版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年成都紡織高等專(zhuān)科學(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.已知A(1,0).B(7,8),若點(diǎn)A和點(diǎn)B到直線(xiàn)l的距離都為5,且滿(mǎn)足上述條件的直線(xiàn)l共有n條,則n的值是()A.1B.2C.3D.4答案:與直線(xiàn)AB平行且到直線(xiàn)l的距離都為5的直線(xiàn)共有兩條,分別位于直線(xiàn)AB的兩側(cè),由線(xiàn)段AB的長(zhǎng)度等于10,還有一條直線(xiàn)是線(xiàn)段AB的中垂線(xiàn),故滿(mǎn)足上述條件的直線(xiàn)l共有3條,故選C.2.曲線(xiàn)與坐標(biāo)軸的交點(diǎn)是(
)A.B.C.D.答案:B解析:當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為;當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為3.無(wú)論m,n取何實(shí)數(shù)值,直線(xiàn)(3m-n)x+(m+2n)y-n=0都過(guò)定點(diǎn)P,則P點(diǎn)坐標(biāo)為
A.(-1,3)
B.
C.
D.答案:D4.一口袋內(nèi)裝有5個(gè)黃球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次取出一個(gè),取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次時(shí)停止,停止時(shí)取球的次數(shù)ξ是一個(gè)隨機(jī)變量,則P(ξ=12)=______.(填算式)答案:若ξ=12,則取12次停止,第12次取出的是紅球,前11次中有9次是紅球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2
故為C911(38)10(58)25.用反證法證明命題“如果a>b>0,那么a2>b2”時(shí),假設(shè)的內(nèi)容應(yīng)是()
A.a(chǎn)2=b2
B.a(chǎn)2<b2
C.a(chǎn)2≤b2
D.a(chǎn)2<b2,且a2=b2答案:C6.把10個(gè)相同的小正方體,按如圖所示的位置堆放,它的外表含有若干小正方形。如果將圖中標(biāo)有A的一個(gè)小正方體搬去,這時(shí)外表含有的小正方形個(gè)數(shù)與搬去前相比(
)答案:A7.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.8.點(diǎn)M的直角坐標(biāo)是(,-1),在ρ≥0,0≤θ<2π的條件下,它的極坐標(biāo)是()
A.(2,)
B.(2,)
C.(,)
D.(,)答案:A9.設(shè)a,b是不共線(xiàn)的兩個(gè)向量,已知=2+m,=+,=-2.若A,B,D三點(diǎn)共線(xiàn),則m的值為()
A.1
B.2
C.-2
D.-1答案:D10.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(xiàn)(
)。答案:圓,雙曲線(xiàn)11.如圖,AB,CD是半徑為a的圓O的兩條弦,他們相交于A(yíng)B的中點(diǎn)P,PD=2a3,∠OAP=30°,則CP=______.答案:因?yàn)辄c(diǎn)P是AB的中點(diǎn),由垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.12.下列物理量中,不能稱(chēng)為向量的是()A.質(zhì)量B.速度C.位移D.力答案:既有大小,又有方向的量叫做向量;質(zhì)量只有大小沒(méi)有方向,因此質(zhì)量不是向量.而速度、位移、力既有大小,又有方向,因此它們都是向量.故選A.13.如圖所示,O點(diǎn)在△ABC內(nèi)部,D、E分別是AC,BC邊的中點(diǎn),且有OA+2OB+3OC=O,則△AEC的面積與△AOC的面積的比為()
A.2
B.
C.3
D.
答案:B14.已知兩個(gè)非空集合A、B滿(mǎn)足A∪B={1,2,3},則符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是()A.6B.8C.25D.27答案:按集合A分類(lèi)討論若A={1,2,3},則B是A的子集即可滿(mǎn)足題意,故B有7種情況,即有序集合對(duì)(A,B)個(gè)數(shù)為7若A={1,2,}或{1,3}或{2,3}時(shí),集合B中至少有一個(gè)元素,故每種情況下,B都有4種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為4×3=12若A={1}或{3}或{2}時(shí)集合中至少有二個(gè)元素,故每種情況下,B都有2種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為2×3=6綜上,符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是7+12+6=25故選C15.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為a0a1a2,ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕運(yùn)算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過(guò)程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息一定有誤的是()A.11010B.01100C.10111D.00011答案:A選項(xiàng)原信息為101,則h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為11010,A選項(xiàng)正確;B選項(xiàng)原信息為110,則h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以傳輸信息為01100,B選項(xiàng)正確;C選項(xiàng)原信息為011,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為10110,C選項(xiàng)錯(cuò)誤;D選項(xiàng)原信息為001,則h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以傳輸信息為00011,D選項(xiàng)正確;故選C.16.在平面直角坐標(biāo)系中,經(jīng)伸縮變換后曲線(xiàn)方程變換為橢圓方程,此伸縮變換公式是(
)A.B.C.D.答案:B解析:解:因?yàn)樵谄矫嬷苯亲鴺?biāo)系中,經(jīng)伸縮變換后曲線(xiàn)方程變換為橢圓方程,設(shè)變換為,將其代入方程中,得到x,y的關(guān)系式,對(duì)應(yīng)相等可知,選B17.若直線(xiàn)的參數(shù)方程為(t為參數(shù)),則該直線(xiàn)的斜率為()
A.
B.2
C.1
D.-1答案:D18.某人射擊一次擊中的概率為0.6,經(jīng)過(guò)3次射擊,此人至少有兩次擊中目標(biāo)的概率為()
A.
B.
C.
D.答案:A19.下列各式中錯(cuò)誤的是()
A.||2=2
B.||=||
C.0?=0
D.m(n)=mn(m,n∈R)答案:C20.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,則實(shí)數(shù)x+y的值______.答案:因?yàn)榧螦={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故為:34.21.以原點(diǎn)為圓心,且截直線(xiàn)3x+4y+15=0所得弦長(zhǎng)為8的圓的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦長(zhǎng)為8,所以半徑是5所求圓的方程是:x2+y2=25故選D.22.在統(tǒng)計(jì)中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的()
A.平均狀態(tài)
B.頻率分布
C.波動(dòng)大小
D.最大值和最小值答案:C23.直線(xiàn)3x+4y-12=0和3x+4y+3=0間的距離是
______.答案:由兩平行線(xiàn)間的距離公式得直線(xiàn)3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.24.盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)從盒中隨機(jī)地抽取4只,那么310為()A.恰有1只壞的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只壞的概率答案:∵盒中有10只螺絲釘∴盒中隨機(jī)地抽取4只的總數(shù)為:C104=210,∵其中有3只是壞的,∴所可能出現(xiàn)的事件有:恰有1只壞的,恰有2只壞的,恰有3只壞的,4只全是好的,至多2只壞的取法數(shù)分別為:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只壞的概率分別為:105210=12,,恰有2只好的概率為63210=310,,4只全是好的概率為35210=16,至多2只壞的概率為203210=2930;故A,C,D不正確,B正確故選B25.如圖,A地到火車(chē)站共有兩條路徑L1和L2,據(jù)統(tǒng)計(jì),通過(guò)兩條路徑所用的時(shí)間互不影響,所用時(shí)間落在各時(shí)間段內(nèi)的頻率如下表:所用時(shí)間(分鐘)10~2020~3030~4040~5050~60L1的頻率0.10.20.30.20.2L2的頻率00.10.40.40.1現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時(shí)間用于趕往火車(chē)站.
(Ⅰ)為了盡最大可能在各自允許的時(shí)間內(nèi)趕到火車(chē)站,甲和乙應(yīng)如何選擇各自的路徑?
(Ⅱ)用X表示甲、乙兩人中在允許的時(shí)間內(nèi)能趕到火車(chē)站的人數(shù),針對(duì)(Ⅰ)的選擇方案,求X的分布列和數(shù)學(xué)期望.答案:(Ⅰ)Ai表示事件“甲選擇路徑Li時(shí),40分鐘內(nèi)趕到火車(chē)站”,Bi表示事件“乙選擇路徑Li時(shí),50分鐘內(nèi)趕到火車(chē)站”,i=1,2.用頻率估計(jì)相應(yīng)的概率可得∵P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2)∴甲應(yīng)選擇LiP(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙應(yīng)選擇L2.(Ⅱ)A,B分別表示針對(duì)(Ⅰ)的選擇方案,甲、乙在各自允許的時(shí)間內(nèi)趕到火車(chē)站,由(Ⅰ)知P(A)=0.6,P(B)=0.9,又由題意知,A,B獨(dú)立,P(X=0)=P(.A.B)=P(.A)P(.B)=0.4×0.1=0.04P(x=1)=P(.AB+A.B)=P(.A)P(B)+P(A)P(.B)=0.4×0.9+0.6×0.1=0.42P(X=2)=P(AB)=P(A)(B)=0.6×0.9=0.54X的分布列EX=0×0.04+1×0.42+2×0.54=1.5.26.是平面直角坐標(biāo)系(坐標(biāo)原點(diǎn)為O)內(nèi)分別與x軸、y軸正方向相同的兩個(gè)單位向量,且則△OAB的面積等于()
A.15
B.10
C.7.5
D.5答案:D27.拋物線(xiàn)y2=8x的焦點(diǎn)坐標(biāo)是______答案:拋物線(xiàn)y2=8x,所以p=4,所以焦點(diǎn)(2,0),故為(2,0)..28.如圖,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過(guò)C作圓的切線(xiàn)l,過(guò)A作l的垂線(xiàn)AD,AD分別與直線(xiàn)l、圓交于點(diǎn)D、E.求∠DAC的度數(shù)與線(xiàn)段AE的長(zhǎng).答案:如圖,連接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因?yàn)椤螦CB=90°,得∠CAB=30°,那么∠EAB=60°,從而∠ABE=30°,于是AE=12AB=3.(10分)29.(1)把參數(shù)方程(t為參數(shù))x=secty=2tgt化為直角坐標(biāo)方程;
(2)當(dāng)0≤t<π2及π≤t<3π2時(shí),各得到曲線(xiàn)的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲線(xiàn)的直角坐標(biāo)普通方程為x2-y24=1.(2)當(dāng)0≤t≤π2時(shí),x≥1,y≥0,得到的是曲線(xiàn)在第一象限的部分(包括(1,0)點(diǎn));當(dāng)0≤t≤3π2時(shí),x≤-1,y≥0,得到的是曲線(xiàn)在第二象限的部分,(包括(-1,0)點(diǎn)).30.已知函數(shù)f(x)=x21+x2.
(1)求f(2)與f(12),f(3)與f(13);
(2)由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x)與f(1x)有什么關(guān)系?并證明你的結(jié)論;
(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分證:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分31.已知鐳經(jīng)過(guò)100年,質(zhì)量便比原來(lái)減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過(guò)x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由題意可得,對(duì)于函數(shù),當(dāng)x=100時(shí),y=95.76%=0.9576,結(jié)合選項(xiàng)檢驗(yàn)選項(xiàng)A:x=100,y=0.0424,故排除A選項(xiàng)B:x=100,y=0.9576,故B正確故選:B解析:已知鐳經(jīng)過(guò)100年,質(zhì)量便比原來(lái)減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過(guò)x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x32.如圖,彎曲的河流是近似的拋物線(xiàn)C,公路l恰好是C的準(zhǔn)線(xiàn),C上的點(diǎn)O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點(diǎn)O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線(xiàn)C的方程;
(2)為了降低修路成本,必須使修建的兩條公路總長(zhǎng)最小,請(qǐng)給出修建方案(作出圖形,在圖中標(biāo)出此時(shí)碼頭Q的位置),并求公路總長(zhǎng)的最小值(精確到0.001千米)答案:(1)過(guò)點(diǎn)O作準(zhǔn)線(xiàn)的垂線(xiàn),垂足為A,以O(shè)A所在直線(xiàn)為x軸,OA的垂直平分線(xiàn)為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線(xiàn)C:y2=1.6x…(6分)(2)設(shè)拋物線(xiàn)C的焦點(diǎn)為F由題意得,P(5,53)…(8分)根據(jù)拋物線(xiàn)的定義知,公路總長(zhǎng)=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線(xiàn)段PF與拋物線(xiàn)C的交點(diǎn)時(shí),公路總長(zhǎng)最小,最小值為9.806千米…(16分)33.已知向量a與向量b的夾角為120°,若向量c=a+b,且a⊥c,則|a||b|的值為_(kāi)_____.答案:由題意可知,∵a⊥c,∴a?c=a?(a+b)=a2+a?b=0即|a|2+|a||b|cos120°=0,故|a|2=12|a||b|,故|a||b|=12.故為:1234.若直線(xiàn)ax+by+1=0與圓x2+y2=1相離,則點(diǎn)P(a,b)的位置是()
A.在圓上
B.在圓外
C.在圓內(nèi)
D.以上都有可能答案:C35.已知三個(gè)數(shù)a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序?yàn)開(kāi)_____.答案:因?yàn)閍=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.36.x=5
y=6
x+y=11
END
上面程序運(yùn)行時(shí)輸出的結(jié)果是()
A.x+y=11
B.11
C.x+y
D.出錯(cuò)信息答案:B37.如圖,半徑為R的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時(shí),球的表面積與該圓柱的側(cè)面積之差是______.
答案:設(shè)圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當(dāng)且僅當(dāng)α=π4時(shí),sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR238.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,試證明a,b,c至少有一個(gè)不小于1.答案:證明:假設(shè)a,b,c均小于1,即a<1,b<1,c<1,則有a+b+c<3而a+b+c=2x2-2x+12+3=2(x-12)2+3≥3,兩者矛盾;故a,b,c至少有一個(gè)不小于1.39.直線(xiàn)過(guò)原點(diǎn)且傾角的正弦值是45,則直線(xiàn)方程為_(kāi)_____.答案:因?yàn)閮A斜角α的范圍是:0≤α<π,又由題意:sinα=45所以:tanα=±43x直線(xiàn)過(guò)原點(diǎn),由直線(xiàn)的點(diǎn)斜式方程得到:y=±43x故為:y=±43x40.命題:“方程X2-2=0的解是X=±2”中使用邏輯聯(lián)系詞的情況是()A.沒(méi)有使用邏輯連接詞B.使用了邏輯連接詞“且”C.使用了邏輯連接詞“或”D.使用了邏輯連接詞“非”答案:命題:“方程X2-2=0的解是X=±2”可以化為:“方程X2-2=0的解是X=2,或X=-2”故命題:“方程X2-2=0的解是X=±2”中使用邏輯聯(lián)系詞為:或故選C41.甲、乙、丙、丁四位同學(xué)各自對(duì)A、B兩個(gè)變量的線(xiàn)性相關(guān)性作試驗(yàn),并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m如表:
則哪位同學(xué)的實(shí)驗(yàn)結(jié)果體現(xiàn)A、B兩個(gè)變量更強(qiáng)的線(xiàn)性相關(guān)性()
A.丙
B.乙
C.甲
D.丁答案:C42.拋物線(xiàn)y=14x2的焦點(diǎn)坐標(biāo)是______.答案:拋物線(xiàn)y=14x2
即x2=4y,∴p=2,p2=1,故焦點(diǎn)坐標(biāo)是(0,1),故為(0,1).43.如果直線(xiàn)l1,l2的斜率分別為二次方程x2-4x+1=0的兩個(gè)根,那么l1與l2的夾角為()
A.
B.
C.
D.答案:A44.已知△ABC,D為AB邊上一點(diǎn),若AD=2DB,CD=13CA+λCB,則λ=
.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(
CB-CA)=13CA+23CB,∴λ=23,故為:23.45.若圖中的直線(xiàn)l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因?yàn)橹本€(xiàn)的斜率是其傾斜角的正切值,當(dāng)傾斜角大于90°小于180°時(shí),斜率為負(fù)值,當(dāng)傾斜角大于0°小于90°時(shí)斜率為正值,且正切函數(shù)在(0°,90°)上為增函數(shù),由圖象三條直線(xiàn)的傾斜角可知,k2<k1<k3.故選C.46.(文)不等式的解集是(
)A.B.C.D.答案:D解析:【思路分析】:原不等式可化為,得,故選D.【命題分析】考查不等式的解法,要求同解變形.47.如圖,AB為⊙O的直徑,弦AC、BD交于點(diǎn)P,若AP=5,PC=3,DP=5,則AB=______.
答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB為直徑,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故為:1048.某校有初中學(xué)生1200人,高中學(xué)生900人,教師120人,現(xiàn)用分層抽樣方法從所有師生中抽取一個(gè)容量為n的樣本進(jìn)行調(diào)查,如果從高中學(xué)生中抽取60人,那么n=______.答案:每個(gè)個(gè)體被抽到的概率等于60900=115.故n=(1200+900+120)×115=1220×115=148,故為:148.49.已知||=3,A、B分別在x軸和y軸上運(yùn)動(dòng),O為原點(diǎn),則動(dòng)點(diǎn)P的軌跡方程是()
A.
B.
C.
D.答案:B50.質(zhì)地均勻的正四面體玩具的4個(gè)面上分別刻著數(shù)字1,2,3,4,將4個(gè)這樣的玩具同時(shí)拋擲于桌面上.
(1)求與桌面接觸的4個(gè)面上的4個(gè)數(shù)的乘積不能被4整除的概率;
(2)設(shè)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個(gè)數(shù)均為奇數(shù),概率為P1=(12)4=116②4個(gè)數(shù)中有3個(gè)奇數(shù),另一個(gè)為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項(xiàng)分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項(xiàng)分布B(4,12),∴Eξ=4×12=2.第2卷一.綜合題(共50題)1.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實(shí)數(shù)K的取值范圍為_(kāi)_____.答案:因?yàn)楹瘮?shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點(diǎn)到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).2.關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩實(shí)根,且一個(gè)大于4,一個(gè)小于4,求m的取值范圍。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依題意得或,即或,解得。3.定義在R上的二次函數(shù)y=f(x)在(0,2)上單調(diào)遞減,其圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng),則下列式子可以成立的是()
A.
B.
C.
D.答案:D4.已知三角形ABC的一個(gè)頂點(diǎn)A(2,3),AB邊上的高所在的直線(xiàn)方程為x-2y+3=0,角B的平分線(xiàn)所在的直線(xiàn)方程為x+y-4=0,求此三角形三邊所在的直線(xiàn)方程.答案:由題意可得AB邊的斜率為-2,由點(diǎn)斜式求得AB邊所在的直線(xiàn)方程為y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0
求得x=3y=1,故點(diǎn)B的坐標(biāo)為(3,1).設(shè)點(diǎn)A關(guān)于角B的平分線(xiàn)所在的直線(xiàn)方程為x+y-4=0的對(duì)稱(chēng)點(diǎn)為M(a,b),則M在BC邊所在的直線(xiàn)上.則由b-3a-2=-1a+22+b+32-4=0
求得a=1b=2,故點(diǎn)M(1,2),由兩點(diǎn)式求得BC的方程為y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得點(diǎn)C的坐標(biāo)為(2,52),由此可得得AC的方程為x=2.5.某校為了研究學(xué)生的性別和對(duì)待某一活動(dòng)的態(tài)度(支持和不支持兩種態(tài)度)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=7.069,則所得到的統(tǒng)計(jì)學(xué)結(jié)論是:有()的把握認(rèn)為“學(xué)生性別與支持該活動(dòng)有關(guān)系”.
P(k2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
A.0.1%
B.1%
C.99%
D.99.9%答案:C6.如圖程序輸出的結(jié)果是()
a=3,
b=4,
a=b,
b=a,
PRINTa,b
END
A.3,4
B.4,4
C.3,3
D.4,3答案:B7.小王通過(guò)英語(yǔ)聽(tīng)力測(cè)試的概率是,他連續(xù)測(cè)試3次,那么其中恰有1次獲得通過(guò)的概率是()
A.
B.
C.
D.答案:A8.把一顆骰子擲兩次,觀(guān)察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則點(diǎn)(a,b)在直線(xiàn)x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿(mǎn)足條件的事件是點(diǎn)(a,b)在直線(xiàn)x+y=5左下方即a+b<5,可以列舉出所有滿(mǎn)足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點(diǎn)在直線(xiàn)的下方的概率是636=16故選A.9.如圖:已知圓上的弧
AC=
BD,過(guò)C點(diǎn)的圓的切線(xiàn)與BA的延長(zhǎng)線(xiàn)交于E點(diǎn),證明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因?yàn)锳C=BD,所以∠BCD=∠ABC.又因?yàn)镋C與圓相切于點(diǎn)C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因?yàn)椤螮CB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)10.為了調(diào)查上海市中學(xué)生的身體狀況,在甲、乙兩所學(xué)校中各隨意抽取了
100名學(xué)生,測(cè)試引體向上,結(jié)果如下表所示:
(1)甲乙兩校被測(cè)學(xué)生引體向上的平均數(shù)分別是:甲校______個(gè),乙校______個(gè).
(2)若5個(gè)以下(不含5個(gè))為不合格,則甲乙兩校的合格率分別為甲校______
乙校______
(3)若15個(gè)以上(含15個(gè))為優(yōu)秀,則甲乙兩校中優(yōu)秀率______校較高(填“甲”或“乙”)
(4)用你所學(xué)的統(tǒng)計(jì)知識(shí)對(duì)兩所學(xué)校學(xué)生的身體狀況作一個(gè)比較.你的結(jié)論是______.答案:(1)甲校被測(cè)學(xué)生引體向上的平均數(shù)是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被測(cè)學(xué)生引體向上的平均數(shù)是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中優(yōu)秀率=9+6100×100%=15%,乙校中優(yōu)秀率=8+6100×100%=14%,所以甲校較高;(4)雖然合格率相等,但是乙校平均數(shù)更高一些,所以乙校更好一些.故為:8.3,9.19,94%,94%,乙校更好一些11.用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么b、c中至少有一個(gè)偶數(shù)時(shí),下列假設(shè)正確的是()
A.假設(shè)a、b、c都是偶數(shù)
B.假設(shè)a、b、c都不是偶數(shù)
C.假設(shè)a、b、c至多有一個(gè)偶數(shù)
D.假設(shè)a、b、c至多有兩個(gè)偶數(shù)答案:B12.如圖,平面內(nèi)有三個(gè)向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μO(píng)B(λ,μ∈R),則λ+μ的值為_(kāi)_____.答案:過(guò)C作OA與OB的平行線(xiàn)與它們的延長(zhǎng)線(xiàn)相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長(zhǎng)為2和4,λ+μ=2+4=6.故為6.13.將命題“正數(shù)a的平方大于零”改寫(xiě)成“若p,則q”的形式,并寫(xiě)出它的逆命題、否命題與逆否命題.答案:原命題可以寫(xiě)成:若a是正數(shù),則a的平方大于零;逆命題:若a的平方大于零,則a是正數(shù);否命題:若a不是正數(shù),則a的平方不大于零;逆否命題:若a的平方不大于零,則a不是正數(shù).14.若函數(shù)f(x)=x+1的值域?yàn)椋?,3],則函數(shù)f(x)的定義域?yàn)開(kāi)_____.答案:∵f(x)=x+1的值域?yàn)椋?,3],∴2<x+1≤3∴1<x≤2故為:(1,2]15.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()
A.0<a<1
B.a(chǎn)=1
C.a(chǎn)>1
D.以上均不對(duì)答案:C16.下列函數(shù)中,與函數(shù)y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函數(shù)y=x的定義域?yàn)镽,選項(xiàng)中A,D定義域不是R,是A、D不正確.選項(xiàng)C的對(duì)應(yīng)法則不同,C不正確.故選B.17.已知向量i=(1,0),j=(0,1).若向量i+λj與λi+j垂直,則實(shí)數(shù)λ=______.答案:由題意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj與λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故為:018.在△ABC中,AB=2,AC=1,D為BC的中點(diǎn),則AD?BC=______.答案:AD?BC=AB+AC2?(AC-AB)=AC2-AB22=1-42=-32,故為:-32.19.若點(diǎn)(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:320.點(diǎn)M的直角坐標(biāo)是,則點(diǎn)M的極坐標(biāo)為()
A.(2,)
B.(2,-)
C.(2,)
D.(2,2kπ+)(k∈Z)答案:C21.已知平面直角坐標(biāo)系內(nèi)三點(diǎn)O(0,0),A(1,1),B(4,2)
(Ⅰ)求過(guò)O,A,B三點(diǎn)的圓的方程,并指出圓心坐標(biāo)與圓的半徑.
(Ⅱ)求過(guò)點(diǎn)C(-1,0)與條件(Ⅰ)的圓相切的直線(xiàn)方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴線(xiàn)段OA中點(diǎn)坐標(biāo)為(12,12),線(xiàn)段OB的中點(diǎn)坐標(biāo)為(2,1),kOA=1,kOB=12,∴線(xiàn)段OA垂直平分線(xiàn)的方程為y-12=-(x-12),線(xiàn)段OB垂直平分線(xiàn)的方程為y-1=12(x-2),聯(lián)立兩方程解得:x=4y=-3,即圓心(4,-3),半徑r=42+(-3)2=5,則所求圓的方程為x2+y2-8x+6y=0,圓心是(4,-3)、半徑r=5;(Ⅱ)分兩種情況考慮:當(dāng)切線(xiàn)方程斜率不存在時(shí),直線(xiàn)x=-1滿(mǎn)足題意;當(dāng)斜率存在時(shí),設(shè)為k,切線(xiàn)方程為y=k(x+1),即kx-y+k=0,∴圓心到切線(xiàn)的距離d=r,即|5k+3|k2+1=5,解得:k=815,此時(shí)切線(xiàn)方程為y=815(x+1),綜上,所求切線(xiàn)方程為x=-1或y=815(x+1).22.若集合A={1,2,3},則集合A的真子集共有()A.3個(gè)B.5個(gè)C.7個(gè)D.8個(gè)答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個(gè).故選C.23.下列哪組中的兩個(gè)函數(shù)是同一函數(shù)()A.y=(x)2與y=xB.y=(3x)3與y=xC.y=x2與y=(x)2D.y=3x3與y=x2x答案:A、y=x與y=x2的定義域不同,故不是同一函數(shù).B、y=(3x)3=x與y=x的對(duì)應(yīng)關(guān)系相同,定義域?yàn)镽,故是同一函數(shù).C、fy=x2與y=(x)2的定義域不同,故不是同一函數(shù).D、y=3x3與y=x2x
具的定義域不同,故不是同一函數(shù).故選B.24.已知函數(shù)f(x)滿(mǎn)足:f(p+q)=f(p)f(q),f(1)=2,則:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故為:200625.設(shè)F1,F(xiàn)2是雙曲線(xiàn)x29-y216=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線(xiàn)上,且∠F1PF2=90°,求△F1PF2的面積.答案:雙曲線(xiàn)x29-y216=1的a=3,c=5,不妨設(shè)PF1>PF2,則PF1-PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10得PF12+PF22=(PF1-PF2)2+2PF1?PF2=100∴PF1?PF2=32∴S=12PF1?PF2=16△F1PF2的面積16.26.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點(diǎn),且OA⊥OB,OA=2,C為OA的中點(diǎn),連接BC并延長(zhǎng)交圓O于點(diǎn)D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點(diǎn),∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.27.9、從4臺(tái)甲型和5臺(tái)乙型電視機(jī)中任意取出3臺(tái),其中至少要有甲型與乙型電視機(jī)各1臺(tái),則不同的取法共有()
A.140種
B.84種
C.70種
D.35種答案:C28.為了了解1200名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見(jiàn),打算從中抽取一個(gè)容量為30的樣本,考慮采用系統(tǒng)抽樣,則分段的間隔(抽樣距)K為()
A.40
B.30
C.20
D.12答案:A29.已知x與y之間的一組數(shù)據(jù):
x0123y1357則y與x的線(xiàn)性回歸方程為y=bx+a必過(guò)點(diǎn)______.答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4,∴本組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,4),∴y與x的線(xiàn)性回歸方程為y=bx+a必過(guò)點(diǎn)(1.5,4)故為:(1.5,4)30.如圖,在四棱臺(tái)ABCD-A1B1C1D1中,下底ABCD是邊長(zhǎng)為2的正方形,上底A1B1C1D1是邊長(zhǎng)為1的正方形,側(cè)棱DD1⊥平面ABCD,DD1=2.
(Ⅰ)求證:B1B∥平面D1AC;
(Ⅱ)求二面角B1-AD1-C的余弦值.答案:以D為原點(diǎn),以DA、DC、DD1所在直線(xiàn)分別為x軸,z軸建立空間直角坐標(biāo)系D-xyz如圖,則有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).…(3分)(Ⅰ)證明:設(shè)AC∩BD=E,連接D1、E,則有E(1,1,0),D1E=B1B=(1,1,-2),所以B1B∥D1E,∵BB?平面D1AC,D1E?平面D1AC,∴B1B∥平面D1AC;…(6分)(II)D1B1=(1,1,0),D1A=(2,0,-2),設(shè)n=(x,y,z)為平面AB1D1的法向量,n?B1D1=x+y=0,n?D1A=2x-2z=0.于是令x=1,則y=-1,z=1.則n=(1,-1,1)…(8分)同理可以求得平面D1AC的一個(gè)法向量m=(1,1,1),…(10分)cos<m,n>=m?n|m||n|=13.∴二面角B1-AD1-C的余弦值為13.…(12分)31.如圖所示,面積為S的平面凸四邊形的第i條邊的邊長(zhǎng)記為ai(i=1,2,3,4),此四邊形內(nèi)任一點(diǎn)P到第i條邊的距離記為hi(i=1,2,3,4),若a11=a22=a33=a44=k,則4
i=1(ihi)=2Sk.類(lèi)比以上性質(zhì),體積為V的三棱錐的第i個(gè)面的面積記為Si(i=1,2,3,4),此三棱錐內(nèi)任一點(diǎn)Q到第i個(gè)面的距離記為Hi(i=1,2,3,4),若S11=S22=S33=S44=K,則4
i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根據(jù)三棱錐的體積公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故選B.32.如圖,F(xiàn)是定直線(xiàn)l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A(yíng)、B兩點(diǎn),過(guò)A、B分別作l的垂線(xiàn)與圓C過(guò)F的切線(xiàn)相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線(xiàn)的同一條拋物線(xiàn)上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線(xiàn)的方程;
(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:“若過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)與拋物線(xiàn)相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線(xiàn)的準(zhǔn)線(xiàn)l相切”請(qǐng)問(wèn):此命題是正確?試證明你的判斷;
(Ⅲ)請(qǐng)選擇橢圓或雙曲線(xiàn)之一類(lèi)比(Ⅱ)寫(xiě)出相應(yīng)的命題并證明其真假.(只選擇一種曲線(xiàn)解答即可,若兩種都選,則以第一選擇為平分依據(jù))答案:(Ⅰ)過(guò)F作l的垂線(xiàn)交l于K,以KF的中點(diǎn)為原點(diǎn),KF所在直線(xiàn)為x軸建立平面直角坐標(biāo)系如圖1,并設(shè)|KF|=p,則可得該拋物線(xiàn)的方程為
y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設(shè)PQ中點(diǎn)為M,P、Q、M在拋物線(xiàn)準(zhǔn)線(xiàn)l上的射影分別為A、B、D,∵PQ是拋物線(xiàn)過(guò)焦點(diǎn)F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線(xiàn),∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M(jìn)是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類(lèi)比(Ⅱ)所寫(xiě)出的命題為:“過(guò)橢圓一焦點(diǎn)F的直線(xiàn)與橢圓交于P、Q兩點(diǎn),則以PQ為直徑的圓與橢圓相應(yīng)的準(zhǔn)線(xiàn)l相離”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應(yīng)準(zhǔn)線(xiàn)l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線(xiàn),∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準(zhǔn)線(xiàn)l相離.選擇雙曲線(xiàn)類(lèi)比(Ⅱ)所寫(xiě)出的命題為:“過(guò)雙曲線(xiàn)一焦點(diǎn)F的直線(xiàn)與雙曲線(xiàn)交于P、Q兩點(diǎn),則以PQ為直徑的圓與雙曲線(xiàn)相應(yīng)的準(zhǔn)線(xiàn)l相交”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則e>1,P、Q、M在相應(yīng)準(zhǔn)線(xiàn)l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線(xiàn),∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準(zhǔn)線(xiàn)l相交.33.“因?yàn)閷?duì)數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對(duì)數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯(cuò)誤是()
A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò)
D.大前提和小前提都錯(cuò)導(dǎo)致結(jié)論錯(cuò)答案:A34.下圖是由A、B、C、D中的哪個(gè)平面圖旋轉(zhuǎn)而得到的(
)答案:A35.不等式>1–log2x的解是(
)
A.x≥2
B.x>1
C.1xx>2答案:B36.若點(diǎn)P(a,b)在圓C:x2+y2=1的外部,則直線(xiàn)ax+by+1=0與圓C的位置關(guān)系是()
A.相切
B.相離
C.相交
D.相交或相切答案:C37.已知矩陣A=abcd,若矩陣A屬于特征值3的一個(gè)特征向量為α1=11,屬于特征值-1的一個(gè)特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個(gè)特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個(gè)特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.38.已知拋物線(xiàn)C1:x2=2py(p>0)上縱坐標(biāo)為p的點(diǎn)到其焦點(diǎn)的距離為3.
(Ⅰ)求拋物線(xiàn)C1的方程;
(Ⅱ)過(guò)點(diǎn)P(0,-2)的直線(xiàn)交拋物線(xiàn)C1于A(yíng),B兩點(diǎn),設(shè)拋物線(xiàn)C1在點(diǎn)A,B處的切線(xiàn)交于點(diǎn)M,
(?。┣簏c(diǎn)M的軌跡C2的方程;
(ⅱ)若點(diǎn)Q為(?。┲星€(xiàn)C2上的動(dòng)點(diǎn),當(dāng)直線(xiàn)AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時(shí),試判斷kPQkAQ+kPQkBQ是否為常數(shù)?若是,求出這個(gè)常數(shù);若不是,請(qǐng)說(shuō)明理由.答案:(Ⅰ)由題意得p+p2=3,則p=2,…(3分)所以?huà)佄锞€(xiàn)C1的方程為x2=4y.
…(5分)(Ⅱ)(?。┰O(shè)過(guò)點(diǎn)P(0,-2)的直線(xiàn)方程為y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)拋物線(xiàn)C1在點(diǎn)A,B處的切線(xiàn)方程分別為y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以點(diǎn)M的軌跡C2的方程為y=2
(x<-22或x>22).…(10分)(ⅱ)設(shè)Q(m,2)(|m|>22),則kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)?4k+8m8k2-4k?4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ為常數(shù)2.
…(15分)39.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在A(yíng)B上,DE⊥EB.
(Ⅰ)求證:AC是△BDE的外接圓的切線(xiàn);
(Ⅱ)若AD=23,AE=6,求EC的長(zhǎng).答案:證明:(Ⅰ)取BD的中點(diǎn)O,連接OE.∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,∴∠CBE=∠BEO,∴BC∥OE.…(3分)∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線(xiàn).
…(5分)(Ⅱ)設(shè)⊙O的半徑為r,則在△AOE中,OA2=OE2+AE2,即(r+23)2=r2+62,解得r=23,…(7分)∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.∴在Rt△BCE中,可得EC=12BE=12×3r=12×3×23=3.
…(10分)40.在極坐標(biāo)系中,點(diǎn)(2,)到圓ρ=2cosθ的圓心的距離為()
A.2
B.
C.
D.答案:D41.把4名男生和4名女生排成一排,女生要排在一起,不同排法的種數(shù)為()
A.A88
B.A55A44
C.A44A44
D.A85答案:B42.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故選A.43.如圖所示,圖中線(xiàn)條構(gòu)成的所有矩形中(由6個(gè)小的正方形組成),其中為正方形的概率為
______.答案:它的長(zhǎng)有10種取法,由長(zhǎng)與寬的對(duì)稱(chēng)性,得到它的寬也有10種取法;因?yàn)?,長(zhǎng)與寬相互獨(dú)立,所以得到長(zhǎng)X寬的個(gè)數(shù)有:10X10=100個(gè)即總的矩形的個(gè)數(shù)有:100個(gè)長(zhǎng)=寬的個(gè)數(shù)為:(1X1的正方形的個(gè)數(shù))+(2X2的正方形個(gè)數(shù))+(3X3的正方形個(gè)數(shù))+(4X4的正方形個(gè)數(shù))=16+9+4+1=30個(gè)即正方形的個(gè)數(shù)有:30個(gè)所以為正方形的概率是30100=0.3故為0.344.不等式|x+3|-|x-1|≤a2-3a對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A45.已知,求證:答案:證明略解析:∵
∴①
又∵②
③由①②③得
∴,又不等式①、②、③中等號(hào)成立的條件分別為,,故不能同時(shí)成立,從而.46.若曲線(xiàn)C的極坐標(biāo)方程為
ρcos2θ=2sinθ,則曲線(xiàn)C的普通方程為_(kāi)_____.答案:曲線(xiàn)C的極坐標(biāo)方程為ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化為直角坐標(biāo)方程為x2=2y,故為x2=2y47.已知函數(shù)f(x)=ax2+(a+3)x+2在區(qū)間[1,+∞)上為增函數(shù),則實(shí)數(shù)a的取值范圍是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函數(shù)f(x)=ax2+x+1在區(qū)間[1,+∞)上為增函數(shù),∴f′(x)=2ax+a+3≥0在區(qū)間[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故為:a≥0.48.已知直線(xiàn)l:kx-y+1+2k=0.
(1)證明l經(jīng)過(guò)定點(diǎn);
(2)若直線(xiàn)l交x軸負(fù)半軸于A(yíng),交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時(shí)直線(xiàn)l的方程;
(3)若直線(xiàn)不經(jīng)過(guò)第四象限,求k的取值范圍.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直線(xiàn)l經(jīng)過(guò)定點(diǎn)(-2,1).(2)由題意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面積為S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,當(dāng)且僅當(dāng)k=12時(shí)等號(hào)成立,此時(shí)面積取最小值4,k=12,直線(xiàn)的方程是:x-2y+4=0.(3)由直線(xiàn)過(guò)定點(diǎn)(-2,1),可得當(dāng)斜率k>0或k=0時(shí),直線(xiàn)不經(jīng)過(guò)第四象限.故k的取值范圍為[0,+∞).49.設(shè),求證:。答案:證明略解析:證明:因?yàn)?,所以有。又,故有?!?0分于是有得證。
…………20分50.如圖,空間四邊形ABCD中,M、G分別是BC、CD的中點(diǎn),則AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M(jìn)、G分別是BC、CD的中點(diǎn),∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故選C第3卷一.綜合題(共50題)1.三個(gè)數(shù)a=0.52,b=log20.5,c=20.5之間的大小關(guān)系是()A.a(chǎn)<c<bB.b<c<aC.a(chǎn)<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故選D.2.已知空間四邊形ABCD的對(duì)角線(xiàn)為AC、BD,設(shè)G是CD的中點(diǎn),則+(+)等于()
A.
B.
C.
D.
答案:C3.命題“梯形的兩對(duì)角線(xiàn)互相不平分”的命題形式為()A.p或qB.p且qC.非pD.簡(jiǎn)單命題答案:記命題p:梯形的兩對(duì)角線(xiàn)互相平分,
而原命題是“梯形的兩對(duì)角線(xiàn)互相不平分”,是命題p的否定形式
故選C4.已知函數(shù)f(x)=ax2+(a+3)x+2在區(qū)間[1,+∞)上為增函數(shù),則實(shí)數(shù)a的取值范圍是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函數(shù)f(x)=ax2+x+1在區(qū)間[1,+∞)上為增函數(shù),∴f′(x)=2ax+a+3≥0在區(qū)間[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故為:a≥0.5.下列各圖象中,哪一個(gè)不可能是函數(shù)
y=f(x)的圖象()A.
B.
C.
D.
答案:函數(shù)表示每個(gè)輸入值對(duì)應(yīng)唯一輸出值的一種對(duì)應(yīng)關(guān)系.選項(xiàng)D,對(duì)于x=1時(shí)有兩個(gè)輸出值與之對(duì)應(yīng),故不是函數(shù)圖象故選D.6.如圖,在四棱柱的上底面ABCD中,AB=DC,則下列向量相等的是()
A.AD與CB
B.OA與OC
C.AC與DB
D.DO與OB
答案:D7.已知過(guò)點(diǎn)A(-2,m)和B(m,4)的直線(xiàn)與直線(xiàn)2x+y-1=0平行,則m的值為()
A.0
B.-8
C.2
D.10答案:B8.已知球的表面積等于16π,圓臺(tái)上、下底面圓周都在球面上,且下底面過(guò)球心,圓臺(tái)的軸截面的底角為π3,則圓臺(tái)的軸截面的面積是()A.9πB.332C.33D.6答案:設(shè)球的半徑為R,由題意4πR2=16,R=2,圓臺(tái)的軸截面的底角為π3,可得圓臺(tái)母線(xiàn)長(zhǎng)為2,上底面半徑為1,圓臺(tái)的高為3,所以圓臺(tái)的軸截面的面積S=12(2+4)×3=33故選C9.已知隨機(jī)變量X~B(n,0.8),D(X)=1.6,則n的值是()
A.8
B.10
C.12
D.14答案:B10.有一批數(shù)量很大的產(chǎn)品,其中次品率是20%,對(duì)這批產(chǎn)品進(jìn)行抽查,每次抽出一件,如果抽出次品則抽查終止,否則繼續(xù)抽查,直到抽出次品,但抽查次數(shù)最多不超過(guò)9次,那么抽查次數(shù)為9次的概率為(
)
A.0.89
B.0.88×0.2
C.0.88
D.0.28×0.8答案:C11.在平行四邊形ABCD中,等于()
A.
B.
C.
D.答案:C12.如圖所示,CD為Rt△ABC斜邊AB邊上的中線(xiàn),CE⊥CD,CE=103,連接DE交BC于點(diǎn)F,AC=4,BC=3.
求證:(1)△ABC∽△EDC;
(2)DF=EF.答案:證明:(1)∵CD為Rt△ABC斜邊AB邊上的中線(xiàn)∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因?yàn)椤鰽BC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD為Rt△ABC斜邊AB邊上的中線(xiàn)得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因?yàn)椋骸螪CA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.13.已知M(x0,y0)是圓x2+y2=r2(r>0)內(nèi)異于圓心的一點(diǎn),則直線(xiàn)x0x+y0y=r2與此圓有何種位置關(guān)系?答案:圓心O(0,0)到直線(xiàn)x0x+y0y=r2的距離為d=r2x20+y20.∵P(x0,y0)在圓內(nèi),∴x20+y20<r.則有d>r,故直線(xiàn)和圓相離.14.一牧場(chǎng)有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.02.設(shè)發(fā)病的牛的頭數(shù)為ξ,則Dξ=______;.答案:∵由題意知該病的發(fā)病率為0.02,且每次實(shí)驗(yàn)結(jié)果都是相互獨(dú)立的,∴ξ~B(10,0.02),∴由二項(xiàng)分布的方差公式得到Dξ=10×0.02×0.98=0.196.故為:0.19615.如圖,O是正方形ABCD對(duì)角線(xiàn)的交點(diǎn),四邊形OAED,OCFB都是正方形,在圖中所示的向量中:
(1)與AO相等的向量有
______;
(2)寫(xiě)出與AO共線(xiàn)的向量有
______;
(3)寫(xiě)出與AO的模相等的向量有
______;
(4)向量AO與CO是否相等?答
______.答案:(1)與AO相等的向量有BF(2)與AO共線(xiàn)的向量有DE,CO,BF(3)與AO的模相等的向量有DE,
DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO與CO不相等16.下列說(shuō)法不正確的是()A.圓柱側(cè)面展開(kāi)圖是一個(gè)矩形B.圓錐的過(guò)軸的截面是等腰三角形C.直角三角形繞它的一條邊旋轉(zhuǎn)一周形成的曲面圍成的幾何體是圓錐D.圓臺(tái)平行于底面的截面是圓面答案:圓柱的側(cè)面展開(kāi)圖是一個(gè)矩形,A正確,因?yàn)槟妇€(xiàn)長(zhǎng)相等,得到圓錐的軸截面是一個(gè)等腰三角形,B正確,圓臺(tái)平行于底面的截面是圓面,D正確,故選C.17.如果拋物線(xiàn)y2=a(x+1)的準(zhǔn)線(xiàn)方程是x=-3,那么這條拋物線(xiàn)的焦點(diǎn)坐標(biāo)是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:拋物線(xiàn)y2=a(x+1)可由拋物線(xiàn)y2=ax向左平移一個(gè)單位長(zhǎng)度得到,因?yàn)閽佄锞€(xiàn)y2=a(x+1)的準(zhǔn)線(xiàn)方程是x=-3,所以?huà)佄锞€(xiàn)y2=ax的準(zhǔn)線(xiàn)方程是x=-2,且焦點(diǎn)坐標(biāo)為(2,0),那么拋物線(xiàn)y2=a(x+1)的焦點(diǎn)坐標(biāo)為(1,0).故選C.18.某計(jì)算機(jī)程序每運(yùn)行一次都隨機(jī)出現(xiàn)一個(gè)五位的二進(jìn)制數(shù)A=
,其中A的各位數(shù)中,a1=1,ak(k=2,3,4,5)出現(xiàn)0的概率為,出現(xiàn)1的概率為.記ξ=a1+a2+a3+a4+a5,當(dāng)程序運(yùn)行一次時(shí),ξ的數(shù)學(xué)期望Eξ=()
A.
B.
C.
D.答案:C19.設(shè)橢圓的左焦點(diǎn)為F,AB為橢圓中過(guò)點(diǎn)F的弦,試分析以AB為直徑的圓與橢圓的左準(zhǔn)線(xiàn)的位置關(guān)系.答案:設(shè)M為弦AB的中點(diǎn)(即以AB為直徑的圓的圓心),A1、B1、M1分別是A、B、M在準(zhǔn)線(xiàn)l上的射影(如圖).由圓錐曲線(xiàn)的共同性質(zhì)得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB為直徑的圓與左準(zhǔn)線(xiàn)相離.20.設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線(xiàn)的焦點(diǎn),A是拋物線(xiàn)上一點(diǎn),若·=,則點(diǎn)A的坐標(biāo)是
(
)A.B.C.D.答案:B解析:略21.方程(x2-9)2(x2-y2)2=0表示的圖形是()
A.4個(gè)點(diǎn)
B.2個(gè)點(diǎn)
C.1個(gè)點(diǎn)
D.四條直線(xiàn)答案:D22.設(shè)隨機(jī)變量X的分布列為P(X=k)=,k=1,2,3,4,5,則P()等于()
A.
B.
C.
D.答案:C23.已知拋物線(xiàn)C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設(shè)拋物線(xiàn)C的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,P為拋物線(xiàn)上一點(diǎn),PA⊥l,A為垂足,如果直線(xiàn)AF的斜率為-3,那么|PF|=______.答案:把拋物線(xiàn)C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點(diǎn)F(2,0),準(zhǔn)線(xiàn)方程為x=-2,再由直線(xiàn)FA的斜率是-3,可得直線(xiàn)FA的傾斜角為120°,設(shè)準(zhǔn)線(xiàn)和x軸的交點(diǎn)為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點(diǎn)A(0,43),把y=43代入拋物線(xiàn)求得x=6,∴點(diǎn)P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.24.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,則λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故為;
11.25.已知三角形ABC的頂點(diǎn)坐標(biāo)為A(0,3)、B(-2,-1)、C(4,3),M是BC邊上的中點(diǎn)。
(1)求AB邊所在的直線(xiàn)方程。
(2)求中線(xiàn)AM的長(zhǎng)。
(3)求點(diǎn)C關(guān)于直線(xiàn)AB對(duì)稱(chēng)點(diǎn)的坐標(biāo)。答案:解:(1)由兩點(diǎn)式得AB邊所在的直線(xiàn)方程為:=即2x-y+3=0(2)由中點(diǎn)坐標(biāo)公式得M(1,1)∴|AM|==(3)設(shè)C點(diǎn)關(guān)于直線(xiàn)AB的對(duì)稱(chēng)點(diǎn)為C′(x′,y′)則CC′⊥AB且線(xiàn)段CC′的中點(diǎn)在直線(xiàn)AB上。即解之得x′=
y′=C′點(diǎn)坐標(biāo)為(,)26.用三段論的形式寫(xiě)出下列演繹推理.
(1)若兩角是對(duì)頂角,則該兩角相等,所以若兩角不相等,則該兩角不是對(duì)頂角;
(2)矩形的對(duì)角線(xiàn)相等,正方形是矩形,所以,正方形的對(duì)角線(xiàn)相等.答案:(1)兩個(gè)角是對(duì)頂角則兩角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是對(duì)頂角.結(jié)論(2)每一個(gè)矩形的對(duì)角線(xiàn)相等,大前提正方形是矩形,小前提正方形的對(duì)角線(xiàn)相等.結(jié)論27.設(shè)向量不共面,則下列集合可作為空間的一個(gè)基底的是(
)
A.{}
B.{}
C.{}
D.{}
答案:C28.下列函數(shù)中,與函數(shù)y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函數(shù)y=x的定義域?yàn)镽,選項(xiàng)中A,D定義域不是R,是A、D不正確.選項(xiàng)C的對(duì)應(yīng)法則不同,C不正確.故選B.29.一組數(shù)據(jù)12,15,24,25,31,31,36,36,37,39,44,49,50的中位數(shù)是()
A.31
B.36
C.35
D.34答案:B30.一只袋中裝有2個(gè)白球、3個(gè)紅球,這些球除顏色外都相同.
(Ⅰ)從袋中任意摸出1個(gè)球,求摸到的球是白球的概率;
(Ⅱ)從袋中任意摸出2個(gè)球,求摸出的兩個(gè)球都是白球的概率;
(Ⅲ)從袋中任意摸出2個(gè)球,求摸出的兩個(gè)球顏色不同的概率.答案:(Ⅰ)從5個(gè)球中摸出1個(gè)球,共有5種結(jié)果,其中是白球的有2種,所以從袋中任意摸出1個(gè)球,摸到白球的概率為25.
…(4分)(Ⅱ)從袋中任意摸出2個(gè)球,共有C25=10種情況,其中全是白球的有1種,故從袋中任意摸出2個(gè)球,摸出的兩個(gè)球都是白球的概率為110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的兩個(gè)球顏色不同的情況共有2×3=6種,故從袋中任意摸出2個(gè)球,摸出的2個(gè)球顏色不同的概率為610=35.
…(14分)31.在某次數(shù)學(xué)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年互聯(lián)網(wǎng)人身?yè)p害賠償服務(wù)合同樣本2篇
- 2024停薪留職員工職業(yè)規(guī)劃與企業(yè)發(fā)展服務(wù)合同范本2篇
- 2024年奶粉采購(gòu)與銷(xiāo)售合同3篇
- 2024年度農(nóng)產(chǎn)品批發(fā)市場(chǎng)租賃與經(jīng)營(yíng)管理服務(wù)合同范本3篇
- 2024年度新能源發(fā)電合同:某新能源公司與電網(wǎng)企業(yè)關(guān)于新能源電力發(fā)電協(xié)議2篇
- 2024年度辦公室裝修工程環(huán)保材料認(rèn)證與采購(gòu)合同2篇
- 2024全新船舶貨物運(yùn)輸合同附帶船舶貨物追蹤系統(tǒng)3篇
- 2024年度環(huán)保工程抵押貸款保證合同3篇
- 2024年度終止房屋買(mǎi)賣(mài)合同并規(guī)定違約責(zé)任范例3篇
- 2024年度農(nóng)業(yè)生態(tài)循環(huán)農(nóng)業(yè)示范項(xiàng)目承包合同范本3篇
- PV測(cè)試方法簡(jiǎn)介-IV
- 病理學(xué)實(shí)驗(yàn)切片考試圖片授課課件
- 2021離婚協(xié)議書(shū)電子版免費(fèi)
- 國(guó)家開(kāi)放大學(xué)《組織行為學(xué)》章節(jié)測(cè)試參考答案
- 《班主任工作常規(guī)》課件
- 青島版六三二年級(jí)上冊(cè)數(shù)學(xué)乘加乘減解決問(wèn)題1課件
- 電子課件機(jī)械基礎(chǔ)(第六版)完全版
- 消防維保方案 (詳細(xì)完整版)
- 臨沂十二五城市規(guī)劃研究專(zhuān)題課件
- 2022更新國(guó)家開(kāi)放大學(xué)電大《計(jì)算機(jī)應(yīng)用基礎(chǔ)本》終結(jié)性考試試題答案格式已排好任務(wù)一
- DB64∕T 001-2009 梯田建設(shè)技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論