1,2),(2,1),(2,3),(2,4),(3,2),(4,2).故P(B|A)=612=12.故為12.7.在極坐標(biāo)系中,已知點(diǎn)P(2,),則過點(diǎn)P且平行于極軸的直線的方程是()
A.ρsinθ=1
B.ρsinθ=
C.ρcosθ=1
D.ρcosθ=答案:A8.橢圓有這樣的光學(xué)性質(zhì):從橢圓的一個(gè)焦點(diǎn)出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一焦點(diǎn).一水平放置的橢圓形臺球盤,F(xiàn)1,F(xiàn)2是其焦點(diǎn),長軸長2a,焦距為2c.一靜放在F1點(diǎn)處的小球(半徑忽略不計(jì)),受擊打后沿直線運(yùn)動(dòng)(不與直線F1F2重合),經(jīng)橢圓壁反彈后再回到點(diǎn)F1時(shí),小球經(jīng)過的路程是()
A.4c
B.4a
C.2(a+c)
D.4(a+c)答案:B9.現(xiàn)有含鹽7%的食鹽水為200g,需將它制成工業(yè)生產(chǎn)上需要的含鹽5%以上且在6%以下(不含5%和6%)的食鹽水,設(shè)需要加入4%的食鹽水xg,則x的取值范圍是(
)。答案:(100,400)10.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故選A.11.如圖過拋物線y2=2px(p>0)的焦點(diǎn)F的直線依次交拋物線及準(zhǔn)線于點(diǎn)A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為()
A.y2=x
B.y2=9x
C.y2=x
D.y2=3x
答案:D12.設(shè)a1,a2,…,an為正數(shù),求證:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:證明:不妨設(shè)a1>a2>…>an>0,則a12>a22>…>an2,1a1<1a2<…1an由排序原理:亂序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.13.過直線x+y-22=0上點(diǎn)P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點(diǎn)P的坐標(biāo)是______.答案:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:直線PA和PB為過點(diǎn)P的兩條切線,且∠APB=60°,設(shè)P的坐標(biāo)為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標(biāo)為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標(biāo)為(2,2).故為:(2,2)14.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()
A.2
B.
C.4
D.
答案:C15.已知D是△ABC所在平面內(nèi)一點(diǎn),,則()
A.
B.
C.=
D.答案:A16.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C17.下列函數(shù)圖象中,正確的是()
A.
B.
C.
D.
答案:C18.一口袋內(nèi)裝有5個(gè)黃球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次取出一個(gè),取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次時(shí)停止,停止時(shí)取球的次數(shù)ξ是一個(gè)隨機(jī)變量,則P(ξ=12)=______.(填算式)答案:若ξ=12,則取12次停止,第12次取出的是紅球,前11次中有9次是紅球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2
故為C911(38)10(58)219.某學(xué)校為了了解學(xué)生的日平均睡眠時(shí)間(單位:h),隨機(jī)選擇了n名同學(xué)進(jìn)行調(diào)查,下表是這n名同學(xué)的日平均睡眠時(shí)間的頻率分布表:
序號(i)分組(睡眠時(shí)間)頻數(shù)(人數(shù))頻率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,試確定x、y、z、m的值;
(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如[4,5)的中點(diǎn)值4.5)作為代表.若據(jù)此計(jì)算的這n名學(xué)生的日平均睡眠時(shí)間的平均值為6.68.求a、b的值.答案:(1)樣本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均時(shí)間為:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454
①(9分)又4+10+a+b+4=50,即a+b=32
②由①,②解得:a=13,b=1.(12分)20.橢圓x225+y29=1的兩焦點(diǎn)為F1,F(xiàn)2,一直線過F1交橢圓于P、Q,則△PQF2的周長為______.答案:∵a=5,由橢圓第一定義可知△PQF2的周長=4a.∴△PQF2的周長=20.,故為20.21.賦值語句n=n+1的意思是()
A.n等于n+1
B.n+1等于n
C.將n的值賦給n+1
D.將n的值增加1,再賦給n,即n的值增加1答案:D22.已知橢圓的焦點(diǎn)是F1、F2,P是橢圓上的一個(gè)動(dòng)點(diǎn),如果延長F1P到Q,使得|PQ|=|PF2|,那么動(dòng)點(diǎn)Q的軌跡是()
A.圓
B.橢圓
C.雙曲線的一支
D.拋物線答案:A23.向量a、b滿足|a|=1,|b|=2,且a與b的夾角為π3,則|a+2b|=______.答案:∵|a|=1,|b|=2,且a與b的夾角為π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故為:2124.若向量=(1,λ,2),=(2,-1,2)且與的夾角余弦為,則λ等于(
)
A.2
B.-2
C.-2或
D.2或答案:C25.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C26.為了了解學(xué)校學(xué)生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況,根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示,根據(jù)此圖,估計(jì)該校2000名高中男生中體重大于70.5公斤的人數(shù)為()
A.300B.350C.420D.450答案:∵由圖得,∴70.5公斤以上的人數(shù)的頻率為:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人數(shù)為2000×0.181=362,故選B27.已知,向量與向量的夾角是,則x的值為()
A.±3
B.±
C.±9
D.3答案:D28.設(shè)求證:答案:證明見解析解析:證明:∵
∴∴,∴本題利用,對中每項(xiàng)都進(jìn)行了放縮,從而得到可以求和的數(shù)列,達(dá)到化簡的目的。29.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時(shí),可假設(shè)p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1.用反證法證明時(shí)可假設(shè)方程有一根x1的絕對值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是()
A.(1)的假設(shè)錯(cuò)誤,(2)的假設(shè)正確
B.(1)與(2)的假設(shè)都正確
C.(1)的假設(shè)正確,(2)的假設(shè)錯(cuò)誤
D.(1)與(2)的假設(shè)都錯(cuò)誤答案:A30.4名學(xué)生參加3項(xiàng)不同的競賽,則不同參賽方法有()A.34B.A43C.3!D.43答案:由題意知本題是一個(gè)分步計(jì)數(shù)問題,首先第一名學(xué)生從三種不同的競賽中選有三種不同的結(jié)果,第二名學(xué)生從三種不同的競賽中選有3種結(jié)果,同理第三個(gè)和第四個(gè)同學(xué)從三種競賽中選都有3種結(jié)果,∴根據(jù)分步計(jì)數(shù)原理得到共有3×3×3×3=34故選A.31.已知點(diǎn)P(x,y)在曲線x=2+cosθy=2sinθ(θ為參數(shù)),則ω=3x+2y的最大值為______.答案:由題意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴當(dāng)sin(θ+?)=1時(shí),ω=3x+2y的最大值為
11故為11.32.“x2>2012”是“x2>2011”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由于“x2>2
012”時(shí),一定有“x2>2
011”,反之不成立.所以“x2>2
012”是“x2>2
011”的充分不必要條件.故選A.33.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三個(gè)向量共面,則實(shí)數(shù)λ等于
A.
B.
C.
D.答案:D34.已知△ABC,A(-1,0),B(3,0),C(2,1),對它先作關(guān)于x軸的反射變換,再將所得圖形繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°.
(1)分別求兩次變換所對應(yīng)的矩陣M1,M2;
(2)求△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′的面積.答案:(1)關(guān)于x軸的反射變換M1=100-1,繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°的變換M2=0-110.(4分)(2)∵M(jìn)2?M1=0-110100-1=0110,(6分)△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)變換成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面積=12×4×1=2.(10分)35.直線x=-3+ty=1-t(t是參數(shù))被圓x=5cosθy=5sinθ(θ是參數(shù))所截得的弦長是______.答案:把直線和圓的參數(shù)方程化為普通方程得:直線x+y+2=0,圓x2+y2=25,畫出函數(shù)圖象,如圖所示:過圓心O(0,0)作OC⊥AB,根據(jù)垂徑定理得到:AC=BC=12AB,連接OA,則|OA|=5,且圓心O到直線x+y+2=0的距離|OC|=|2|2=2,在直角△ACO中,根據(jù)勾股定理得:AC=23,所以AB=223,則直線被圓截得的弦長為223.故為:22336.兩個(gè)樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動(dòng)()
A.大
B.相等
C.小
D.無法確定答案:A37.四名志愿者和兩名運(yùn)動(dòng)員排成一排照相,要求兩名運(yùn)動(dòng)員必須站在一起,則不同的排列方法為()A.A44A22B.A55A22C.A55D.A66A22答案:根據(jù)題意,要求兩名運(yùn)動(dòng)員站在一起,所以使用捆綁法,兩名運(yùn)動(dòng)員站在一起,有A22種情況,將其當(dāng)做一個(gè)元素,與其他四名志愿者全排列,有A55種情況,結(jié)合分步計(jì)數(shù)原理,其不同的排列方法為A55A22種,故選B.38.復(fù)數(shù),且A+B=0,則m的值是()
A.
B.
C.-
D.2答案:C39.給定兩個(gè)長度為1的平面向量OA和OB,它們的夾角為90°.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng),若OC=xOA+yOB,其中x,y∈R,則xy的范圍是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng),得x,y∈[0,1],于是,0≤xy≤12,故為[0,12].40.已知點(diǎn)P為△ABC所在平面上的一點(diǎn),且,其中t為實(shí)數(shù),若點(diǎn)P落在△ABC的內(nèi)部,則t的取值范圍是()
A.
B.
C.
D.答案:D41.執(zhí)行如圖的程序框圖,若p=15,則輸出的n=______.答案:當(dāng)n=1時(shí),S=2,n=2;當(dāng)n=2時(shí),S=6,n=3;當(dāng)n=3時(shí),S=14,n=4;當(dāng)n=4時(shí),S=30,n=5;故最后輸出的n值為5故為:542.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于______.答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故為1043.已知圓O的兩弦AB和CD延長相交于E,過E點(diǎn)引EF∥CB交AD的延長線于F,過F點(diǎn)作圓O的切線FG,求證:EF=FG.答案:證明:∵FG為⊙O的切線,而FDA為⊙O的割線,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE為公共角∴△EFD∽△AFE,F(xiàn)DEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.44.某個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是()A.23B.3C.334D.332答案:由三視圖可知該幾何體是直三棱柱,高為1,底面三角形一邊長為2,此邊上的高為3,所以V=Sh=12×2×3×1=3故選B.45.設(shè)α∈[0,π],則方程x2sinα+y2cosα=1不能表示的曲線為()
A.橢圓
B.雙曲線
C.拋物線
D.圓答案:C46.極坐標(biāo)系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點(diǎn)).答案:∵極坐標(biāo)系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標(biāo)系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|
=
3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.47.已知直線的斜率為3,則此直線的傾斜角為()A.30°B.60°C.45°D.120°答案:∵直線的斜率為3,∴直線傾斜角α滿足tanα=3結(jié)合α∈[0°,180°),可得α=60°故選:B48.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.49.下列函數(shù)中,既是偶函數(shù),又在(0,1)上單調(diào)遞增的函數(shù)是()A.y=|log3x|B.y=x3C.y=e|x|D.y=cos|x|答案:對于A選項(xiàng),函數(shù)定義域是(0,+∞),故是非奇非偶函數(shù),不合題意,A選項(xiàng)不正確;對于B選項(xiàng),函數(shù)y=x3是一個(gè)奇函數(shù),故不是正確選項(xiàng);對于C選項(xiàng),函數(shù)的定義域是R,是偶函數(shù),且當(dāng)x∈(0,+∞)時(shí),函數(shù)是增函數(shù),故在(0,1)上單調(diào)遞增,符合題意,故C選項(xiàng)正確;對于D選項(xiàng),函數(shù)y=cos|x|是偶函數(shù),在(0,1)上單調(diào)遞減,不合題意綜上知,C選項(xiàng)是正確選項(xiàng)故選C50.以知F是雙曲線x24-y212=1的左焦點(diǎn),A(1,4),P是雙曲線右支上的動(dòng)點(diǎn),則|PF|+|PA|的最小值為______.答案:∵A點(diǎn)在雙曲線的兩只之間,且雙曲線右焦點(diǎn)為F′(4,0),∴由雙曲線性質(zhì)|PF|-|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5兩式相加得|PF|+|PA|≥9,當(dāng)且僅當(dāng)A、P、F’三點(diǎn)共線時(shí)等號成立.故為9第2卷一.綜合題(共50題)1.(選做題)
曲線(θ為參數(shù))與直線y=a有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是(
).答案:0<a≤12.如圖所示,CD為Rt△ABC斜邊AB邊上的中線,CE⊥CD,CE=103,連接DE交BC于點(diǎn)F,AC=4,BC=3.
求證:(1)△ABC∽△EDC;
(2)DF=EF.答案:證明:(1)∵CD為Rt△ABC斜邊AB邊上的中線∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因?yàn)椤鰽BC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD為Rt△ABC斜邊AB邊上的中線得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因?yàn)椋骸螪CA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.3.已知點(diǎn)M在平面ABC內(nèi),并且對空間任意一點(diǎn)O,有OM=xOA+13OB+13OC,則x的值為()A.1B.0C.3D.13答案:解∵OM=xOA+13OB+13OC,且M,A,B,C四點(diǎn)共面,∴必有x+13+13=1,解之可得x=13,故選D4.已知雙曲線的焦點(diǎn)在y軸,實(shí)軸長為8,離心率e=2,過雙曲線的弦AB被點(diǎn)P(4,2)平分;
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)求弦AB所在直線方程;
(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點(diǎn)在y軸,∴設(shè)雙曲線的標(biāo)準(zhǔn)方程為y2a2-x2b2=1;∵實(shí)軸長為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實(shí)軸長為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標(biāo)準(zhǔn)方程為y216-x216=1.(2)設(shè)弦AB所在直線方程為y-2=k(x-4),A,B的坐標(biāo)為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1
y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點(diǎn)坐標(biāo)分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.5.高二年級某班有男生36人,女生28人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)是()A.36B.28C.64D.1008答案:高二年級某班有男生36人,女生28人,即共有64人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)64,故選C.6.已知球的表面積等于16π,圓臺上、下底面圓周都在球面上,且下底面過球心,圓臺的軸截面的底角為π3,則圓臺的軸截面的面積是()A.9πB.332C.33D.6答案:設(shè)球的半徑為R,由題意4πR2=16,R=2,圓臺的軸截面的底角為π3,可得圓臺母線長為2,上底面半徑為1,圓臺的高為3,所以圓臺的軸截面的面積S=12(2+4)×3=33故選C7.已知平行直線l1:x-y+1=0與l2:x-y+3=0,求l1與l2間的距離.答案:∵已知平行直線l1:x-y+1=0與l2:x-y+3=0,則l1與l2間的距離d=|3-1|2=2.8.給出20個(gè)數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個(gè)求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.9.若p、q是兩個(gè)簡單命題,且“p或q”的否定形式是真命題,則()
A.p真q真
B.p真q假
C.p假q真
D.p假q假答案:D10.在獨(dú)立性檢驗(yàn)中,統(tǒng)計(jì)量Χ2有兩個(gè)臨界值:3.841和6.635.當(dāng)Χ2>3.841時(shí),有95%的把握說明兩個(gè)事件有關(guān),當(dāng)Χ2>6.635時(shí),有99%的把握說明兩個(gè)事件有關(guān),當(dāng)Χ2≤3.841時(shí),認(rèn)為兩個(gè)事件無關(guān).在一項(xiàng)打鼾與患心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計(jì)算Χ2=20.87.根據(jù)這一數(shù)據(jù)分析,認(rèn)為打鼾與患心臟病之間()
A.有95%的把握認(rèn)為兩者有關(guān)
B.約有95%的打鼾者患心臟病
C.有99%的把握認(rèn)為兩者有關(guān)
D.約有99%的打鼾者患心臟病答案:C11.半徑為1、2、3的三個(gè)圓兩兩外切.證明:以這三個(gè)圓的圓心為頂點(diǎn)的三角形是直角三角形.
答案:證明:設(shè)⊙O1、⊙O2、⊙O3的半徑分別為1、2、3.因這三個(gè)圓兩兩外切,故有O1O2=1+2=3,O2O3=2+3=5,O1O3=1+3=4,則有O1O22+O1O32=32+42=52=O2O32根據(jù)勾股定理的逆定理,得到△O1O2O3為直角三角形.12.如果e1,e2是平面a內(nèi)所有向量的一組基底,那么()A.若實(shí)數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.空間任一向量可以表示為a=λ1e1+λ2e2,這里λ1,λ2∈RC.對實(shí)數(shù)λ1,λ2,λ1e1+λ2e2不一定在平面a內(nèi)D.對平面a中的任一向量a,使a=λ1e1+λ2e2的實(shí)數(shù)λ1,λ2有無數(shù)對答案:∵由基底的定義可知,e1和e2是平面上不共線的兩個(gè)向量,∴實(shí)數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0,不是空間任一向量都可以表示為a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示為a=λ1e1+λ2e2的形式,此時(shí)實(shí)數(shù)λ1,λ2有且只有一對,而對實(shí)數(shù)λ1,λ2,λ1e1+λ2e2一定在平面a內(nèi),故選A.13.如圖,四條直線互相平行,且相鄰兩條平行線的距離均為h,一直正方形的4個(gè)頂點(diǎn)分別在四條直線上,則正方形的面積為()
A.4h2
B.5h2
C.4h2
D.5h2
答案:B14.對于一組數(shù)據(jù)的兩個(gè)函數(shù)模型,其殘差平方和分別為153.4
和200,若從中選取一個(gè)擬合程度較好的函數(shù)模型,應(yīng)選殘差平方和為______的那個(gè).答案:殘差的平方和是用來描述n個(gè)點(diǎn)與相應(yīng)回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個(gè)模型.故為:153.4.15.從單詞“equation”選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有()A.120個(gè)B.480個(gè)C.720個(gè)D.840個(gè)答案:要選取5個(gè)字母時(shí)首先從其它6個(gè)字母中選3個(gè)有C63種結(jié)果,再與“qu“組成的一個(gè)元素進(jìn)行全排列共有C63A44=480,故選B.16.設(shè)a∈(0,1)∪(1,+∞),對任意的x∈(0,12],總有4x≤logax恒成立,則實(shí)數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當(dāng)0<x≤12時(shí),函數(shù)y=4x的圖象如下圖所示:∵對任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點(diǎn)時(shí),a=22,故虛線所示的y=logax的圖象對應(yīng)的底數(shù)a應(yīng)滿足22<a<1.故為:(22,1).17.曲線x=sinθy=sin2θ(θ為參數(shù))與直線y=a有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:曲線
x=sinθy=sin2θ
(θ為參數(shù)),為拋物線段y=x2(-1≤x≤1),借助圖形直觀易得0<a≤1.18.已知函數(shù)f(x),如果對任意一個(gè)三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.在函數(shù)①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數(shù)”.(填上正確的函數(shù)序號)答案:f1(x),f2(x)是“保三角形函數(shù)”,f3(x)不是“保三角形函數(shù)”.任給三角形,設(shè)它的三邊長分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數(shù)”.對于f3(x),3,3,5可作為一個(gè)三角形的三邊長,但32+32<52,所以不存在三角形以32,32,52為三邊長,故f3(x)不是“保三角形函數(shù)”.故為:①②.19.已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長是()
A.2
B.6
C.4
D.12答案:C20.直線y=3x的傾斜角為______.答案:∵直線y=3x的斜率是3,∴直線的傾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故為:60°21.如圖,AD是圓內(nèi)接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于
______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.22.正方體AC1中,S,T分別是棱AA1,A1B1上的點(diǎn),如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點(diǎn),∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°23.已知||=3,A、B分別在x軸和y軸上運(yùn)動(dòng),O為原點(diǎn),則動(dòng)點(diǎn)P的軌跡方程是()
A.
B.
C.
D.答案:B24.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點(diǎn),在以A、B、C、D、E、F為端點(diǎn)的有向線段中所表示的向量中,
(1)與向量FE共線的有
______.
(2)與向量DF的模相等的有
______.
(3)與向量ED相等的有
______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.25.設(shè)O是正△ABC的中心,則向量AO,BO.CO是()
A.相等向量
B.模相等的向量
C.共線向量
D.共起點(diǎn)的向量答案:B26.3科老師都布置了作業(yè),在同一時(shí)刻4名學(xué)生都做作業(yè)的可能情況有()
A.43種
B.4×3×2種
C.34種
D.1×2×3種答案:C27.已知命題p:“有的實(shí)數(shù)沒有平方根.”,則非p是______.答案:∵命題p:“有的實(shí)數(shù)沒有平方根.”,是一個(gè)特稱命題,非P是它的否定,應(yīng)為全稱命題“所有實(shí)數(shù)都有平方根”故為:所有實(shí)數(shù)都有平方根.28.三個(gè)數(shù)a=60.5,b=0.56,c=log0.56的大小順序?yàn)開_____.(按大到小順序)答案:∵a=60.5>60=1,0<b=0.56<0.50=1,c=log0.56<log0.51=0.∴a>b>c.故為a>b>c.29.(選做題)某制藥企業(yè)為了對某種藥用液體進(jìn)行生物測定,需要優(yōu)選培養(yǎng)溫度,實(shí)驗(yàn)范圍定為29℃~63℃,精確度要求±1℃,用分?jǐn)?shù)法進(jìn)行優(yōu)選時(shí),能保證找到最佳培養(yǎng)溫度需要最少實(shí)驗(yàn)次數(shù)為(
)。答案:730.若f(x)=ax(a>0且a≠1)的反函數(shù)g(x)滿足:g()<0,則函數(shù)f(x)的圖象向左平移一個(gè)單位后的圖象大致是下圖中的()
A.
B.
C.
D.
答案:B31.已知函數(shù)f(x)=2x+a的圖象不過第三象限,則常數(shù)a的取值范圍是
______.答案:函數(shù)f(x)=2x+a的圖象可根據(jù)指數(shù)函數(shù)f(x)=2x的圖象向上(a>0)或者向下(a<0)平移|a|個(gè)單位得到,若函數(shù)f(x)=2x+a的圖象不過第三象限,則只能向上平移或者不平移,因此,a的取值范圍是a≥0.故為:a≥0.32.設(shè)O是正方形ABCD的中心,向量,,,是(
)
A.平行向量
B.有相同終點(diǎn)的向量
C.相等向量
D.模相等的向量答案:D33.將參數(shù)方程化為普通方程為(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C34.(上海卷理3文8)動(dòng)點(diǎn)P到點(diǎn)F(2,0)的距離與它到直線x+2=0的距離相等,則P的軌跡方程為______.答案:由拋物線的定義知點(diǎn)P的軌跡是以F為焦點(diǎn)的拋物線,其開口方向向右,且p2=2,解得p=4,所以其方程為y2=8x.故為y2=8x35.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一個(gè)動(dòng)點(diǎn),F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負(fù)值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p36.知x、y、z均為實(shí)數(shù),
(1)若x+y+z=1,求證:++≤3;
(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)證明略(2)x2+y2+z2的最小值為解析:(1)證明
因?yàn)椋?+)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.
7分(2)解
因?yàn)?12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值為.
14分37.已知平面向量a=(0,1),b=(x,y),若a⊥b,則實(shí)數(shù)y=______.答案:由題意平面向量a=(0,1),b=(x,y),由a⊥b,∴a?b=0∴y=0故為038.△ABC所在平面內(nèi)點(diǎn)O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點(diǎn)P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點(diǎn)為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點(diǎn)P的軌跡一定經(jīng)過△ABC的重心故選A.39.過點(diǎn)(0,2)且與圓x2+y2=4只有一個(gè)交點(diǎn)的直線方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(diǎn)(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(diǎn)(0,2)在圓x2+y2=4上,∴過點(diǎn)(0,2)且與圓x2+y2=4只有一個(gè)交點(diǎn)的直線方程是0x+2y=4,即y=2.故為:y=2.40.抽樣調(diào)查在抽取調(diào)查對象時(shí)()A.按一定的方法抽取B.隨意抽取C.全部抽取D.根據(jù)個(gè)人的愛好抽取答案:一般地,抽樣方法分為3種:簡單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣無論是哪種抽樣方法,都遵循機(jī)會均等的原理,即在抽樣過程中,各個(gè)體被抽到的概率是相等的.根據(jù)以上分析,可知只有A項(xiàng)符合題意.故選:A41.如圖,空間四邊形ABCD中,M、G分別是BC、CD的中點(diǎn),則AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M(jìn)、G分別是BC、CD的中點(diǎn),∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故選C42.按ABO血型系統(tǒng)學(xué)說,每個(gè)人的血型為A、B、O、AB型四種之一,依血型遺傳學(xué),當(dāng)且僅當(dāng)父母中至少有一人的血型是AB型時(shí),子女的血型一定不是O型,若某人的血型為O型,則其父母血型的所有可能情況有()
A.12種
B.6種
C.10種
D.9種答案:D43.
圓ρ=(cosθ+sinθ)的圓心的極坐標(biāo)是()
A.(1,)
B.(,)
C.(,)
D.(2,)
答案:A44.如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長線上一點(diǎn),且
DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長為.答案:設(shè)AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7245.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故選B.46.某學(xué)院有四個(gè)飼養(yǎng)房,分別養(yǎng)有18,54,24,48只白鼠供實(shí)驗(yàn)用,某項(xiàng)實(shí)驗(yàn)需要抽取24只白鼠,你認(rèn)為最合適的抽樣方法是()A.在每個(gè)飼養(yǎng)房各抽取6只B.把所以白鼠都編上號,用隨機(jī)抽樣法確定24只C.在四個(gè)飼養(yǎng)房應(yīng)分別抽取3,9,4,8只D.先確定這四個(gè)飼養(yǎng)房應(yīng)分別抽取3,9,4,8只樣品,再由各飼養(yǎng)房將白鼠編號,用簡單隨機(jī)抽樣確定各自要抽取的對象答案:A中對四個(gè)飼養(yǎng)房平均攤派,但由于各飼養(yǎng)房所養(yǎng)數(shù)量不一,反而造成了各個(gè)個(gè)體入選概率的不均衡,是錯(cuò)誤的方法.B中保證了各個(gè)個(gè)體入選概率的相等,但由于沒有注意到處在四個(gè)不同環(huán)境中會產(chǎn)生差異,不如采用分層抽樣可靠性高,且統(tǒng)一編號統(tǒng)一選擇加大了工作量.C中總體采用了分層抽樣,但在每個(gè)層次中沒有考慮到個(gè)體的差層(如健壯程度,靈活程度),貌似隨機(jī),實(shí)則各個(gè)個(gè)體概率不等.故選D.47.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α內(nèi)的三點(diǎn),設(shè)平面α的法向量a=(x,y,z),則x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α?AB=0,α?AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故為2:3:-4.48.已知直線的參數(shù)方程為x=1+ty=3+2t.(t為參數(shù)),圓的極坐標(biāo)方程為ρ=2cosθ+4sinθ.
(I)求直線的普通方程和圓的直角坐標(biāo)方程;
(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標(biāo)方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)49.已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線x=-1于M點(diǎn),且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由題意知?jiǎng)狱c(diǎn)P到F(1,0)的距離與直線x=-1的距離相等,由拋物線定義知,動(dòng)點(diǎn)P在以F(1,0)為焦點(diǎn),以直線x=-1為準(zhǔn)線的拋物線上,方程為y2=4x.(2)由題設(shè)知直線的斜線存在,設(shè)直線AB的方程為:y=k(x-1),設(shè)A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.50.函數(shù)y=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,16],當(dāng)a變動(dòng)時(shí),函數(shù)b=g(a)的圖象可以是()A.
B.
C.
D.
答案:根據(jù)選項(xiàng)可知a≤0a變動(dòng)時(shí),函數(shù)y=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,16],∴2|b|=16,b=4故選B.第3卷一.綜合題(共50題)1.設(shè)向量不共面,則下列集合可作為空間的一個(gè)基底的是(
)
A.{}
B.{}
C.{}
D.{}
答案:C2.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個(gè)不小于”時(shí),假設(shè)正確的是()
A.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有一個(gè)小于
B.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有兩個(gè)小于
C.假設(shè)|f(1)|,|f(2)|,|f(3)|都不小于
D.假設(shè)|f(1)|,|f(2)|,|f(3)|都小于答案:D3.行駛中的汽車,在剎車時(shí)由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離.在某種路面上,某種型號汽車的剎車距離s(m)與汽車的車速v(km/h)滿足下列關(guān)系:s=(n為常數(shù),且n∈N),做了兩次剎車試驗(yàn),有關(guān)試驗(yàn)數(shù)據(jù)如圖所示,其中,
(1)求n的值;
(2)要使剎車距離不超過12.6m,則行駛的最大速度是多少?答案:解:(1)依題意得,解得,又n∈N,所以n=6;(2)s=,因?yàn)関≥0,所以0≤v≤60,即行駛的最大速度為60km/h。4.已知x∈{1,2,x2},則實(shí)數(shù)x=______.答案:∵x∈{1,2,x2},分情況討論可得:①x=1此時(shí)集合為{1,2,1}不合題意②x=2此時(shí)集合為{1,2,4}合題意③x=x2解得x=0或x=1當(dāng)x=0時(shí)集合為{1,2,0}合題意故為0或2.5.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,則λ的值是()
A.-
B.-6
C.6
D.答案:C6.下列語句不屬于基本算法語句的是()
A.賦值語句
B.運(yùn)算語句
C.條件語句
D.循環(huán)語句答案:B7.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設(shè)直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C8.對于回歸方程y=4.75x+2.57,當(dāng)x=28時(shí),y
的估計(jì)值是______.答案:∵回歸方程y=4.75x+2.57,∴當(dāng)x=28時(shí),y的估計(jì)值是4.75×28+2.57=135.57.故為:135.57.9.若,,,則
(
)
A.
B.
C.
D.答案:A10.從拋物線y2=4x上一點(diǎn)P引拋物線準(zhǔn)線的垂線,垂足為M,且|PM|=5,設(shè)拋物線的焦點(diǎn)為F,則△MPF的面積為()
A.6
B.8
C.10
D.15答案:C11.已知f(x+1)=x2+2x+3,則f(2)的值為______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.12.直角坐標(biāo)xOy平面上,平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有()
A.25個(gè)
B.36個(gè)
C.100個(gè)
D.225個(gè)答案:D13.m為何值時(shí),關(guān)于x的方程8x2-(m-1)x+(m-7)=0的兩根,
(1)為正數(shù);
(2)一根大于2,一根小于2.答案:(1)設(shè)方程兩根為x1,x2,則∵方程的兩根為正數(shù),∴△≥0x1+x2>0x1x2>0即[-(m-1)]2-4×8×(m-7)>0--(m-1)8>0m-78>0解得7<m≤9或m≥25.(2)令f(x)=8x2-(m-1)x+(m-7),由題意得f(2)<0,解得m>27.14.若點(diǎn)M,A,B,C對空間任意一點(diǎn)O都滿足則這四個(gè)點(diǎn)()
A.不共線
B.不共面
C.共線
D.共面答案:D15.已知0<a<1,loga(1-x)<logax則()
A.0<x<1
B.x<
C.0<x<
D.<x<1答案:C16.正方形ABCD中,AB=1,分別以A、C為圓心作兩個(gè)半徑為R、r(R>r)的圓,當(dāng)R、r滿足條件______時(shí),⊙A與⊙C有2個(gè)交點(diǎn)(
)
A.R+r>
B.R-r<<R+r
C.R-r>
D.0<R-r<答案:B17.已知x,y之間的一組數(shù)據(jù):x1.081.121.191.28y2.252.372.402.55y與x之間的線性性回歸方y(tǒng)=bx+a必過定點(diǎn)______.答案:回歸直線方程一定過樣本的中心點(diǎn)(.x,.y),.x=1.08+1.12+1.19+1.284=1.1675,
.y=2.25+2.37+2.40+2.554=2.3925,∴樣本中心點(diǎn)是(1.1675,2.3925),故為(1.1675,2.3925).18.設(shè)函數(shù)g(x)=ex
x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))
=g(ln12)
=eln12=12故為:12.19.若不等式(﹣1)na<2+對任意n∈N*恒成立,則實(shí)數(shù)a的取值范圍是
[
]A.[﹣2,)
B.(﹣2,)
C.[﹣3,)
D.(﹣3,)答案:A20.函數(shù)f(x)為偶函數(shù),其圖象與x軸有四個(gè)交點(diǎn),則該函數(shù)的所有零點(diǎn)之和為()A.4B.2C.1D.0答案:因?yàn)楹瘮?shù)f(x)為偶函數(shù),所以函數(shù)圖象關(guān)于y軸對稱.又其圖象與x軸有四個(gè)交點(diǎn),所以四個(gè)交點(diǎn)關(guān)于y軸對稱,不妨設(shè)四個(gè)交點(diǎn)的橫坐標(biāo)為x1,x2,x3,x4,則根據(jù)對稱性可知x1+x2+x3+x4=0.故選D.21.用A、B、C三類不同的元件連接成兩個(gè)系統(tǒng)N1、N2當(dāng)元件A、B、C都正常工作時(shí),系統(tǒng)N1正常工作,當(dāng)元件A正常工作且元件B、C至少有一個(gè)正常工作時(shí),系統(tǒng)N2正常工作。已知元件A、B、C正常工作的概率依次為0.80,0.90,0.90,分別求系統(tǒng)N1、N2正常工作的概率.
答案:0.792解析:解:分別記三個(gè)元件A、B、C能正常工作為事件A、B、C,由題意,這三個(gè)事件相互獨(dú)立,系統(tǒng)N1正常工作的概率為P(A·B·C)=P(A)·P(B)·P(C)=0.8′0.9′0.9=0.648系統(tǒng)N2中,記事件D為B、C至少有一個(gè)正常工作,則P(D)=1–P()="1–"P()·P()=1–(1–0.9)′(1–0.9)=0.99系統(tǒng)N2正常工作的概率為P(A·D)=P(A)·P(D)=0.8′0.99=0.792。22.設(shè)隨機(jī)變量ξ的概率分布如表所示:
求:(l)P(ξ<1),P(ξ≤1),P(ξ<2),P(ξ≤2);
(2)P(x)=P(ξ≤x),x∈R.答案:(1)根據(jù)所給的分布列可知14+13+m+112=1,∴m=13,∴P(ξ<1)=0P(ξ≤1)=P(ξ=1)=14P(ξ<2)=P(ξ≤1)=P(ξ=1)=14P(ξ≤2)=P(ξ=1)+P(ξ=2)=14+13=712(2)根據(jù)所給的分布列和第一問做出的結(jié)果,得到P(X)=14,(x≤1)P(X)=712,(1<X≤2)P(X)=1112,(2<x≤3)p(X)=1,(X≥3)23.某學(xué)校為了調(diào)查高三年級的200名文科學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會的同學(xué)隨機(jī)抽取20名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對該年級的文科學(xué)生進(jìn)行編號,從001到200,抽取學(xué)號最后一位為2的同學(xué)進(jìn)行調(diào)查,則這兩種抽樣的方法依次為()A.分層抽樣,簡單隨機(jī)抽樣B.簡單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機(jī)抽樣,系統(tǒng)抽樣答案:第一種由學(xué)生會的同學(xué)隨機(jī)抽取20名同學(xué)進(jìn)行調(diào)查;這是一種簡單隨機(jī)抽樣,第二種由教務(wù)處對該年級的文科學(xué)生進(jìn)行編號,從001到200,抽取學(xué)號最后一位為2的同學(xué)進(jìn)行調(diào)查,對于個(gè)體比較多的總體,采用系統(tǒng)抽樣,故選D.24.設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求實(shí)數(shù)a的取值范圍。答案:解A={0,-4}∵A∩B=B
∴BA由x2+2(a+1)x+a2-1=0
得△=4(a+1)2-4(a2-1)=8(a+1)(1)當(dāng)a<-1時(shí)△<0
B=φA(2)當(dāng)a=-1時(shí)△=0
B={0}A(3)當(dāng)a>-1時(shí)△>0
要使BA,則A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的兩根∴解之得a=1綜上可得a≤-1或a=125.賦值語句M=M+3表示的意義()
A.將M的值賦給M+3
B.將M的值加3后再賦給M
C.M和M+3的值相等
D.以上說法都不對答案:B26.如圖,⊙O是Rt△ABC的外接圓,點(diǎn)O在AB上,BD⊥AB,點(diǎn)B是垂足,OD∥AC,連接CD.
求證:CD是⊙O的切線.答案:證明:連接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切線.(10分)27.有以下命題:①如果向量與任何向量不能構(gòu)成空間向量的一組基底,那么的關(guān)系是不共線;②O,A,B,C為空間四點(diǎn),且向量不構(gòu)成空間的一個(gè)基底,那么點(diǎn)O,A,B,C一定共面;③已知向量是空間的一個(gè)基底,則向量,也是空間的一個(gè)基底.其中正確的命題是[
]A.①②
B.①③
C.②③
D.①②③答案:C28.4名學(xué)生參加3項(xiàng)不同的競賽,則不同參賽方法有()A.34B.A43C.3!D.43答案:由題意知本題是一個(gè)分步計(jì)數(shù)問題,首先第一名學(xué)生從三種不同的競賽中選有三種不同的結(jié)果,第二名學(xué)生從三種不同的競賽中選有3種結(jié)果,同理第三個(gè)和第四個(gè)同學(xué)從三種競賽中選都有3種結(jié)果,∴根據(jù)分步計(jì)數(shù)原理得到共有3×3×3×3=34故選A.29.將兩個(gè)數(shù)a=8,b=17交換,使a=17,b=8,下面語句正確一組是()
A.a(chǎn)=bb=a
B.c=b
b=a
a=c
C.b=aa=b
D.a(chǎn)=cc=bb=a答案:B30.已知集合P={(x,y)|y=m},Q={(x,y)|y=ax+1,a>0,a≠1},如果P∩Q有且只有一個(gè)元素,那么實(shí)數(shù)m的取值范圍是
______.答案:如果P∩Q有且只有一個(gè)元素,即函數(shù)y=m與y=ax+1(a>0,且a≠1)圖象只有一個(gè)公共點(diǎn).∵y=ax+1>1,∴m>1.∴m的取值范圍是(1,+∞).故:(1,+∞)31.已知在一場比賽中,甲運(yùn)動(dòng)員贏乙、丙的概率分別為0.8,0.7,比賽沒有平局.若甲分別與乙、丙各進(jìn)行一場比賽,則甲取得一勝一負(fù)的概率是______.答案:根據(jù)題意,甲取得一勝一負(fù)包含兩種情況,甲勝乙負(fù)丙,概率為:0.8×0.3=0.24;甲勝丙負(fù)乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負(fù)的概率為0.24+0.14=0.38故為0.3832.把函數(shù)y=ex的圖像按向量=(2,3)平移,得到y(tǒng)=f(x)的圖像,則f(x)=(
)
A.ex+2+3
B.ex+2-3
C.ex-2+3
D.ex-2-3答案:C33.如圖,空間四邊形ABCD中,M、G分別是BC、CD的中點(diǎn),則AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M(jìn)、G分別是BC、CD的中點(diǎn),∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故選C34.已知:集合A={x,y},B={2,2y},若A=B,則x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故為:2或635.設(shè)雙曲線的焦點(diǎn)在x軸上,兩條漸近線為y=±12x,則雙曲線的離心率e=______.答案:依題意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故為52.36.直線x+1=0的傾斜角是______.答案:直線x+1=0與x軸垂直,所以直線的傾斜角為90°.故為:90°.37.在極坐標(biāo)系中,過點(diǎn)(22,π4)作圓ρ=4s
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 影響農(nóng)村信用社發(fā)展的政策性障礙分析
- 輪椅車 第31部分 電動(dòng)輪椅車的鋰離子電池系統(tǒng)和充電器 要求和試驗(yàn)方法 征求意見稿
- 直播招商課件教學(xué)課件
- 金融培訓(xùn)課件教學(xué)課件
- 三年級數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)及答案集錦
- 維修水泵機(jī)組合同(2篇)
- 學(xué)習(xí)領(lǐng)會《新就業(yè)形態(tài)勞動(dòng)者權(quán)益協(xié)商指引》心得體會
- 南京航空航天大學(xué)《編譯原理》2022-2023學(xué)年第一學(xué)期期末試卷
- 發(fā)現(xiàn)問題說課稿
- 陽春市河朗鎮(zhèn)飲用水供水工程施工組織設(shè)計(jì)
- 2019新教材人教版生物必修1教材課后習(xí)題答案
- 2024年中國白酒行業(yè)數(shù)字化轉(zhuǎn)型研究報(bào)告-36氪-202409
- 《學(xué)校主人公:3 校園廣播站》教學(xué)設(shè)計(jì)-2024-2025學(xué)年五年級上冊綜合實(shí)踐活動(dòng)滬科黔科版
- 外傷急救包扎技術(shù)說課課件
- 人教版(2024新版)七年級上冊英語全冊語法知識點(diǎn)講義
- 全國青島版信息技術(shù)七年級下冊專題一第8課三、《高級統(tǒng)計(jì)-數(shù)據(jù)透視表》教學(xué)設(shè)計(jì)
- 2024年秋季新人教版七年級數(shù)學(xué)上冊教學(xué)課件 第五章 一元一次方程 5.3實(shí)際問題與一元一次方程(第4課時(shí))
- 清淡的晚餐(課件)六年級上冊勞動(dòng)北京版
- 婦科內(nèi)分泌疾病診斷與治療考核試卷
- 城鎮(zhèn)雨污分流項(xiàng)目可行性研究報(bào)告
- 《19 海濱小城》公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)及反思
評論
0/150
提交評論