版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年新疆科信職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.已知f(x)=2x,g(x)=3x.
(1)當(dāng)x為何值時(shí),f(x)=g(x)?
(2)當(dāng)x為何值時(shí),f(x)>1?f(x)=1?f(x)<1?
(3)當(dāng)x為何值時(shí),g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過(guò)點(diǎn)(0,1),且這兩個(gè)圖象只有一個(gè)公共點(diǎn),∴當(dāng)x=0時(shí),f(x)=g(x)=1.(2)由圖可知,當(dāng)x>0時(shí),f(x)>1;當(dāng)x=0時(shí),f(x)=1;當(dāng)x<0時(shí),f(x)<1.(3)由圖可知:當(dāng)x>1時(shí),g(x)>3;當(dāng)x=1時(shí),g(x)=3;當(dāng)x<1時(shí),g(x)<3.2.命題“若A∪B=A,則A∩B=B”的否命題是()A.若A∪B≠A,則A∩B≠BB.若A∩B=B,則A∪B=AC.若A∩B≠A,則A∪B≠BD.若A∪B=B,則A∩B=A答案:“若A∪B=A,則A∩B=B”的否命題:“若A∪B≠A則A∩B≠B”故選A.3.已知單位正方體ABCD-A1B1C1D1,E分別是棱C1D1的中點(diǎn),試求:
(1)AE與平面BB1C1C所成的角的正弦值;
(2)二面角C1-DB-A的余弦值.答案:以D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示:(1)設(shè)正方體棱長(zhǎng)為2.則E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量為n=(0,1,0).設(shè)AE與平面BCC1B1所成的角為θ.sinθ=|cos<AE,n>|=|AE?n||AE|
|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).設(shè)平面DBC1的法向量為n1=(x,y,z),則n1?DB=x+y=0n1?DC1=y+z=0,令y=-1,則x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量為n2=(0,0,1).設(shè)二面角C1-DB-A的大小為α,從圖中可知:α為鈍角.∵cos<n1,n2>=n1?n2|n1|
|n2|=13=33,∴cosα=-33.4.中心在坐標(biāo)原點(diǎn),離心率為的雙曲線的焦點(diǎn)在y軸上,則它的漸近線方程為()
A.
B.
C.
D.答案:D5.根據(jù)給出的程序語(yǔ)言,畫(huà)出程序框圖,并計(jì)算程序運(yùn)行后的結(jié)果.
答案:程序框圖:模擬程序運(yùn)行:當(dāng)j=1時(shí),n=1,當(dāng)j=2時(shí),n=1,當(dāng)j=3時(shí),n=1,當(dāng)j=4時(shí),n=2,…當(dāng)j=8時(shí),n=2,…當(dāng)j=11時(shí),n=2,當(dāng)j=12時(shí),此時(shí)不滿(mǎn)足循環(huán)條件,退出循環(huán)程序運(yùn)行后的結(jié)果是:2.6.不等式|x-500|≤5的解集是______.答案:因?yàn)椴坏仁絴x-500|≤5,由絕對(duì)值不等式的幾何意義可知:{x|495≤x≤505}.故為:{x|495≤x≤505}.7.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為_(kāi)_____.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點(diǎn)的極坐標(biāo)為(2,π4).故為:(2,π4).8.下列說(shuō)法中正確的是()A.一個(gè)命題的逆命題為真,則它的逆否命題一定為真B.“a>b”與“a+c>b+c”不等價(jià)C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”D.一個(gè)命題的否命題為真,則它的逆命題一定為真答案:A、逆命題與逆否命題之間不存在必然的真假關(guān)系,故A錯(cuò)誤;B、由不等式的性質(zhì)可知,“a>b”與“a+c>b+c”等價(jià),故B錯(cuò)誤;C、“a2+b2=0,則a,b全為0”的逆否命題是“若a,b不全為0,則a2+b2≠0”,故C錯(cuò)誤;D、否命題和逆命題是互為逆否命題,有著一致的真假性,故D正確;故選D9.在15個(gè)村莊中有7個(gè)村莊交通不方便,現(xiàn)從中任意選10個(gè)村莊,用X表示這10個(gè)村莊中交通不方便的村莊數(shù),則P(X=4)=______.(用數(shù)字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:14042910.“a=2”是“直線ax+2y=0平行于直線x+y=1”的()
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件答案:C11.如圖,在半徑為7的⊙O中,弦AB,CD相交于點(diǎn)P,PA=PB=2,PD=1,則圓心O到弦CD的距離為_(kāi)_____.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP?1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半徑為7,則圓心O到弦CD的距離為d=r2-(CD2)2=7-(52)2=32.故為:32.12.2008年北京奧運(yùn)會(huì)期間,計(jì)劃將5名志愿者分配到3個(gè)不同的奧運(yùn)場(chǎng)館參加接待工作,每個(gè)場(chǎng)館至少分配一名志愿者的方案種數(shù)為()A.540B.300C.150D.180答案:將5個(gè)人分成滿(mǎn)足題意的3組有1,1,3與2,2,1兩種,分成1、1、3時(shí),有C53?A33種分法,分成2、2、1時(shí),有C25C23A22?A33種分法,所以共有C53?A33+C25C23A22?A33=150種分法,故選C.13.一位運(yùn)動(dòng)員投擲鉛球的成績(jī)是14m,當(dāng)鉛球運(yùn)行的水平距離是6m時(shí),達(dá)到最大高度4m.若鉛球運(yùn)行的路線是拋物線,則鉛球出手時(shí)距地面的高度是()
A.2.25m
B.2.15m
C.1.85m
D.1.75m
答案:D14.將一個(gè)等腰梯形繞著它的較長(zhǎng)的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體是(
)答案:B15.設(shè)a∈(0,1)∪(1,+∞),對(duì)任意的x∈(0,12],總有4x≤logax恒成立,則實(shí)數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當(dāng)0<x≤12時(shí),函數(shù)y=4x的圖象如下圖所示:∵對(duì)任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點(diǎn)時(shí),a=22,故虛線所示的y=logax的圖象對(duì)應(yīng)的底數(shù)a應(yīng)滿(mǎn)足22<a<1.故為:(22,1).16.已知f(x)=,a≠b,
求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一
∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當(dāng)1+ab<0時(shí),∵>0,∴不等式1+ab<成立.從而原不等式成立.當(dāng)1+ab≥0時(shí),要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二
∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.17.用反證法證明某命題時(shí),對(duì)結(jié)論:“自然數(shù)a,b,c中恰有一個(gè)偶數(shù)”正確的假設(shè)為()
A.a(chǎn),b,c都是奇數(shù)
B.a(chǎn),b,c都是偶數(shù)
C.a(chǎn),b,c中至少有兩個(gè)偶數(shù)
D.a(chǎn),b,c中至少有兩個(gè)偶數(shù)或都是奇數(shù)答案:D18.某校高三年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:A1010;滿(mǎn)足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒(méi)有被排在一起的演講的順序”可通過(guò)如下步驟:①將一班的3位同學(xué)“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個(gè)對(duì)象與其它班的5位同學(xué)共6個(gè)對(duì)象排成一列,有A66種方法;③在以上6個(gè)對(duì)象所排成一列的7個(gè)間隙(包括兩端的位置)中選2個(gè)位置,將二班的2位同學(xué)插入,有A72種方法.根據(jù)分步計(jì)數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.19.如圖,△ABC中,CD=2DB,設(shè)AD=mAB+nAC(m,n為實(shí)數(shù)),則m+n=______.答案:∵CD=2DB,∴B、C、D三點(diǎn)共線,由三點(diǎn)共線的向量表示,我們易得AD=23AB+13AC,由平面向量基本定理,我們易得m=23,n=13,∴m+n=1故為:120.隋機(jī)變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C21.在空間中,有如下命題:
①互相平行的兩條直線在同一個(gè)平面內(nèi)的射影必然是互相平行的兩條直線;
②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;
③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.
其中正確命題的個(gè)數(shù)為()個(gè).
A.0
B.1
C.2
D.3答案:B22.已知點(diǎn)P是拋物線y2=2x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為_(kāi)_____.答案:依題設(shè)P在拋物線準(zhǔn)線的投影為P',拋物線的焦點(diǎn)為F,則F(12,0),依拋物線的定義知P到該拋物線準(zhǔn)線的距離為|PP'|=|PF|,則點(diǎn)P到點(diǎn)A(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故為:172.23.已知:如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,DC的延長(zhǎng)線交AB于點(diǎn)A,∠A=20°,則
∠DBE=______.答案:連接BC,∵CD是⊙O的直徑,∴∠CBD=90°,∵AE是⊙O的切線,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故為:∠DBE=55°.24.在平面直角坐標(biāo)系中,點(diǎn)A(4,-2)按向量a=(-1,3)平移,得點(diǎn)A′的坐標(biāo)是()A.(5,-5)B.(3,1)C.(5,1)D.(3,-5)答案:設(shè)A′的坐標(biāo)為(x′,y′),則x′=4-1=3y′=-2+3=1,∴A′(3,1).故選B.25.為了調(diào)查某產(chǎn)品的銷(xiāo)售情況,銷(xiāo)售部門(mén)從下屬的92家銷(xiāo)售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機(jī)剔除的個(gè)體數(shù)分別為()
A.3,2
B.2,3
C.2,30
D.30,2答案:A26.在平面直角坐標(biāo)系中,經(jīng)伸縮變換后曲線方程變換為橢圓方程,此伸縮變換公式是(
)A.B.C.D.答案:B解析:解:因?yàn)樵谄矫嬷苯亲鴺?biāo)系中,經(jīng)伸縮變換后曲線方程變換為橢圓方程,設(shè)變換為,將其代入方程中,得到x,y的關(guān)系式,對(duì)應(yīng)相等可知,選B27.圓錐曲線x=4secθ+1y=3tanθ的焦點(diǎn)坐標(biāo)是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運(yùn)算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個(gè)單位得到,而雙曲線x216-y29=1的焦點(diǎn)為(-5,0),(5,0)故所求雙曲線的焦點(diǎn)為(-4,0),(6,0)故為:(-4,0),(6,0)28.如圖過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線依次交拋物線及準(zhǔn)線于點(diǎn)A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為()
A.y2=x
B.y2=9x
C.y2=x
D.y2=3x
答案:D29.直線過(guò)原點(diǎn)且傾角的正弦值是45,則直線方程為_(kāi)_____.答案:因?yàn)閮A斜角α的范圍是:0≤α<π,又由題意:sinα=45所以:tanα=±43x直線過(guò)原點(diǎn),由直線的點(diǎn)斜式方程得到:y=±43x故為:y=±43x30.對(duì)于函數(shù)f(x),在使f(x)≤M成立的所有常數(shù)M中,我們把M的最小值稱(chēng)為函數(shù)f(x)的“上確界”則函數(shù)f(x)=(x+1)2x2+1的上確界為()A.14B.12C.2D.4答案:因?yàn)閒(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因?yàn)閤2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常數(shù)M中,M的最小值為2.故選C.31.已知雙曲線x2-y22=1,經(jīng)過(guò)點(diǎn)M(1,1)能否作一條直線l,使直線l與雙曲線交于A、B,且M是線段AB的中點(diǎn),若存在這樣的直線l,求出它的方程;若不存在,說(shuō)明理由.答案:設(shè)過(guò)點(diǎn)M(1,1)的直線方程為y=k(x-1)+1或x=1(1)當(dāng)k存在時(shí)有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)當(dāng)直線與雙曲線相交于兩個(gè)不同點(diǎn),則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的兩個(gè)不同的根是兩交點(diǎn)A、B的橫坐標(biāo)∴x1+x2=2(k-k2)2-k2
又M(1,1)為線段AB的中點(diǎn)∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此當(dāng)k=2時(shí),方程(1)無(wú)實(shí)數(shù)解故過(guò)點(diǎn)m(1,1)與雙曲線交于兩點(diǎn)A、B且M為線段AB中點(diǎn)的直線不存在.(2)當(dāng)x=1時(shí),直線經(jīng)過(guò)點(diǎn)M但不滿(mǎn)足條件,綜上,符合條件的直線l不存在32.某學(xué)校準(zhǔn)備調(diào)查高三年級(jí)學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,則這兩種抽樣方式依次為()A.分層抽樣,簡(jiǎn)單隨機(jī)抽樣B.簡(jiǎn)單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡(jiǎn)單隨機(jī)抽樣,系統(tǒng)抽樣答案:學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查,是簡(jiǎn)單隨機(jī)抽樣,對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,是系統(tǒng)抽樣,故選D33.用數(shù)學(xué)歸納法證明1+2+3+…+n2=,則當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上()
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D34.已知α,β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由平面與平面垂直的判定定理知如果m為平面α內(nèi)的一條直線,m⊥β,則α⊥β,反過(guò)來(lái)則不一定所以“α⊥β”是“m⊥β”的必要不充分條件.故選B.35.在極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)為(2,0),直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)+2=0,則點(diǎn)A到直線l的距離為_(kāi)_____.答案:由題意得點(diǎn)A(2,0),直線l為
ρ(cosθ+sinθ)+2=0,即
x+y+2=0,∴點(diǎn)A到直線l的距離為
|2+0+2|2=22,故為22.36.一動(dòng)圓與兩圓x2+y2=1和x2+y2-8x+12=0都外切,則動(dòng)圓圓心軌跡為()A.圓B.橢圓C.雙曲線的一支D.拋物線答案:設(shè)動(dòng)圓的圓心為P,半徑為r,而圓x2+y2=1的圓心為O(0,0),半徑為1;圓x2+y2-8x+12=0的圓心為F(4,0),半徑為2.依題意得|PF|=2+r|,|PO|=1+r,則|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以點(diǎn)P的軌跡是雙曲線的一支.故選C.37.
圓ρ=(cosθ+sinθ)的圓心的極坐標(biāo)是()
A.(1,)
B.(,)
C.(,)
D.(2,)
答案:A38.如圖,點(diǎn)O是正六邊形ABCDEF的中心,則以圖中點(diǎn)A、B、C、D、E、F、O中的任意一點(diǎn)為始點(diǎn),與始點(diǎn)不同的另一點(diǎn)為終點(diǎn)的所有向量中,除向量外,與向量共線的向量共有()
A.2個(gè)
B.3個(gè)
C.6個(gè)
D.9個(gè)
答案:D39.設(shè)雙曲線的焦點(diǎn)在x軸上,兩條漸近線為y=±x,則雙曲線的離心率e=()
A.5
B.
C.
D.答案:C40.設(shè)P點(diǎn)在x軸上,Q點(diǎn)在y軸上,PQ的中點(diǎn)是M(-1,2),則|PQ|等于______.答案:設(shè)P(a,0),Q(0,b),∵PQ的中點(diǎn)是M(-1,2),∴由中點(diǎn)坐標(biāo)公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故為:2541.把38化為二進(jìn)制數(shù)為()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以驗(yàn)證所給的四個(gè)選項(xiàng),在A中,2+8+32=42,在B中,2+4+32=38經(jīng)過(guò)驗(yàn)證知道,B中的二進(jìn)制表示的數(shù)字換成十進(jìn)制以后得到38,故選B.42.對(duì)某種花卉的開(kāi)放花期追蹤調(diào)查,調(diào)查情況如表:
花期(天)11~1314~1617~1920~22個(gè)數(shù)20403010則這種卉的平均花期為_(kāi)_____天.答案:由表格知,花期平均為12天的有20個(gè),花期平均為15天的有40個(gè),花期平均為18天的有30個(gè),花期平均為21天的有10個(gè),∴這種花卉的評(píng)價(jià)花期是12×20+15×40+18×30+21×10100=16,故為:1643.定點(diǎn)F1,F(xiàn)2,且|F1F2|=8,動(dòng)點(diǎn)P滿(mǎn)足|PF1|+|PF2|=8,則點(diǎn)P的軌跡是()A.橢圓B.圓C.直線D.線段答案:∵|PF1|+|PF2|=8,且|F1F2|=8∴|PF1|+|PF2|=|F1F2|①當(dāng)點(diǎn)P不在直線F1F2上時(shí),根據(jù)三角形兩邊之和大于第三邊,得|PF1|+|PF2|>|F1F2|,不符合題意;②當(dāng)點(diǎn)P在直線F1F2上時(shí),若點(diǎn)P在F1、F2兩點(diǎn)之外時(shí),可得|PF1|+|PF2|>8,得到|PF1|+|PF2|>|F1F2|,不符合題意;若點(diǎn)P在F1、F2兩點(diǎn)之間(或與F1、F2重合)時(shí),可得|PF1|+|PF2|=|F1F2|,符合題意.綜上所述,得點(diǎn)P在直線F1F2上且在F1、F2兩點(diǎn)之間或與F1、F2重合,故點(diǎn)P的軌跡是線段F1F2.故選:D44.2010年廣州亞運(yùn)會(huì)乒乓球男單決賽中,馬龍與王皓在前三局的比分分別是9:11、11:8、11:7,已知馬琳與王皓的水平相當(dāng),比賽實(shí)行“七局四勝”制,即先贏四局者勝,求(1)王皓獲勝的概率;
(2)比賽打滿(mǎn)七局的概率.(3)記比賽結(jié)束時(shí)的比賽局?jǐn)?shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.答案:(1)在馬龍先前三局贏兩局的情況下,王皓取勝有兩種情況.第一種是王皓連勝三局;第二種是在第四到第六局,王皓贏了兩局,第七局王皓贏.在第一種情況下王皓取勝的概率為(12)3=18;在第二種情況下王皓取勝的概率為為C23(12)3×12=316,王皓獲勝的概率18+316=516;(3分)(2)比賽打滿(mǎn)七局有兩種結(jié)果:馬龍勝或王皓勝.記“比賽打滿(mǎn)七局,馬龍勝”為事件A,則P(A)=C13(12)3×12=316;記“比賽打滿(mǎn)七局,王皓勝”為事件B,則P(B)=C23(12)3×12=316;因?yàn)槭录嗀、B互斥,所以比賽打滿(mǎn)七局的概率為P(A)+P(B)=38.(7分)(3)比賽結(jié)束時(shí),比賽的局?jǐn)?shù)為5,6,7,則打完五局馬龍獲勝的概率為12×12=14;打完六局馬琳獲勝的概率為C12(12)2×12=14,王皓取勝的概率為(12)3=18;比賽打滿(mǎn)七局,馬龍獲勝的概率為C13(12)3×12=316,王皓取勝的概率為為C23(12)3×12=316;所以ξ的分布列為ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)45.對(duì)變量x,y
有觀測(cè)數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v
有觀測(cè)數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點(diǎn)圖2.下列說(shuō)法正確的是()
A.變量x
與y
正相關(guān),u
與v
正相關(guān)
B.變量x
與y
負(fù)相關(guān),u
與v
正相關(guān)
C.變量x
與y
正相關(guān),u
與v
負(fù)相關(guān)
D.變量x
與y
負(fù)相關(guān),u
與v
負(fù)相關(guān)答案:B46.若圖中的直線l1,l2,l3的斜率分別為k1,k2,k3,則()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:D47.設(shè)拋物線C:y2=3px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過(guò)點(diǎn)(0,2),則C的方程為()
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x答案:C48.直線L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,則a的值為(
)
A.-3
B.2
C.-3或2
D.3或-2答案:A49.輸入3個(gè)數(shù),輸出其中最大的公約數(shù),編程序完成上述功能.答案:INPUT
m,n,kr=m
MOD
nWHILE
r<>0m=nn=rr=m
MOD
nWENDr=k
MOD
nWHILE
r<>0k=nn=rr=k
MOD
nWENDPRINT
nEND50.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交AC于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)P.問(wèn):PD與AC是否互相垂直?請(qǐng)說(shuō)明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.第2卷一.綜合題(共50題)1.已知200輛汽車(chē)通過(guò)某一段公路時(shí)的時(shí)速的頻率分布直方圖如圖所示,則時(shí)速在[60,70]的汽車(chē)大約有()輛.A.90B.80C.70D.60答案:由已知可得樣本容量為200,又∵數(shù)據(jù)落在區(qū)間[60,70]的頻率為0.04×10=0.4∴時(shí)速在[60,70]的汽車(chē)大約有200×0.4=80故選B.2.大熊貓活到十歲的概率是0.8,活到十五歲的概率是0.6,若現(xiàn)有一只大熊貓已經(jīng)十歲了,則他活到十五歲的概率是()
A.0.8
B.0.75
C.0.6
D.0.48答案:B3.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線,向量c=2e1-9e2.問(wèn)是否存在這樣的實(shí)數(shù)λ、μ,使向量d=λa+μb與c共線?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線,則存在實(shí)數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實(shí)數(shù)λ、μ,只要λ=-2μ,就能使d與c共線.4.若a>0,b>0,2a+3b=1,則ab的最大值為_(kāi)_____.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為1245.已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線x=-1于M點(diǎn),且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由題意知?jiǎng)狱c(diǎn)P到F(1,0)的距離與直線x=-1的距離相等,由拋物線定義知,動(dòng)點(diǎn)P在以F(1,0)為焦點(diǎn),以直線x=-1為準(zhǔn)線的拋物線上,方程為y2=4x.(2)由題設(shè)知直線的斜線存在,設(shè)直線AB的方程為:y=k(x-1),設(shè)A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.6.已知:|.a|=1,|.b|=2,<a,b>=60°,則|a+b|=______.答案:由題意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故為77.若=(2,0),那么=(
)
A.(1,2)
B.3
C.2
D.1答案:C8.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.9.如圖P為空間中任意一點(diǎn),動(dòng)點(diǎn)Q在△ABC所在平面內(nèi)運(yùn)動(dòng),且,則實(shí)數(shù)m=()
A.0
B.2
C.-2
D.1
答案:C10.|a|=2,|b|=3,|a+b|=4,則a與b的夾角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a與.b的夾角為arccos14故為arccos1411.已知D是△ABC所在平面內(nèi)一點(diǎn),,則()
A.
B.
C.=
D.答案:A12.已知向量OA=(2,3),OB=(4,-1),P是線段AB的中點(diǎn),則P點(diǎn)的坐標(biāo)是()A.(2,-4)B.(3,1)C.(-2,4)D.(6,2)答案:由線段的中點(diǎn)公式可得OP=12(OA+OB)=(3,1),故P點(diǎn)的坐標(biāo)是(3,1),故選B.13.已知=(-3,2,5),=(1,x,-1),且=2,則x的值為()
A.3
B.4
C.5
D.6答案:C14.若施化肥量x與小麥產(chǎn)量y之間的回歸方程為y=250+4x(單位:kg),當(dāng)施化肥量為50kg時(shí),預(yù)計(jì)小麥產(chǎn)量為_(kāi)_____kg.答案:根據(jù)回歸方程為y=250+4x,當(dāng)施化肥量為50kg,即x=50kg時(shí),y=250+4x=250+200=450kg故為:45015.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(
)
A.(-∞,1)
B.(121,+∞)
C.[1,121]
D.(1,121)答案:C16.圓x2+y2=1在矩陣10012對(duì)應(yīng)的變換作用下的結(jié)果為_(kāi)_____.答案:設(shè)P(x,y)是圓C:x2+y2=1上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣A=10012對(duì)應(yīng)變換作用下新曲線上的對(duì)應(yīng)點(diǎn),則x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,將x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故為:x2+4y2=1.17.在數(shù)學(xué)歸納法證明多邊形內(nèi)角和定理時(shí),第一步應(yīng)驗(yàn)證()
A.n=1成立
B.n=2成立
C.n=3成立
D.n=4成立答案:C18.設(shè)向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為
______.答案:|a|=1因?yàn)閨b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因?yàn)?≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:219.設(shè)平面α內(nèi)兩個(gè)向量的坐標(biāo)分別為(1,2,1)、(-1,1,2),則下列向量中是平面的法向量的是()
A.(-1,-2,5)
B.(-1,1,-1)
C.(1,1,1)
D.(1,-1,-1)答案:B20.已知實(shí)數(shù)x、y、z滿(mǎn)足x+2y+3z=1,則x2+y2+z2的最小值為_(kāi)_____.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,即:x2+y2+z2的最小值為114.故為:11421.為了了解某地母親身高x與女兒身高Y的相關(guān)關(guān)系,隨機(jī)測(cè)得10對(duì)母女的身高如下表所示:
母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計(jì)算x與Y的相關(guān)系數(shù)r≈0.71,通過(guò)查表得r的臨界值r0.05=0.632,從而有______的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過(guò)計(jì)算得到回歸直線方程為y═34.92+0.78x,因此,當(dāng)母親的身高為161cm時(shí),可以估計(jì)女兒的身高大致為_(kāi)_____.答案:查對(duì)臨界值表,由臨界值r0.05=0.632,可得有95%的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=34.92+0.78x,因此,當(dāng)x=161cm時(shí),y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.22.化簡(jiǎn)的結(jié)果是()
A.a(chǎn)2
B.a(chǎn)
C.a(chǎn)
D.a(chǎn)答案:C23.“sinx=siny”是“x=y”的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反過(guò)來(lái),若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分條件.故選C.24.等于()
A.a(chǎn)16
B.a(chǎn)8
C.a(chǎn)4
D.a(chǎn)2答案:C25.已知函數(shù)f(x)=2x,x≤1log13x,x>1,若f(a)=2,則a=______.答案:當(dāng)a≤1時(shí)y=2x∴2a=2∴a=1當(dāng)a>1時(shí)y=log13x∴2=loga13∴a=19不成立所以a=1故為:126.當(dāng)圓x=4cosθy=4sinθ上一點(diǎn)P的旋轉(zhuǎn)角為θ=23π時(shí),點(diǎn)P的坐標(biāo)為_(kāi)_____.答案:根據(jù)圓的參數(shù)方程的意義,當(dāng)圓x=4cosθy=4sinθ上一點(diǎn)P的旋轉(zhuǎn)角為θ=23π時(shí),點(diǎn)P的坐標(biāo)為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).27.經(jīng)過(guò)拋物線y2=2x的焦點(diǎn)且平行于直線3x-2y+5=0的直線的方程是()
A.6x-4y-3=0
B.3x-2y-3=0
C.2x+3y-2=0
D.2x+3y-1=0答案:A28.求證1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:證明:①當(dāng)n=1時(shí),左邊=2,右邊=13×1×2×3=2,等式成立;②假設(shè)當(dāng)n=k時(shí),等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)則當(dāng)n=k+1時(shí),左邊=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1時(shí),等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)對(duì)任意正整數(shù)都成立.29.已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個(gè)三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個(gè)三角形外接圓的方程為(x+2)2+(y-2)2=10.30.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個(gè),x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
選B評(píng)析:考察考生對(duì)不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號(hào)與不等號(hào)的關(guān)系。31.如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤(pán)(A)、(B),其中三個(gè)扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個(gè)轉(zhuǎn)盤(pán)玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)再隨機(jī)停下(指針固定不動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次轉(zhuǎn)動(dòng)無(wú)效,重新開(kāi)始)為一次游戲,記轉(zhuǎn)盤(pán)(A)指針?biāo)鶎?duì)的數(shù)為X轉(zhuǎn)盤(pán)(B)指針對(duì)的數(shù)為Y設(shè)X+Yξ,每次游戲得到的獎(jiǎng)勵(lì)分為ξ分.
(1)求X<2且Y>1時(shí)的概率
(2)某人玩12次游戲,求他平均可以得到多少獎(jiǎng)勵(lì)分?答案:(1)由幾何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.則P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范圍為2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布為:ξ23456P11873613361136112他平均每次可得到的獎(jiǎng)勵(lì)分為Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的獎(jiǎng)勵(lì)分為12×Eξ=50.32.在(1+x)3+(1+x)4…+(1+x)7的展開(kāi)式中,含x項(xiàng)的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開(kāi)式中,含x項(xiàng)的系數(shù)是C31+C41+C51+…+C71=25故為:2533.已知函數(shù)y=f(x)是偶函數(shù),其圖象與x軸有四個(gè)交點(diǎn),則f(x)=0的所有實(shí)數(shù)根之和為_(kāi)_____.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對(duì)稱(chēng)∴其圖象與x軸有四個(gè)交點(diǎn)也關(guān)于y軸對(duì)稱(chēng)∴方程f(x)=0的所有實(shí)根之和為0故為:034.在復(fù)數(shù)范圍內(nèi)解方程|z|2+(z+.z)i=3-i2+i(i為虛數(shù)單位).答案:原方程化簡(jiǎn)為|z|2+(z+.z)i=1-i,設(shè)z=x+yi(x、y∈R),代入上述方程得x2+y2+2xi=1-i,∴x2+y2=1且2x=-1,解得x=-12且y=±32,∴原方程的解是z=-12±32i.35.某重點(diǎn)高中高二歷史會(huì)考前,進(jìn)行了五次歷史會(huì)考模擬考試,某同學(xué)在這五次考試中成績(jī)?nèi)缦拢?0,90,93,94,93,則該同學(xué)的這五次成績(jī)的平均值和方差分別為()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B36.函數(shù)y=ax+b與y=logbx且a>0,在同一坐標(biāo)系內(nèi)的圖象是()A.
B.
C.
D.
答案:∵a>0,則函數(shù)y=ax+b為增函數(shù),與y軸的交點(diǎn)為(0,b)當(dāng)0<b<1時(shí),函數(shù)y=ax+b與y軸的交點(diǎn)在原點(diǎn)和(0,1)點(diǎn)之間,y=logbx為減函數(shù),D圖滿(mǎn)足要求;當(dāng)b>1時(shí),函數(shù)y=ax+b與y軸的交點(diǎn)在(0,1)點(diǎn)上方,y=logbx為增函數(shù),不存在滿(mǎn)足條件的圖象;故選D37.從一批含有13只正品,2只次品的產(chǎn)品中,不放回地抽取3次,每次抽取1只,設(shè)抽得次品數(shù)為X,則E(5X+1)=______.答案:由題意,X的取值為0,1,2,則P(X=0)=1315×1214×1113=2235;P(X=1)=215×1314×1213+1315×214×1213+1315×1214×213=1235P(X=2)=1315×214×113+215×1314×113+215×114×1313=135所以期望E(X)=0×2235+1×1235+2×135=1435,所以E(5X+1)=1435×5+1=3故為3.38.現(xiàn)有以下兩項(xiàng)調(diào)查:①某校高二年級(jí)共有15個(gè)班,現(xiàn)從中選擇2個(gè)班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進(jìn)行調(diào)查.完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是()A.簡(jiǎn)單隨機(jī)抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡(jiǎn)單隨機(jī)抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個(gè)班中選擇2個(gè)班,檢查其清潔衛(wèi)生狀況;總體個(gè)數(shù)不多,而且差異不大,故可采用簡(jiǎn)單隨機(jī)抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是簡(jiǎn)單隨機(jī)抽樣法,分層抽樣法故選A39.已知平行四邊形ABCD,下列正確的是()
A.
B.
C.
D.答案:B40.利用斜二測(cè)畫(huà)法能得到的()
①三角形的直觀圖是三角形;
②平行四邊形的直觀圖是平行四邊形;
③正方形的直觀圖是正方形;
④菱形的直觀圖是菱形.
A.①②
B.①
C.③④
D.①②③④答案:A41.已知矩形ABCD,R、P分別在邊CD、BC上,E、F分別為AP、PR的中點(diǎn),當(dāng)P在BC上由B向C運(yùn)動(dòng)時(shí),點(diǎn)R在CD上固定不變,設(shè)BP=x,EF=y,那么下列結(jié)論中正確的是()A.y是x的增函數(shù)B.y是x的減函數(shù)C.y隨x先增大后減小D.無(wú)論x怎樣變化,y是常數(shù)答案:連接AR,如圖所示:由于點(diǎn)R在CD上固定不變,故AR的長(zhǎng)為定值又∵E、F分別為AP、PR的中點(diǎn),∴EF為△APR的中位線,則EF=12AR為定值故無(wú)論x怎樣變化,y是常數(shù)故選D42.設(shè)=(-2,2,5),=(6,-4,4)分別是平面α,β的法向量,則平面α,β的位置關(guān)系是()
A.平行
B.垂直
C.相交但不垂直
D.不能確定答案:B43.把一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則點(diǎn)(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿(mǎn)足條件的事件是點(diǎn)(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿(mǎn)足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點(diǎn)在直線的下方的概率是636=16故選A.44.設(shè)集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.45.直線l過(guò)橢圓x24+y23=1的右焦點(diǎn)F2并與橢圓交與A、B兩點(diǎn),則△ABF1的周長(zhǎng)是()A.4B.6C.8D.16答案:根據(jù)題意結(jié)合橢圓的定義可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因?yàn)閨AF2|+|BF2|=|AB|,所以△ABF1的周長(zhǎng)為:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故選C.46.|a|=4,|b|=5,|a+b|=8,則a與b的夾角為_(kāi)_____.答案:設(shè)a與b的夾角為θ因?yàn)閨a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故為arccos234047.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點(diǎn)共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點(diǎn)共圓.48.右圖程序運(yùn)行后輸出的結(jié)果為()
A.3456
B.4567
C.5678
D.6789
答案:A49.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故選B.50.如圖,△ABC內(nèi)接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=()
A.30°
B.40°
C.80°
D.70°
答案:C第3卷一.綜合題(共50題)1.拋物線y=3x2的焦點(diǎn)坐標(biāo)是______.答案:化為標(biāo)準(zhǔn)方程為x2=13y,∴2p=13,∴p2=
112,∴焦點(diǎn)坐標(biāo)是(0,112).故為(0,112)2.如圖,已知點(diǎn)P在正方體ABCD-A′B′C′D′的對(duì)角線BD′上,∠PDA=60°.
(Ⅰ)求DP與CC′所成角的大?。?/p>
(Ⅱ)求DP與平面AA′D′D所成角的大?。鸢福悍椒ㄒ唬喝鐖D,以D為原點(diǎn),DA為單位長(zhǎng)建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長(zhǎng)DP交B'D'于H.設(shè)DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因?yàn)閏os<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個(gè)法向量是DC=(0,1,0).因?yàn)閏os<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點(diǎn),DA為單位長(zhǎng)建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設(shè)P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因?yàn)閏os<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個(gè)法向量是DC=(0,1,0).因?yàn)閏os<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)3.直線kx-y+1=3k,當(dāng)k變動(dòng)時(shí),所有直線都通過(guò)定點(diǎn)[
]
A.(3,1)
B.(0,1)
C.(0,0)
D.(2,1)答案:A4.現(xiàn)有以下兩項(xiàng)調(diào)查:①某校高二年級(jí)共有15個(gè)班,現(xiàn)從中選擇2個(gè)班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進(jìn)行調(diào)查.完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是()A.簡(jiǎn)單隨機(jī)抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡(jiǎn)單隨機(jī)抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個(gè)班中選擇2個(gè)班,檢查其清潔衛(wèi)生狀況;總體個(gè)數(shù)不多,而且差異不大,故可采用簡(jiǎn)單隨機(jī)抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是簡(jiǎn)單隨機(jī)抽樣法,分層抽樣法故選A5.已知函數(shù)f(x)滿(mǎn)足:f(p+q)=f(p)f(q),f(1)=2,則:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故為:20066.如圖,花園中間是噴水池,噴水池周?chē)腁、B、C、D區(qū)域種植草皮,要求相鄰的區(qū)域種不同顏色的草皮,現(xiàn)有4種不同顏色的草皮可供選用,則共有______種不同的種植方法(以數(shù)字作答).答案:若AD相同,有4×(3+3×2)種種植方法,若AD不同,有4×3×(2+2×1)種種植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84種不同方法.故為84.7.設(shè)集合A={1,2},則滿(mǎn)足A∪B={1,2,3}的集合B的個(gè)數(shù)是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},則集合B中必含有元素3,即此題可轉(zhuǎn)化為求集合A={1,2}的子集個(gè)數(shù)問(wèn)題,所以滿(mǎn)足題目條件的集合B共有22=4個(gè).故選擇C.8.已知回歸直線的斜率的估計(jì)值是1.23,樣本中心點(diǎn)為(4,5),若解釋變量的值為10,則預(yù)報(bào)變量的值約為()A.16.3B.17.3C.12.38D.2.03答案:設(shè)回歸方程為y=1.23x+b,∵樣本中心點(diǎn)為(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10時(shí),y=12.38故選C.9.若矩陣A=是表示我校2011屆學(xué)生高二上學(xué)期的期中成績(jī)矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語(yǔ)文成績(jī),i=2表示數(shù)學(xué)成績(jī),i=3表示英語(yǔ)成績(jī),i=4表示語(yǔ)數(shù)外三門(mén)總分成績(jī)j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過(guò)一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門(mén)總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門(mén)學(xué)科上()
A.語(yǔ)文
B.?dāng)?shù)學(xué)
C.外語(yǔ)
D.都一樣答案:B10.若已知A(1,1,1),B(-3,-3,-3),則線段AB的長(zhǎng)為()
A.4
B.2
C.4
D.3答案:A11.在極坐標(biāo)系中,過(guò)點(diǎn)p(3,)且垂直于極軸的直線方程為()
A.Pcosθ=
B.Psinθ=
C.P=cosθ
D.P=sinθ答案:A12.某電廠冷卻塔的外形是如圖所示雙曲線的一部分繞其中軸(即雙曲線的虛軸)旋轉(zhuǎn)所成的曲面,其中A、A′是雙曲線的頂點(diǎn),C、C′是冷卻塔上口直徑的兩個(gè)端點(diǎn),B、B′是下底直徑的兩個(gè)端點(diǎn),已知AA′=14m,CC′=18m,BB′=22m,塔高20m.
(Ⅰ)建立坐標(biāo)系并寫(xiě)出該雙曲線方程;
(Ⅱ)求冷卻塔的容積(精確到10m3,塔壁厚度不計(jì),π取3.14).答案:(I)如圖建立直角坐標(biāo)系xOy,AA′在x軸上,AA′的中點(diǎn)為坐標(biāo)原點(diǎn)O,CC′與BB′平行于x軸.設(shè)雙曲線方程為x2a2-y2b2=1(a>0,b>0),則a=12AA′=7.又設(shè)B(11,y1),C(9,y2),因?yàn)辄c(diǎn)B、C在雙曲線上,所以有11272-y21b2=1,①9272-y22b2=1,②由題意知y2-y1=20.③由①、②、③得y1=-12,y2=8,b=72.故雙曲線方程為x249-y298=1;(II)由雙曲線方程得x2=12y2+49.設(shè)冷卻塔的容積為V(m3),則V=π∫y2y1x2dy=π∫8-12(12y2+49)dy=π(16y3+49y)|8-12,∴V≈4.25×103(m3).答:冷卻塔的容積為4.25×103(m3).13.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.14.某水產(chǎn)試驗(yàn)廠實(shí)行某種魚(yú)的人工孵化,10000個(gè)卵能孵化出7645尾魚(yú)苗.根據(jù)概率的統(tǒng)計(jì)定義解答下列問(wèn)題:
(1)求這種魚(yú)卵的孵化概率(孵化率);
(2)30000個(gè)魚(yú)卵大約能孵化多少尾魚(yú)苗?
(3)要孵化5000尾魚(yú)苗,大概得準(zhǔn)備多少魚(yú)卵?(精確到百位)答案:(1)這種魚(yú)卵的孵化概率為:764510000=0.7645(2)由(1)知,30000個(gè)魚(yú)卵大約能孵化:30000×0.7645=22935尾魚(yú)苗(3)要孵化5000尾魚(yú)苗,需準(zhǔn)備50000.7645=6500個(gè)魚(yú)卵.15.利用“直接插入排序法”給按從大到小的順序排序,
當(dāng)插入第四個(gè)數(shù)時(shí),實(shí)際是插入哪兩個(gè)數(shù)之間(
)A.與B.與C.與D.與答案:B解析:先比較與,得;把插入到,得;把插入到,得;16.設(shè)復(fù)數(shù)z的實(shí)部是
12,且|z|=1,則z=______.答案:設(shè)復(fù)數(shù)z的虛部等于b,b∈z,由復(fù)數(shù)z的實(shí)部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故為:12±32i.17.已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線x=-1于M點(diǎn),且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由題意知?jiǎng)狱c(diǎn)P到F(1,0)的距離與直線x=-1的距離相等,由拋物線定義知,動(dòng)點(diǎn)P在以F(1,0)為焦點(diǎn),以直線x=-1為準(zhǔn)線的拋物線上,方程為y2=4x.(2)由題設(shè)知直線的斜線存在,設(shè)直線AB的方程為:y=k(x-1),設(shè)A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.18.若直線x=1的傾斜角為α,則α()A.等于0B.等于π4C.等于π2D.不存在答案:由題意知直線的斜率不存在,故傾斜角α=π2,故選C.19.已知線段AB的兩端點(diǎn)坐標(biāo)為A(9,-3,4),B(9,2,1),則線段AB與坐標(biāo)平面()A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案:∵A(9,-3,4),B(9,2,1),∴AB=(9,2,1)-(9,-3,4)=(0,5,-3),∵yOz平面內(nèi)的向量的一般形式為a=(0,y,z)∴向量AB∥a,可得AB∥平面yOz.故選:C20.如圖,AB,CD是半徑為a的圓O的兩條弦,他們相交于AB的中點(diǎn)P,PD=2a3,∠OAP=30°,則CP=______.答案:因?yàn)辄c(diǎn)P是AB的中點(diǎn),由垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.21.直線y=k(x-2)+3必過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為()
A.(3,2)
B.(2,3)
C.(2,-3)
D.(-2,3)答案:B22.已知某車(chē)間加工零件的個(gè)數(shù)x與所花費(fèi)時(shí)間y(h)之間的線性回歸方程為=0.01x+0.5,則加工600個(gè)零件大約需要的時(shí)間為()
A.6.5h
B.5.5h
C.3.5h
D.0.3h答案:A23.在復(fù)平面內(nèi),記復(fù)數(shù)3+i對(duì)應(yīng)的向量為OZ,若向量OZ饒坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到向量OZ所對(duì)應(yīng)的復(fù)數(shù)為_(kāi)_____.答案:向量OZ饒坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到向量所對(duì)應(yīng)的復(fù)數(shù)為(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故為2i.24.求過(guò)點(diǎn)A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設(shè)所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|
k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.25.P是以F1,F(xiàn)2為焦點(diǎn)的橢圓上一點(diǎn),過(guò)焦點(diǎn)F2作∠F1PF2外角平分線的垂線,垂足為M,則點(diǎn)M的軌跡是()
A.橢圓
B.圓
C.雙曲線
D.雙曲線的一支答案:B26.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線上的一點(diǎn).過(guò)P作⊙O的切線,切點(diǎn)為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設(shè)圓的直徑是x則三角形ABC是一個(gè)含有30°角的三角形,∴BC=12AB,三角形BPC是一個(gè)等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:427.“a=18”是“對(duì)任意的正數(shù)x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)“a=18”時(shí),由基本不等式可得:“對(duì)任意的正數(shù)x,2x+ax≥1”一定成立,即“a=18”?“對(duì)任意的正數(shù)x,2x+ax≥1”為真命題;而“對(duì)任意的正數(shù)x,2x+ax≥1的”時(shí),可得“a≥18”即“對(duì)任意的正數(shù)x,2x+ax≥1”?“a=18”為假命題;故“a=18”是“對(duì)任意的正數(shù)x,2x+ax≥1的”充分不必要條件故選A28.某程序框圖如圖所示,若a=3,則該程序運(yùn)行后,輸出的x值為_(kāi)_____.答案:由題意,x的初值為1,每次進(jìn)行循環(huán)體則執(zhí)行乘二加一的運(yùn)算,執(zhí)行4次后所得的結(jié)果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故為:31.29.圓臺(tái)的一個(gè)底面周長(zhǎng)是另一個(gè)底面周長(zhǎng)的3倍,母線長(zhǎng)為3,圓臺(tái)的側(cè)面積為84π,則圓臺(tái)較小底面的半徑為()A.7B.6C.5D.3答案:設(shè)上底面半徑為r,因?yàn)閳A臺(tái)的一個(gè)底面周長(zhǎng)是另一個(gè)底面周長(zhǎng)的3倍,母線長(zhǎng)為3,圓臺(tái)的側(cè)面積為84π,所以S側(cè)面積=π(r+3r)l=84π,r=7故選A30.已知
p:所有國(guó)產(chǎn)手機(jī)都有陷阱消費(fèi),則¬p是()
A.所有國(guó)產(chǎn)手機(jī)都沒(méi)有陷阱消費(fèi)
B.有一部國(guó)產(chǎn)手機(jī)有陷阱消費(fèi)
C.有一部國(guó)產(chǎn)手機(jī)沒(méi)有陷阱消費(fèi)
D.國(guó)外產(chǎn)手機(jī)沒(méi)有陷阱消費(fèi)答案:C31.下列命題中為真命題的是(
)
A.平行直線的傾斜角相等
B.平行直線的斜率相等
C.互相垂直的兩直線的傾斜角互補(bǔ)
D.互相垂直的兩直線的斜率互為相反數(shù)答案:A32.設(shè)x>0,y>0且x≠y,求證答案:證明略解析:由x>0,y>0且x≠y,要證明只需
即只需由條件,顯然成立.∴原不等式成立33.如圖,PT是⊙O的切線,切點(diǎn)為T(mén),直線PA與⊙O交于A、B兩點(diǎn),∠TPA的平分線分別交直線TA、TB于D、E兩點(diǎn),已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點(diǎn),可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故為433,3234.某商人將彩電先按原價(jià)提高40%,然后“八折優(yōu)惠”,結(jié)果是每臺(tái)彩電比原價(jià)多賺144元,那么每臺(tái)彩電原價(jià)是______元.答案:設(shè)每臺(tái)彩電原價(jià)是x元,由題意可得(1+40%)x?0.8-x=144,解得x=1200,故為1200.35.已知向量,,若與共線,則的值為
A
B
C
D
答案:D解析:,,由,得36.對(duì)于一組數(shù)據(jù)的兩個(gè)函數(shù)模型,其殘差平方和分別為153.4
和200,若從中選取一個(gè)擬合程度較好的函數(shù)模型,應(yīng)選殘差平方和為_(kāi)_____的那個(gè).答案:殘差的平方和是用來(lái)描述n個(gè)點(diǎn)與相應(yīng)回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個(gè)模型.故為:153.4.37.已知向量i=(1,0),j=(0,1).若向量i+λj與λi+j垂直,則實(shí)數(shù)λ=______.答案:由題意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj與λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故為:038.如圖程序框圖箭頭a指向①處時(shí),輸出
s=______.箭頭a指向②處時(shí),輸出
s=______.答案:程序在運(yùn)行過(guò)程中各變量的情況如下表所示:(1)當(dāng)箭頭a指向①時(shí),是否繼續(xù)循環(huán)
S
i循環(huán)前/0
1第一圈
是
1
2第二圈
是
2
3第三圈
是
3
4第四圈
是
4
5第五圈
是
5
6第六圈
否故最終輸出的S值為5,即m=5;(2)當(dāng)箭頭a指向②時(shí),是否繼續(xù)循環(huán)
S
i循環(huán)前/0
1第一圈
是
1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版的軟件購(gòu)買(mǎi)與技術(shù)支持合同
- 服裝銷(xiāo)售店長(zhǎng)下半年工作計(jì)劃10篇
- 春季工作計(jì)劃模板8篇
- 2025年度全球十大風(fēng)險(xiǎn)報(bào)告
- 創(chuàng)建文明城市倡議書(shū)范文合集九篇
- 員工辭職申請(qǐng)書(shū)匯編6篇
- 2025年高模量玻璃纖維布項(xiàng)目發(fā)展計(jì)劃
- 新安江生態(tài)補(bǔ)償報(bào)告
- 煤業(yè)企業(yè)調(diào)度室管理制度匯編
- 計(jì)劃生育-婦產(chǎn)科教學(xué)課件
- (完整版)成人學(xué)士學(xué)位英語(yǔ)考試歷年真題
- JJF 1806-2020微小孔徑測(cè)量?jī)x校準(zhǔn)規(guī)范
- 干部履歷表-干部履歷表
- GB 2714-2015食品安全國(guó)家標(biāo)準(zhǔn)醬腌菜
- 業(yè)委會(huì)年終總結(jié)報(bào)告
- 中國(guó)移動(dòng)集團(tuán)客戶(hù)經(jīng)理的工作總結(jié)
- 中醫(yī)護(hù)理質(zhì)量指標(biāo)
- 患者告知及知情同意簽字制度
- 公司各中心事業(yè)部獨(dú)立核算運(yùn)營(yíng)實(shí)施方案
- 幼兒園大班綜合《我們和手機(jī)》課件
- 中小企業(yè)內(nèi)部控制與風(fēng)險(xiǎn)管理(第二版)項(xiàng)目五:銷(xiāo)售業(yè)務(wù)內(nèi)部控制與風(fēng)險(xiǎn)管理
評(píng)論
0/150
提交評(píng)論