版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年廣州珠江職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.設(shè)平面α內(nèi)兩個(gè)向量的坐標(biāo)分別為(1,2,1)、(-1,1,2),則下列向量中是平面的法向量的是()
A.(-1,-2,5)
B.(-1,1,-1)
C.(1,1,1)
D.(1,-1,-1)答案:B2.已知函數(shù)f(x)=
-x+1,x<0x-1,x≥0,則不等式x+(x+1)f(x+1)≤1的解集是()
A.[-1,
2-1]B.(-∞,1]C.(-∞,
2-1]D.[-
2-1,
2-1]答案:C解析:由題意x+(x+1)f(x+1)=3.設(shè)i為虛數(shù)單位,若(x+i)(1-i)=y,則實(shí)數(shù)x,y滿(mǎn)足()
A.x=-1,y=1
B.x=-1,y=2
C.x=1,y=2
D.x=1,y=1答案:C4.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故選D.5.位于直角坐標(biāo)原點(diǎn)的一個(gè)質(zhì)點(diǎn)P按下列規(guī)則移動(dòng):質(zhì)點(diǎn)每次移動(dòng)一個(gè)單位,移動(dòng)的方向向左或向右,并且向左移動(dòng)的概率為,向右移動(dòng)的概率為,則質(zhì)點(diǎn)P移動(dòng)五次后位于點(diǎn)(1,0)的概率是()
A.
B.
C.
D.答案:D6.函數(shù)y=()|x|的圖象是()
A.
B.
C.
D.
答案:B7.已知:如圖,四邊形ABCD內(nèi)接于⊙O,,過(guò)A點(diǎn)的切線(xiàn)交CB的延長(zhǎng)線(xiàn)于E點(diǎn),求證:AB2=BE·CD。
答案:證明:連結(jié)AC,因?yàn)镋A切⊙O于A,所以∠EAB=∠ACB,因?yàn)?,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四邊形ABCD內(nèi)接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。8.與
向量
=(2,-1,2)共線(xiàn)且滿(mǎn)足方程=-18的向量為()
A.不存在
B.-2
C.(-4,2,-4)
D.(4,-2,4)答案:D9.一個(gè)口袋中有紅球3個(gè),白球4個(gè).
(Ⅰ)從中不放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),求恰好第2次中獎(jiǎng)的概率;
(Ⅱ)從中有放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),連續(xù)摸4次,求中獎(jiǎng)次數(shù)X的數(shù)學(xué)期望E(X).答案:(I)“恰好第2次中獎(jiǎng)“即為“第一次摸到的2個(gè)白球,第二次至少有1個(gè)紅球”,其概率為C24C27×C23+C13C12C25=935;(II)摸一次中獎(jiǎng)的概率為p=C23+C13C14C27=57,由條件知X~B(4,p),∴EX=np=4×57=207.10.半徑為R的球內(nèi)接一個(gè)正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內(nèi)接一個(gè)正方體,設(shè)正方體棱長(zhǎng)為a,正方體的對(duì)角線(xiàn)過(guò)球心,可得正方體對(duì)角線(xiàn)長(zhǎng)為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;11.已知兩直線(xiàn)a1x+b1y+1=0和a2x+b2y+1=0的交點(diǎn)為P(2,3),求過(guò)兩點(diǎn)Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直線(xiàn)方程.答案:∵P(2,3)在已知直線(xiàn)上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直線(xiàn)方程為y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.12.設(shè)橢圓的左焦點(diǎn)為F,AB為橢圓中過(guò)點(diǎn)F的弦,試分析以AB為直徑的圓與橢圓的左準(zhǔn)線(xiàn)的位置關(guān)系.答案:設(shè)M為弦AB的中點(diǎn)(即以AB為直徑的圓的圓心),A1、B1、M1分別是A、B、M在準(zhǔn)線(xiàn)l上的射影(如圖).由圓錐曲線(xiàn)的共同性質(zhì)得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB為直徑的圓與左準(zhǔn)線(xiàn)相離.13.設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿(mǎn)足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.14.設(shè)雙曲線(xiàn)的漸近線(xiàn)為:y=±32x,則雙曲線(xiàn)的離心率為_(kāi)_____.答案:由題意ba=32或ab=32,∴e=ca=132或133,故為132,133.15.已知拋物線(xiàn)x2=4y的焦點(diǎn)為F,A、B是拋物線(xiàn)上的兩動(dòng)點(diǎn),且AF=λFB(λ>0).過(guò)A、B兩點(diǎn)分別作拋物線(xiàn)的切線(xiàn),設(shè)其交點(diǎn)為M.
(I)證明FM.AB為定值;
(II)設(shè)△ABM的面積為S,寫(xiě)出S=f(λ)的表達(dá)式,并求S的最小值.答案:(1)設(shè)A(x1,y1),B(x2,y2),M(xo,yo),焦點(diǎn)F(0,1),準(zhǔn)線(xiàn)方程為y=-1,顯然AB斜率存在且過(guò)F(0,1)設(shè)其直線(xiàn)方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線(xiàn)4y=x2上任意一點(diǎn)斜率為y'=x2,則易得切線(xiàn)AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點(diǎn)M坐標(biāo),xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說(shuō)明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因?yàn)閨AF|、|BF|分別等于A、B到拋物線(xiàn)準(zhǔn)線(xiàn)y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當(dāng)λ=1時(shí),S取得最小值4.16.若復(fù)數(shù)(1+bi)?(2-i)是純虛數(shù)(i是虛數(shù)單位,b是實(shí)數(shù)),則b=()A.-2B.-12C.12D.2答案:由(1+bi)?(2-i)=2+b+(2b-1)i是純虛數(shù),則2+b=02b-1≠0,解得b=-2.故選A.17.在極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)為(2,0),直線(xiàn)l的極坐標(biāo)方程為ρ(cosθ+sinθ)+2=0,則點(diǎn)A到直線(xiàn)l的距離為_(kāi)_____.答案:由題意得點(diǎn)A(2,0),直線(xiàn)l為
ρ(cosθ+sinθ)+2=0,即
x+y+2=0,∴點(diǎn)A到直線(xiàn)l的距離為
|2+0+2|2=22,故為22.18.如圖所示,已知點(diǎn)P為菱形ABCD外一點(diǎn),且PA⊥面ABCD,PA=AD=AC,點(diǎn)F為PC中點(diǎn),則二面角CBFD的正切值為()
A.
B.
C.
D.
答案:D19.若函數(shù)f(x)=loga(x+b)的圖象如圖,其中a,b為常數(shù).則函數(shù)g(x)=ax+b的大致圖象是(
)
答案:D解析:試題分析:解:由函數(shù)f(x)=loga(x+b)的圖象為減函數(shù)可知0<a<1,f(x)=loga(x+b)的圖象由f(x)=logax向左平移可知0<b<1,故函數(shù)g(x)=ax+b的大致圖象是D故選D.20.在空間直角坐標(biāo)系0xyz中有兩點(diǎn)A(2,5,1)和B(2,4,-1),則|AB|=______.答案:∵點(diǎn)A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故為5.21.(坐標(biāo)系與參數(shù)方程選做題)在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1與C2的參數(shù)方程分別為x=ty=t(t為參數(shù))和x=2cosθy=2sinθ(θ為參數(shù)),則曲線(xiàn)C1與C2的交點(diǎn)坐標(biāo)為_(kāi)_____.答案:在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2
+y2=2
可得x=1y=1,故曲線(xiàn)C1與C2的交點(diǎn)坐標(biāo)為(1,1),故為(1,1).22.某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是______.答案:由三視圖可知該幾何體為是一平放的直三棱柱,底面是邊長(zhǎng)為2的正三角形,棱柱的側(cè)棱為3,也為高.V=Sh=34×22
×3=33故為:33.23.直線(xiàn)y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線(xiàn)y=2的傾斜角是0°,斜率為0故選D.24.曲線(xiàn)的參數(shù)方程是(t是參數(shù),t≠0),它的普通方程是()
A.(x-1)2(y-1)=1
B.
C.
D.答案:B25.△ABC所在平面內(nèi)點(diǎn)O、P,滿(mǎn)足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點(diǎn)P的軌跡一定經(jīng)過(guò)△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點(diǎn)為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線(xiàn)∴點(diǎn)P的軌跡一定經(jīng)過(guò)△ABC的重心故選A.26.選修4-4參數(shù)方程與極坐標(biāo)
在平面直角坐標(biāo)系xOy中,動(dòng)圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圓心為P(x0,y0),求2x0-y0的取值范圍.答案:將圓的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由題設(shè)得x0=4cosθy0=3sinθ(θ為參數(shù),θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以
-73≤2x0-y0≤73.27.設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q,則“a1<0且0<q<1”是“對(duì)于任意n∈N*都有an+1>an”的
()
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分又不必要條件答案:A28.命題“每一個(gè)素?cái)?shù)都是奇數(shù)”的否定是______.答案:原命題“每一個(gè)素?cái)?shù)都是奇數(shù)”是一個(gè)全稱(chēng)命題它的否定是一個(gè)特稱(chēng)命題,即“有的素?cái)?shù)不是奇數(shù)”故為:有的素?cái)?shù)不是奇數(shù)29.長(zhǎng)為3的線(xiàn)段AB的端點(diǎn)A、B分別在x軸、y軸上移動(dòng),,則點(diǎn)C的軌跡是()
A.線(xiàn)段
B.圓
C.橢圓
D.雙曲線(xiàn)答案:C30.圖為一個(gè)幾何體的三視國(guó)科,尺寸如圖所示,則該幾何體的體積為()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由圖中數(shù)據(jù),下部的正三棱柱的高是3,底面是一個(gè)正三角形,其邊長(zhǎng)為2,高為3,故其體積為3×12×2×3=33上部的球體直徑為1,故其半徑為12,其體積為4π3×(12)3=π6故組合體的體積是33+π6故選C31.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC邊上任取一點(diǎn)M,則∠AMB≥90°的概率為_(kāi)_____.答案:過(guò)A點(diǎn)做BC的垂線(xiàn),垂足為M',當(dāng)M點(diǎn)落在線(xiàn)段BM'(含M'點(diǎn)不含B點(diǎn))上時(shí)∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,則∠AMB≥90°的概率p=122=14.故為:1432.下列各式中錯(cuò)誤的是()
A.||2=2
B.||=||
C.0?=0
D.m(n)=mn(m,n∈R)答案:C33.OA、OB(O為原點(diǎn))是圓x2+y2=2的兩條互相垂直的半徑,C是該圓上任一點(diǎn),且OC=λOA+μO(píng)B,則λ2+μ2=______.答案:∵OC=λOA+μO(píng)B,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μO(píng)B)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故為:134.已知雙曲線(xiàn)的a=5,c=7,則該雙曲線(xiàn)的標(biāo)準(zhǔn)方程為()
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0答案:C35.將兩枚質(zhì)地均勻透明且各面分別標(biāo)有1,2,3,4的正四面體玩具各擲一次,設(shè)事件A={兩個(gè)玩具底面點(diǎn)數(shù)不相同},B={兩個(gè)玩具底面點(diǎn)數(shù)至少出現(xiàn)一個(gè)2點(diǎn)},則P(B|A)=______.答案:設(shè)事件A={兩個(gè)玩具底面點(diǎn)數(shù)不相同},包括以下12個(gè)基本事件:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件B={兩個(gè)玩具底面點(diǎn)數(shù)至少出現(xiàn)一個(gè)2點(diǎn)},則包括以下6個(gè)基本事件:(1,2),(2,1),(2,3),(2,4),(3,2),(4,2).故P(B|A)=612=12.故為12.36.一位母親記錄了她的兒子3~9歲的身高數(shù)據(jù),并由此建立身高與年齡的回歸模型為y=7.19x+73.93,用這個(gè)模型預(yù)測(cè)她的兒子10歲時(shí)的身高,則正確的敘述是()A.身高一定是145.83
cmB.身高在145.83
cm以上C.身高在145.83
cm左右D.身高在145.83
cm以下答案:∵身高與年齡的回歸模型為y=7.19x+73.93.∴可以預(yù)報(bào)孩子10歲時(shí)的身高是y=7.19x+73.93.=7.19×10+73.93=145.83則她兒子10歲時(shí)的身高在145.83cm左右.故選C.37.(1)用紅、黃、藍(lán)、白四種不同顏色的鮮花布置如圖一所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域用不同顏色鮮花,問(wèn)共有多少種不同的擺放方案?
(2)用紅、黃、藍(lán)、白、橙五種不同顏色的鮮花布置如圖二所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域使用不同顏色鮮花.
①求恰有兩個(gè)區(qū)域用紅色鮮花的概率;
②記花圃中紅色鮮花區(qū)域的塊數(shù)為S,求它的分布列及其數(shù)學(xué)期望E(S).
答案:(1)根據(jù)分步計(jì)數(shù)原理,擺放鮮花的不同方案有:4×3×2×2=48種(2)①設(shè)M表示事件“恰有兩個(gè)區(qū)域用紅色鮮花”,如圖二,當(dāng)區(qū)域A、D同色時(shí),共有5×4×3×1×3=180種;當(dāng)區(qū)域A、D不同色時(shí),共有5×4×3×2×2=240種;因此,所有基本事件總數(shù)為:180+240=420種.(由于只有A、D,B、E可能同色,故可按選用3色、4色、5色分類(lèi)計(jì)算,求出基本事件總數(shù)為A53+2A51+A55=420種)它們是等可能的.又因?yàn)锳、D為紅色時(shí),共有4×3×3=36種;B、E為紅色時(shí),共有4×3×3=36種;因此,事件M包含的基本事件有:36+36=72種.所以,P(M)=72420=635②隨機(jī)變量ξ的分布列為:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=138.已知直線(xiàn)l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當(dāng)k=3時(shí)兩條直線(xiàn)平行,當(dāng)k≠3時(shí)有2=-24-k≠3
所以
k=5故為:3或5.39.若一個(gè)底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如下圖所示,則這個(gè)棱柱的體積為()A.123B.363C.273D.6答案:此幾何體為一個(gè)三棱柱,棱柱的高是4,底面正三角形的高是33,設(shè)底面邊長(zhǎng)為a,則32a=33,∴a=6,故三棱柱體積V=12?62?32?4=363.故選B40.(理)已知函數(shù)f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若滿(mǎn)足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是______.答案:作出函數(shù)的圖象如圖,直線(xiàn)y=y0交函數(shù)圖象于如圖,由正弦曲線(xiàn)的對(duì)稱(chēng)性,可得A(a,y0)與B(b,y0)關(guān)于直線(xiàn)x=12對(duì)稱(chēng),因此a+b=1當(dāng)直線(xiàn)線(xiàn)y=y0向上平移時(shí),經(jīng)過(guò)點(diǎn)(2011,1)時(shí)圖象兩個(gè)圖象恰有兩個(gè)公共點(diǎn)(A、B重合)所以0<y0<1時(shí),兩個(gè)圖象有三個(gè)公共點(diǎn),此時(shí)滿(mǎn)足f(a)=f(b)=f(c),(a、b、c互不相等),說(shuō)明1<c<2011,因此可得a+b+c∈(2,2012)故為(2,2012)41.已知A(0,1),B(3,7),C(x,15)三點(diǎn)共線(xiàn),則x的值是()
A.5
B.6
C.7
D.8答案:C42.設(shè)F1,F(xiàn)2是雙曲線(xiàn)的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線(xiàn)上,且·=0,則|PF1|·|PF2|值等于()
A.2
B.2
C.4
D.8答案:A43.l1,l2,l3是空間三條不同的直線(xiàn),則下列命題正確的是[
]A.l1⊥l2,l2⊥l3l1∥l3
B.l1⊥l2,l2∥l3l1⊥l3
C.l1∥l2∥l3l1,l2,l3共面
D.l1,l2,l3共點(diǎn)l1,l2,l3共面答案:B44.一部記錄影片在4個(gè)單位輪映,每一單位放映一場(chǎng),則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個(gè)單位看成四個(gè)位置,在四個(gè)位置進(jìn)行全排列,故有A44種結(jié)果,故選C.45.一圓錐側(cè)面展開(kāi)圖為半圓,平面α與圓錐的軸成45°角,則平面α與該圓錐側(cè)面相交的交線(xiàn)為()A.圓B.拋物線(xiàn)C.雙曲線(xiàn)D.橢圓答案:設(shè)圓錐的母線(xiàn)長(zhǎng)為R,底面半徑為r,則:πR=2πr,∴R=2r,∴母線(xiàn)與高的夾角的正弦值=rR=12,∴母線(xiàn)與高的夾角是30°.由于平面α與圓錐的軸成45°>30°;則平面α與該圓錐側(cè)面相交的交線(xiàn)為橢圓.故選D.46.規(guī)定運(yùn)算.abcd.=ad-bc,則.1i-i2.=______.答案:根據(jù)題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.47.已知P:2+2=5,Q:3>2,則下列判斷錯(cuò)誤的是()A.“P或Q”為真,“非Q”為假B.“P且Q”為假,“非P”為真C.“P且Q”為假,“非P”為假D.“P且Q”為假,“P或Q”為真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”為真,“非Q”為假,∴“P或Q”為真,“P且Q”為假,∴A,B,D均正確;C錯(cuò)誤.故選C.48.已知A(-4,6,-1),B(4,3,2),則下列各向量中是平面AOB(O是坐標(biāo)原點(diǎn))的一個(gè)法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:設(shè)平面AOB(O是坐標(biāo)原點(diǎn))的一個(gè)法向量是u=(x,y,z)則u?OA=0u?OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故選B.49.用反證法證明某命題時(shí),對(duì)結(jié)論:“自然數(shù)a,b,c中恰有一個(gè)偶數(shù)”正確的反設(shè)為()
A.a(chǎn),b,c中至少有兩個(gè)偶數(shù)
B.a(chǎn),b,c中至少有兩個(gè)偶數(shù)或都是奇數(shù)
C.a(chǎn),b,c都是奇數(shù)
D.a(chǎn),b,c都是偶數(shù)答案:B50.設(shè)M是□ABCD的對(duì)角線(xiàn)的交點(diǎn),O為任意一點(diǎn)(且不與M重合),則OA+OB+OC+OD
等于()A.OMB.2OMC.3OMD.4OM答案:∵O為任意一點(diǎn),不妨把A點(diǎn)O看成O點(diǎn),則OA+OB+OC+OD=0+AB+AC
+AD,∵M(jìn)是□ABCD的對(duì)角線(xiàn)的交點(diǎn),∴0+AB+AC+AD=2AC=4AM故選D第2卷一.綜合題(共50題)1.已知函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小,則實(shí)數(shù)a的取值范圍______.答案:∵函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實(shí)數(shù)a的取值范圍為(-2,1)故為:(-2,1)2.直線(xiàn)y=k(x-2)+3必過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為()
A.(3,2)
B.(2,3)
C.(2,-3)
D.(-2,3)答案:B3.求證:定義在實(shí)數(shù)集上的單調(diào)減函數(shù)y=f(x)的圖象與x軸至多只有一個(gè)公共點(diǎn).答案:證明:假設(shè)函數(shù)y=f(x)的圖象與x軸有兩個(gè)交點(diǎn)…(2分)設(shè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1<x2.因?yàn)楹瘮?shù)y=f(x)在實(shí)數(shù)集上單調(diào)遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設(shè)不成立.
…(12分)故原命題成立.…(14分)4.利用“直接插入排序法”給按從大到小的順序排序,
當(dāng)插入第四個(gè)數(shù)時(shí),實(shí)際是插入哪兩個(gè)數(shù)之間(
)A.與B.與C.與D.與答案:B解析:先比較與,得;把插入到,得;把插入到,得;5.關(guān)于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()
A.x>
B.x<
C.x>2
D.x<2答案:B6.拋物線(xiàn)y=x2的焦點(diǎn)坐標(biāo)是()
A.(,0)
B.(0,)
C.(0,1)
D.(1,0)答案:C7.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個(gè)新的幾何體,想象幾何體的結(jié)構(gòu),畫(huà)出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.8.在空間直角坐標(biāo)系中,已知A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),則這兩點(diǎn)間的距離|AB|=______.答案:∵A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.9.為了讓學(xué)生更多地了解“數(shù)學(xué)史”知識(shí),某中學(xué)高二年級(jí)舉辦了一次“追尋先哲的足跡,傾聽(tīng)數(shù)學(xué)的聲音”的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng),共有800名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿(mǎn)分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)下面的頻率分布表,解答下列問(wèn)題:
序號(hào)
(i)分組
(分?jǐn)?shù))本組中間值
(Gi)頻數(shù)
(人數(shù))頻率
(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合
計(jì)501(1)填充頻率分布表中的空格(在解答中直接寫(xiě)出對(duì)應(yīng)空格序號(hào)的答案);
(2)為鼓勵(lì)更多的學(xué)生了解“數(shù)學(xué)史”知識(shí),成績(jī)不低于85分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在參賽的800名學(xué)生中大概有多少同學(xué)獲獎(jiǎng)?
(3)請(qǐng)根據(jù)頻率分布表估計(jì)該校高二年級(jí)參賽的800名同學(xué)的平均成績(jī).答案:(1)①為6,②為0.4,③為12,④為12⑤為0.24.(5分)(2)(12×0.24+0.24)×800=288,即在參加的800名學(xué)生中大概有288名同學(xué)獲獎(jiǎng).(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估計(jì)平均成績(jī)?yōu)?1分.(12分)10.方程4x-3×2x+2=0的根的個(gè)數(shù)是(
)
A.0
B.1
C.2
D.3答案:C11.在空間直角坐標(biāo)系中,點(diǎn)(-2,1,4)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為()
A.(-2,1,-4)
B.(-2,-1,-4)
C.(2,1,-4)
D.(2,-1,4)答案:B12.棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,=(
)
A.
B.4
C.
D.-4答案:D13.某校有學(xué)生1
200人,為了調(diào)查某種情況打算抽取一個(gè)樣本容量為50的樣本,問(wèn)此樣本若采用簡(jiǎn)單隨便機(jī)抽樣將如何獲得?答案:本題可以采用抽簽法來(lái)抽取樣本,首先把該校學(xué)生都編上號(hào)0001,0002,0003…用抽簽法做1200個(gè)形狀、大小相同的號(hào)簽,然后將這些號(hào)簽放到同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí),每次從中抽一個(gè)號(hào)簽,連續(xù)抽取50次,就得到一個(gè)容量為50的樣本.14.某學(xué)校高一、高二、高三共有學(xué)生3500人,其中高三學(xué)生數(shù)是高一學(xué)生數(shù)的兩倍,高二學(xué)生數(shù)比高一學(xué)生數(shù)多300人,現(xiàn)在按的抽樣比用分層抽樣的方法抽取樣本,則應(yīng)抽取高一學(xué)生數(shù)為()
A.8
B.11
C.16
D.10答案:A15.已知A、B、M三點(diǎn)不共線(xiàn),對(duì)于平面ABM外的任意一點(diǎn)O,確定在下列條件下,點(diǎn)P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內(nèi)的充要條件是,∴P與A、B、M不共面.16.已知焦點(diǎn)在x軸上的雙曲線(xiàn)漸近線(xiàn)方程是y=±4x,則該雙曲線(xiàn)的離心率是()
A.
B.
C.
D.答案:A17.(選修4-4:坐標(biāo)系與參數(shù)方程)
在直角坐標(biāo)系xoy中,直線(xiàn)l的參數(shù)方程為x=3-22ty=5+22t(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線(xiàn)l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,5),求|PA|+|PB|.答案:(Ⅰ)∵圓C的方程為ρ=25sinθ.∴x2+y2-25y=0,即圓C的直角坐標(biāo)方程:x2+(y-5)2=5.(Ⅱ)(3-22t)2+(22t)2=5,即t2-32t+4=0,由于△=(32)2-4×4=2>0,故可設(shè)t1,t2是上述方程的兩實(shí)根,所以t1+t2=32t1t2=4,又直線(xiàn)l過(guò)點(diǎn)P(3,5),故|PA|+|PB|=|t1|+|t2|=t1+t2=3218.隋機(jī)變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C19.若向量的起點(diǎn)與終點(diǎn)M、A、B、C互不重合且無(wú)三點(diǎn)共線(xiàn),且滿(mǎn)足下列關(guān)系(O為空間任一點(diǎn)),則能使向量成為空間一組基底的關(guān)系是()
A.
B.
C.
D.答案:C20.已知P:2+2=5,Q:3>2,則下列判斷錯(cuò)誤的是()A.“P或Q”為真,“非Q”為假B.“P且Q”為假,“非P”為真C.“P且Q”為假,“非P”為假D.“P且Q”為假,“P或Q”為真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”為真,“非Q”為假,∴“P或Q”為真,“P且Q”為假,∴A,B,D均正確;C錯(cuò)誤.故選C.21.已知函數(shù)f(x)滿(mǎn)足:x≥4,則f(x)=(12)x;當(dāng)x<4時(shí)f(x)=f(x+1),則f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故應(yīng)填12422.投擲一個(gè)質(zhì)地均勻的、每個(gè)面上標(biāo)有一個(gè)數(shù)字的正方體玩具,它的六個(gè)面中,有兩個(gè)面標(biāo)的數(shù)字是0,兩個(gè)面標(biāo)的數(shù)字是2,兩個(gè)面標(biāo)的數(shù)字是4,將此玩具連續(xù)拋擲兩次,以?xún)纱纬弦幻娉霈F(xiàn)的數(shù)字分別作為點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)
(1)求點(diǎn)P落在區(qū)域C:x2+y2≤10內(nèi)的概率;
(2)若以落在區(qū)域C上的所有點(diǎn)為頂點(diǎn)作面積最大的多邊形區(qū)域M,在區(qū)域C上隨機(jī)撒一粒豆子,求豆子落在區(qū)域M上的概率.答案:(1)點(diǎn)P的坐標(biāo)有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9種,其中落在區(qū)域C:x2+y2≤10上的點(diǎn)P的坐標(biāo)有:(0,0),(0,2),(2,0),(2,2),共4種D、故點(diǎn)P落在區(qū)域C:x2+y2≤10內(nèi)的概率為49.(2)區(qū)域M為一邊長(zhǎng)為2的正方形,其面積為4,區(qū)域C的面積為10π,則豆子落在區(qū)域M上的概率為25π.23.已知直線(xiàn)l過(guò)點(diǎn)P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則三角形OAB面積的最小值為_(kāi)_____.答案:設(shè)A(a,0)、B(0,b),a>0,b>0,AB方程為xa+
yb=1,點(diǎn)P(2,1)代入得2a+1b=1≥22ab,∴ab≥8
(當(dāng)且僅當(dāng)a=4,b=2時(shí),等號(hào)成立),故三角形OAB面積S=12
ab≥4,故為4.24.已知:如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,DC的延長(zhǎng)線(xiàn)交AB于點(diǎn)A,∠A=20°,則
∠DBE=______.答案:連接BC,∵CD是⊙O的直徑,∴∠CBD=90°,∵AE是⊙O的切線(xiàn),∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故為:∠DBE=55°.25.寫(xiě)出下列命題非的形式:
(1)p:函數(shù)f(x)=ax2+bx+c的圖象與x軸有唯一交點(diǎn);
(2)q:若x=3或x=4,則方程x2-7x+12=0.答案:(1)函數(shù)f(x)=ax2+bx+c的圖象與x軸沒(méi)有交點(diǎn)或至少有兩個(gè)交點(diǎn).(2)若x=3或x=4,則x2-7x+12≠0.26.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線(xiàn)的三點(diǎn)是()
A.A,B,C
B.A,B,D
C.A,C,D
D.B,C,D答案:C27.類(lèi)比“等差數(shù)列的定義”給出一個(gè)新數(shù)列“等和數(shù)列的定義”是()A.連續(xù)兩項(xiàng)的和相等的數(shù)列叫等和數(shù)列B.從第一項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的和都相等的數(shù)列叫等和數(shù)列C.從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的差都不相等的數(shù)列叫等和數(shù)列D.從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的和都相等的數(shù)列叫等和數(shù)列答案:由等差數(shù)列的定義:從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的差都相等的數(shù)列叫等差數(shù)列類(lèi)比可得:從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的和都相等的數(shù)列叫等和數(shù)列故選D28.設(shè)x,y,z∈R,且滿(mǎn)足:x2+y2+z2=1,x+2y+3z=14,則x+y+z=______.答案:根據(jù)柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)當(dāng)且僅當(dāng)x1=y2=z3時(shí),上式的等號(hào)成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,結(jié)合x(chóng)+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故為:314729.如圖程序框圖表達(dá)式中N=______.答案:該程序按如下步驟運(yùn)行①N=1×2,此時(shí)i變成3,滿(mǎn)足i≤5,進(jìn)入下一步循環(huán);②N=1×2×3,此時(shí)i變成4,滿(mǎn)足i≤5,進(jìn)入下一步循環(huán);③N=1×2×3×4,此時(shí)i變成5,滿(mǎn)足i≤5,進(jìn)入下一步循環(huán);④N=1×2×3×4×5,此時(shí)i變成6,不滿(mǎn)足i≤5,結(jié)束循環(huán)體并輸出N的值因此,最終輸出的N等于1×2×3×4×5=120故為:12030.下列有關(guān)相關(guān)指數(shù)R2的說(shuō)法正確的有()
A.R2的值越大,說(shuō)明殘差平方和越小
B.R2越接近1,表示回歸效果越差
C.R2的值越小,說(shuō)明殘差平方和越小
D.如果某數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,一般選擇R2小的模型作為這組數(shù)據(jù)的模型答案:A31.已知函數(shù)y=ax2+bx+c,如果a>b>c,且a+b+c=0,則它的圖象是(
)
A.
B.
C.
D.
答案:D32.給出下列結(jié)論:
(1)在回歸分析中,可用指數(shù)系數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;
(2)在回歸分析中,可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;
(3)在回歸分析中,可用相關(guān)系數(shù)r的值判斷模型的擬合效果,r越大,模型的擬合效果越好;
(4)在回歸分析中,可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說(shuō)明模型的擬合精度越高.
以上結(jié)論中,正確的有()個(gè).
A.1
B.2
C.3
D.4答案:B33.拋擲甲、乙兩骰子,記事件A:“甲骰子的點(diǎn)數(shù)為奇數(shù)”;事件B:“乙骰子的點(diǎn)數(shù)為偶數(shù)”,則P(B|A)的值等于()
A.
B.
C.
D.答案:B34.直線(xiàn)ax+2y+3=0和直線(xiàn)2x+ay-1=0具有相同的方向向量,則a=______.答案:∵直線(xiàn)ax+2y+3=0和直線(xiàn)2x+ay-1=0具有相同的方向向量∴兩條直線(xiàn)互相平行,可得a2=2a≠3-1,解之得a=±2故為:±235.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時(shí),|ma+nb|的最大值為_(kāi)_____.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時(shí),|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.36.{,,}是空間向量的一個(gè)基底,設(shè)=+,=+,=+,給出下列向量組:①{,,}②{,,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.
A.1
B.2
C.3
D.4答案:C37.在空間直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)A(,,),B(,,0),C(
,,),則(
)
A.OA⊥AB
B.AB⊥AC
C.AC⊥BC
D.OB⊥OC答案:C38.一條直線(xiàn)的傾斜角的余弦值為32,則此直線(xiàn)的斜率為()A.3B.±3C.33D.±33答案:設(shè)直線(xiàn)的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線(xiàn)的斜率k=tanα=33故選:C39.如圖,從圓O外一點(diǎn)P作圓O的割線(xiàn)PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線(xiàn)長(zhǎng)定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.40.若三角形的內(nèi)切圓半徑為r,三邊的長(zhǎng)分別為a,b,c,則三角形的面積S=12r(a+b+c),根據(jù)類(lèi)比思想,若四面體的內(nèi)切球半徑為R,四個(gè)面的面積分別為S1、S2、S3、S4,則此四面體的體積V=______.答案:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是R,所以四面體的體積等于以O(shè)為頂點(diǎn),分別以四個(gè)面為底面的4個(gè)三棱錐體積的和.故為:13R(S1+S2+S3+S4).41.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個(gè)動(dòng)點(diǎn),OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設(shè)射線(xiàn)OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設(shè)OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點(diǎn)共線(xiàn)可知x'+λy'=1,所以u(píng)=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點(diǎn))上存在與AB'平行的切線(xiàn),所以λ∈(12,2).故選C.42.某初級(jí)中學(xué)領(lǐng)導(dǎo)采用系統(tǒng)抽樣方法,從該校預(yù)備年級(jí)全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查.現(xiàn)將800名學(xué)生從1到800進(jìn)行編號(hào),求得間隔數(shù)k==16,即每16人抽取一個(gè)人.在1~16中隨機(jī)抽取一個(gè)數(shù),如果抽到的是7,則從33~48這16個(gè)數(shù)中應(yīng)取的數(shù)是(
)
A.40
B.39
C.38
D.37答案:B43.曲線(xiàn)(θ為參數(shù))上的點(diǎn)到兩坐標(biāo)軸的距離之和的最大值是()
A.
B.
C.1
D.答案:D44.關(guān)于如圖所示幾何體的正確說(shuō)法為_(kāi)_____.
①這是一個(gè)六面體;
②這是一個(gè)四棱臺(tái);
③這是一個(gè)四棱柱;
④這是一個(gè)四棱柱和三棱柱的組合體;
⑤這是一個(gè)被截去一個(gè)三棱柱的四棱柱.答案:①因?yàn)橛辛鶄€(gè)面,屬于六面體的范圍,②這是一個(gè)很明顯的四棱柱,因?yàn)閭?cè)棱的延長(zhǎng)線(xiàn)不能交與一點(diǎn),所以不正確.③如果把幾何體放倒就會(huì)發(fā)現(xiàn)是一個(gè)四棱柱,④可以有四棱柱和三棱柱組成,⑤和④的想法一樣,割補(bǔ)方法就可以得到.故為:①③④⑤.45.如圖,在△ABC中,BC邊上的高所在的直線(xiàn)方程為x-2y+1=0,∠A的平分線(xiàn)所在的直線(xiàn)方程為y=0,若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).答案:點(diǎn)A為y=0與x-2y+1=0兩直線(xiàn)的交點(diǎn),∴點(diǎn)A的坐標(biāo)為(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分線(xiàn)所在直線(xiàn)的方程是y=0,∴kAC=-1.∴直線(xiàn)AC的方程是y=-x-1.而B(niǎo)C與x-2y+1=0垂直,∴kBC=-2.∴直線(xiàn)BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴點(diǎn)A和點(diǎn)C的坐標(biāo)分別為(-1,0)和(5,-6)46.閱讀下面的程序框圖,該程序運(yùn)行后輸出的結(jié)果為_(kāi)_____.答案:循環(huán)前,S=0,A=1,第1次判斷后循環(huán),S=1,A=2,第2次判斷并循環(huán),S=3,A=3,第3次判斷并循環(huán),S=6,A=4,第4次判斷并循環(huán),S=10,A=5,第5次判斷并循環(huán),S=15,A=6,第6次判斷并退出循環(huán),輸出S=15.故為:15.47.函數(shù)y=ax2+1的圖象與直線(xiàn)y=x相切,則a=______.答案:設(shè)切點(diǎn)為(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵點(diǎn)(x0,y0)在曲線(xiàn)與直線(xiàn)上,即y0=ax20+1y0=x0,②由①②得a=14.故為14.48.若矩陣M=1101,則直線(xiàn)x+y+2=0在M對(duì)應(yīng)的變換作用下所得到的直線(xiàn)方程為_(kāi)_____.答案:設(shè)直線(xiàn)x+y+2=0上任意一點(diǎn)(x0,y0),(x,y)是所得的直線(xiàn)上一點(diǎn),[1
1][x]=[x0][0
1][y]=[y0]∴x+y=x0y=y0,∴代入直線(xiàn)x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故為:x+2y+2=0.49.設(shè)a、b∈R+且a+b=3,求證1+a+1+b≤10.答案:證明:證法一:(綜合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10證法二:(分析法)∵a、b∈R+且a+b=3,∴欲證1+a+1+b≤10只需證(1+a+1+b)2≤10即證2+a+b+2(1+a)?(1+b)≤10即證2(1+a)?(1+b)≤5只需證4(1+a)?(1+b)≤25只需證4(1+a)?(1+b)≤25即證4(1+a+b+ab)≤25只需證4ab≤9即證ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立50.否定結(jié)論“至少有一個(gè)解”的說(shuō)法中,正確的是()
A.至多有一個(gè)解
B.至少有兩個(gè)解
C.恰有一個(gè)解
D.沒(méi)有解答案:D第3卷一.綜合題(共50題)1.一個(gè)多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長(zhǎng)為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A2.某校高三有1000個(gè)學(xué)生,高二有1200個(gè)學(xué)生,高一有1500個(gè)學(xué)生.現(xiàn)按年級(jí)分層抽樣,調(diào)查學(xué)生的視力情況,若高一抽取了75人,則全校共抽取了
______人.答案:∵高三有1000個(gè)學(xué)生,高二有1200個(gè)學(xué)生,高一有1500個(gè)學(xué)生.∴本校共有學(xué)生1000+1200+1500=3700,∵按年級(jí)分層抽,高一抽取了75人,∴每個(gè)個(gè)體被抽到的概率是751500=120,∴全校要抽取120×3700=185,故為:185.3.中心在原點(diǎn),一個(gè)焦點(diǎn)坐標(biāo)為(0,5),短軸長(zhǎng)為4的橢圓方程為_(kāi)_____.答案:依題意,此橢圓方程為標(biāo)準(zhǔn)方程,且焦點(diǎn)在y軸上,設(shè)為y2a2+x2b2=1∵橢圓的焦點(diǎn)坐標(biāo)為(0,5),短軸長(zhǎng)為4,∴c=5,b=2∵a2=b2+c2,∴橢圓的長(zhǎng)半軸長(zhǎng)為a=4+25=29∴此橢圓的標(biāo)準(zhǔn)方程為y229+x24=1故為y229+x24=14.某商人將彩電先按原價(jià)提高40%,然后“八折優(yōu)惠”,結(jié)果是每臺(tái)彩電比原價(jià)多賺144元,那么每臺(tái)彩電原價(jià)是______元.答案:設(shè)每臺(tái)彩電原價(jià)是x元,由題意可得(1+40%)x?0.8-x=144,解得x=1200,故為1200.5.已知直線(xiàn)方程l1:2x-4y+7=0,l2:x-2y+5=0,則l1與l2的關(guān)系()
A.平行
B.重合
C.相交
D.以上答案都不對(duì)答案:A6.當(dāng)a>0時(shí),不等式組的解集為(
)。答案:當(dāng)a>時(shí)為;當(dāng)a=時(shí)為{};當(dāng)0<a<時(shí)為[a,1-a]7.從5名男學(xué)生、3名女學(xué)生中選3人參加某項(xiàng)知識(shí)對(duì)抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個(gè)分類(lèi)計(jì)數(shù)問(wèn)題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當(dāng)包括兩女一男時(shí),有C32C51=15種結(jié)果,當(dāng)包括兩男一女時(shí),有C31C52=30種結(jié)果,∴根據(jù)分類(lèi)加法得到共有15+30=45故選A.8.設(shè)x,y∈R,且滿(mǎn)足x2+y2=1,求x+y的最大值為()
A.
B.
C.2
D.1答案:A9.設(shè)函數(shù)f(x)=(1-2a)x+b是R上的增函數(shù),則()A.a(chǎn)>12B.a(chǎn)<12C.a(chǎn)≥12D.a(chǎn)≤12答案:∵函數(shù)f(x)=(1-2a)x+b是R上的增函數(shù),∴1-2a>0,∴a<12.故選B.10.若有以下說(shuō)法:
①相等向量的模相等;
②若a和b都是單位向量,則a=b;
③對(duì)于任意的a和b,|a+b|≤|a|+|b|恒成立;
④若a∥b,c∥b,則a∥c.
其中正確的說(shuō)法序號(hào)是()A.①③B.①④C.②③D.③④答案:根據(jù)定義,大小相等且方向相同的兩個(gè)向量相等.因此相等向量的模相等,故①正確;因?yàn)閱挝幌蛄康哪5扔?,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據(jù)向量加法的三角形法則,可得對(duì)于任意的a和b,都有|a+b|≤|a|+|b|成立,當(dāng)且僅當(dāng)a和b方向相同時(shí)等號(hào)成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A11.已知a,b,c是三條直線(xiàn),且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ12.設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求實(shí)數(shù)a的取值范圍。答案:解A={0,-4}∵A∩B=B
∴BA由x2+2(a+1)x+a2-1=0
得△=4(a+1)2-4(a2-1)=8(a+1)(1)當(dāng)a<-1時(shí)△<0
B=φA(2)當(dāng)a=-1時(shí)△=0
B={0}A(3)當(dāng)a>-1時(shí)△>0
要使BA,則A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的兩根∴解之得a=1綜上可得a≤-1或a=113.某校在檢查學(xué)生作業(yè)時(shí),抽出每班學(xué)號(hào)尾數(shù)為4的學(xué)生作業(yè)進(jìn)行檢查,這里主要運(yùn)用的抽樣方法是()
A.分層抽樣
B.抽簽抽樣
C.隨機(jī)抽樣
D.系統(tǒng)抽樣答案:D14.如圖所示的方格紙中有定點(diǎn)O,P,Q,E,F(xiàn),G,H,則=()
A.
B.
C.
D.
答案:C15.直線(xiàn)2x-y=7與直線(xiàn)3x+2y-7=0的交點(diǎn)是()
A.(3,-1)
B.(-1,3)
C.(-3,-1)
D.(3,1)答案:A16.已知橢圓的焦點(diǎn)為F1,F(xiàn)2,A在橢圓上,B在F1A的延長(zhǎng)線(xiàn)上,且|AB|=|AF2|,則B點(diǎn)的軌跡形狀為()
A.橢圓
B.雙曲線(xiàn)
C.圓
D.兩條平行線(xiàn)答案:C17.已知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)過(guò)點(diǎn)(3,8),求f(4)=______.答案:設(shè)指數(shù)函數(shù)為y=ax(a>0且a≠1)將(3,8)代入得8=a3解得a=2,所以y=2x,則f(4)=42=16故為16.18.若=(2,-3,1),=(2,0,3),=(0,2,2),則?(+)=()
A.4
B.15
C.7
D.3答案:D19.求過(guò)點(diǎn)A(2,3)且被兩直線(xiàn)3x+4y-7=0,3x+4y+8=0截得線(xiàn)段為32的直線(xiàn)方程.答案:設(shè)所求直線(xiàn)l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線(xiàn)的夾角為45°,∴|
k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線(xiàn)的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.20.設(shè)集合A={0,1,3},B={1,3,4},則A∩B=______.答案:∵集合A={0,1,3},B={1,3,4},A∩B={1,3}.故為:{1,3}.21.如果橢圓x225+y216=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離為()A.5B.4C.8D.6答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故選B.22.過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)作一條直線(xiàn)與拋物線(xiàn)相交于A、B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線(xiàn)()
A.有且僅有一條
B.有且僅有兩條
C.有無(wú)窮多條
D.不存在答案:B23.某醫(yī)院計(jì)劃從10名醫(yī)生(7男3女)中選5人組成醫(yī)療小組下鄉(xiāng)巡診.
(I)設(shè)所選5人中女醫(yī)生的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;
(II)現(xiàn)從10名醫(yī)生中的張強(qiáng)、李軍、王剛、趙永4名男醫(yī)生,李莉、孫萍2名女醫(yī)生共6人中選一正二副3名組長(zhǎng),在張強(qiáng)被選中的情況下,求李莉也被選中的概率.答案:(I)ξ的所有可能的取值為0,1,2,3,….….(2分)則P(ξ=0)=C57C510=112P(ξ=1)=C47C13C510=512P(ξ=2)=C27C23C510=512;P(ξ=3)=C27C33C510=112…(6分)ξ.的分布列為ξ0123P112512512112Eξ=1×112+2×512+3×112=32…(9分)(II)記“張強(qiáng)被選中”為事件A,“李莉也被選中”為事件B,則P(A)=C25C36=12,P(BA)=C14C36=15,所以P(B|A)=P(BA)P(A)=25…(12分)24.已知焦點(diǎn)在x軸上的雙曲線(xiàn)漸近線(xiàn)方程是y=±4x,則該雙曲線(xiàn)的離心率是()
A.
B.
C.
D.答案:A25.方程組的解集是[
]A.
B.{x,y|x=3且y=-7}
C.{3,-7}
D.{(x,y)|x=3且y=-7}答案:D26.函數(shù)y=5x,x∈N+的值域是()A.RB.N+C.ND.{5,52,53,54,…}答案:解析:因?yàn)楹瘮?shù)y=5x,x∈N+的定義域?yàn)檎麛?shù)集N+,所以當(dāng)自變量x取1,2,3,4,…時(shí),其相應(yīng)的函數(shù)值y依次是5,52,53,54,….因此,函數(shù)y=5x,x∈N+的值域是{5,52,53,54,…}.故選D.27.將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“2次正面朝上,2次反面朝上”和“3次正面朝上,1次反面朝上”的概率各是多少?答案:將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“2次正面朝上,2次反面朝上”的概率p1=C24(12)2(12)2=38.將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“3次正面朝上,1次反面朝上”的概率p2=C34(12)3?12=14.28.函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大a2,則a的值為()A.32B.2C.12或32D.12答案:當(dāng)a>1時(shí),函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是增函數(shù),由題意可得a2-a=a2,∴a=32.當(dāng)1>a>0時(shí),函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是減函數(shù),由題意可得a-a2=a2,解得
a=12.綜上,a的值為12或32故選C.29.如圖1,一個(gè)“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個(gè)幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線(xiàn)長(zhǎng)為2,則半圓錐的高為3故V=13×12×π×3=36π故選B30.高二年級(jí)某班有男生36人,女生28人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)是()A.36B.28C.64D.1008答案:高二年級(jí)某班有男生36人,女生28人,即共有64人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)64,故選C.31.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個(gè)路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數(shù)字作答).答案:由題意,先分組,再到4個(gè)路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.32.下列各組向量中,可以作為基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2個(gè)向量的坐標(biāo)對(duì)應(yīng)成比例,0-2=01,所以,這2個(gè)向量是共線(xiàn)向量,故不能作為基底.B、中的2個(gè)向量的坐標(biāo)對(duì)應(yīng)成比例,46=69,所以,這2個(gè)向量是共線(xiàn)向量,故不能作為基底.C中的2個(gè)向量的坐標(biāo)對(duì)應(yīng)不成比例,2-6≠-54,所以,這2個(gè)向量不是共線(xiàn)向量,故可以作為基底.D、中的2個(gè)向量的坐標(biāo)對(duì)應(yīng)成比例,212=-3-34,這2個(gè)向量是共線(xiàn)向量,故不能作為基底.故選C.33.直線(xiàn)L1:x-y=0與直線(xiàn)L2:x+y-10=0的交點(diǎn)坐標(biāo)是()
A.(5,5)
B.(5,-5)
C.(-1,1)
D.(1,1)答案:A34.兩平行直線(xiàn)x+3y-5=0與x+3y-10=0的距離是______.答案:根據(jù)題意,得兩平行直線(xiàn)x+3y-5=0與x+3y-10=0的距離為d=|-5+10|12+32=102故為:10235.下面對(duì)算法描述正確的一項(xiàng)是:()A.算法只能用自然語(yǔ)言來(lái)描述B.算法只能用圖形方式來(lái)表示C.同一問(wèn)題可以有不同的算法D.同一問(wèn)題的算法不同,結(jié)果必然不同答案:算法的特點(diǎn):有窮性,確定性,順序性與正確性,不唯一性,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年房地產(chǎn)開(kāi)發(fā)土方合同
- 2024年文化藝術(shù)節(jié)活動(dòng)組織與承辦合同
- 2024年修訂版技術(shù)轉(zhuǎn)讓合同
- 2024年文化旅游綜合體開(kāi)發(fā)合作協(xié)議
- DB4117T 233-2018 夏芝麻高產(chǎn)高效栽培技術(shù)規(guī)程
- DB4117T 169.13-2023 動(dòng)物疫病流行病學(xué)調(diào)查技術(shù)規(guī)范 第13部分:雞傳染性支氣管炎
- 2024年工業(yè)用水管道安裝協(xié)議
- 2024年度××建筑工程項(xiàng)目施工合同
- 質(zhì)檢個(gè)人年度總結(jié)(7篇)
- 2024年技術(shù)轉(zhuǎn)讓合同:研發(fā)機(jī)構(gòu)將自主研發(fā)的技術(shù)轉(zhuǎn)讓給企業(yè)
- 附表一pc吊裝令
- 水稻栽培技術(shù)指導(dǎo)方案
- 地下室回頂方案(地下室頂板加固)
- 物資管理系統(tǒng)使用手冊(cè)
- 最新八年級(jí)外研版英語(yǔ)下冊(cè)課文與翻譯(共20頁(yè))
- 干部履歷表請(qǐng)用開(kāi)紙雙面打印
- 小學(xué)語(yǔ)文作文生活化教學(xué)實(shí)踐研究
- 反射反應(yīng)及反射發(fā)育的評(píng)定
- M7.5漿砌石砌筑
- 制漿洗漂詳細(xì)過(guò)程工藝
- 吉林省義務(wù)教育階段新課程計(jì)劃表(新)
評(píng)論
0/150
提交評(píng)論