2023年桂林生命與健康職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年桂林生命與健康職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年桂林生命與健康職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年桂林生命與健康職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年桂林生命與健康職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年桂林生命與健康職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.如圖程序框圖箭頭a指向①處時(shí),輸出

s=______.箭頭a指向②處時(shí),輸出

s=______.答案:程序在運(yùn)行過程中各變量的情況如下表所示:(1)當(dāng)箭頭a指向①時(shí),是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

2

3第三圈

3

4第四圈

4

5第五圈

5

6第六圈

否故最終輸出的S值為5,即m=5;(2)當(dāng)箭頭a指向②時(shí),是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

1+2

3第三圈

1+2+3

4第四圈

1+2+3+4

5第五圈

1+2+3+4+5

6第六圈

否故最終輸出的S值為1+2+3+4+5=15;則n=15.故為:5,15.2.已知平面上直線l的方向向量=(-,),點(diǎn)O(0,0)和A(1,-2)在l上的射影分別是O'和A′,則=λ,其中λ等于()

A.

B.-

C.2

D.-2答案:D3.把平面上一切單位向量歸結(jié)到共同的起點(diǎn),那么這些向量的終點(diǎn)所構(gòu)成的圖形是

______.答案:把平面上一切單位向量歸結(jié)到共同的起點(diǎn),那么這些向量的終點(diǎn)到起點(diǎn)的距離都等于1,所以,由圓的定義得,這些向量的終點(diǎn)所構(gòu)成的圖形是半徑為1的圓.4.已知圓C:x2+y2-4y-6y+12=0,求:

(1)過點(diǎn)A(3,5)的圓的切線方程;

(2)在兩條坐標(biāo)軸上截距相等的圓的切線方程.答案:(l)設(shè)過點(diǎn)A(3,5)的直線?的方程為y-5=k(x-3).因?yàn)橹本€?與⊙C相切,而圓心為C(2,3),則|2k-3-3k+5|k2+1=1,解得k=34所以切線方程為y-5=34(x-3),即3x-4y+11=0.由于過圓外一點(diǎn)A與圓相切的直線有兩條,因此另一條切線方程為x=3.(2)因?yàn)樵c(diǎn)在圓外,所以設(shè)在兩坐標(biāo)軸上截距相等的直線方程x+y=a或y=kx.由直線與圓相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切線方程為x+y=5士2或y=6±223x.5.直線x=-2+ty=1-t(t為參數(shù))被圓x=2+2cosθy=-1+2sinθ(θ為參數(shù))所截得的弦長為______.答案:∵圓x=2+2cosθy=-1+2sinθ(θ為參數(shù)),消去θ可得,(x-2)2+(y+1)2=4,∵直線x=-2+ty=1-t(t為參數(shù)),∴x+y=-1,圓心為(2,-1),設(shè)圓心到直線的距離為d=|2-1+1|2=2,圓的半徑為2∴截得的弦長為222-(2)2=22,故為22.6.若雙曲線與橢圓x216+y225=1有相同的焦點(diǎn),與雙曲線x22-y2=1有相同漸近線,求雙曲線方程.答案:依題意可設(shè)所求的雙曲線的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線與橢圓x216+y225=1有相同的焦點(diǎn)∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線的方程為y23-x26=1…(13分)7.在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(-1,1),若取原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,則在下列選項(xiàng)中,不是點(diǎn)P極坐標(biāo)的是()

A.()

B.()

C.()

D.()答案:D8.直線y=3x+3的傾斜角的大小為______.答案:∵直線y=3x+3的斜率等于3,設(shè)傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.9.用樣本估計(jì)總體,下列說法正確的是()A.樣本的結(jié)果就是總體的結(jié)果B.樣本容量越大,估計(jì)就越精確C.樣本容量越小,估計(jì)就越精確D.樣本的方差可以近似地反映總體的平均狀態(tài)答案:用樣本估計(jì)總體時(shí),樣本容量越大,估計(jì)就越精確,樣本的平均值可以近似地反映總體的平均狀態(tài),樣本的標(biāo)準(zhǔn)差可以近似地反映總體的波動(dòng)狀態(tài),數(shù)據(jù)的方差越大,說明數(shù)據(jù)越不穩(wěn)定,樣本的結(jié)果可以粗略的估計(jì)總體的結(jié)果,但不就是總體的結(jié)果.故選B.10.(選修4-4:坐標(biāo)系與參數(shù)方程)

在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為x=3-22ty=5+22t(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.

(Ⅰ)求圓C的直角坐標(biāo)方程;

(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,5),求|PA|+|PB|.答案:(Ⅰ)∵圓C的方程為ρ=25sinθ.∴x2+y2-25y=0,即圓C的直角坐標(biāo)方程:x2+(y-5)2=5.(Ⅱ)(3-22t)2+(22t)2=5,即t2-32t+4=0,由于△=(32)2-4×4=2>0,故可設(shè)t1,t2是上述方程的兩實(shí)根,所以t1+t2=32t1t2=4,又直線l過點(diǎn)P(3,5),故|PA|+|PB|=|t1|+|t2|=t1+t2=3211.若直線l的方程為x=2,則該直線的傾斜角是()A.60°B.45°C.90°D.180°答案:∵直線l的方程為x=2∴直線l與x軸垂直∴直線l的傾斜角為90°故選C12.l1,l2,l3是空間三條不同的直線,則下列命題正確的是[

]A.l1⊥l2,l2⊥l3l1∥l3

B.l1⊥l2,l2∥l3l1⊥l3

C.l1∥l2∥l3l1,l2,l3共面

D.l1,l2,l3共點(diǎn)l1,l2,l3共面答案:B13.用反證法證明命題“若a2+b2=0,則a、b全為0(a、b∈R)”,其反設(shè)正確的是()

A.a(chǎn)、b至少有一個(gè)不為0

B.a(chǎn)、b至少有一個(gè)為0

C.a(chǎn)、b全不為0

D.a(chǎn)、b中只有一個(gè)為0答案:A14.平面內(nèi)有兩個(gè)定點(diǎn)F1(-5,0)和F2(5,0),動(dòng)點(diǎn)P滿足條件|PF1|-|PF2|=6,則動(dòng)點(diǎn)P的軌跡方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,點(diǎn)P的軌跡是以F1、F2為焦點(diǎn)的雙曲線右支,得c=5,2a=6,∴a=3,∴b2=16,故動(dòng)點(diǎn)P的軌跡方程是x29-y216=1(x≥3).故選D.15.平面向量與的夾角為60°,=(2,0),||=1,則|+2|()

A.

B.2

C.4

D.12答案:B16.滿足條件|2z+1|=|z+i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點(diǎn)的軌跡是______.答案:設(shè)復(fù)數(shù)z在復(fù)平面上對應(yīng)點(diǎn)的坐標(biāo)為(x,y),由|2z+1|=|z+i|可得(2x+1)2+(2y)2=(x)2+(y+1)2,化簡可得x2+

y2+43x

=

0,表示一個(gè)圓,故為圓.17.設(shè)集合A={1,2},則滿足A∪B={1,2,3}的集合B的個(gè)數(shù)是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},則集合B中必含有元素3,即此題可轉(zhuǎn)化為求集合A={1,2}的子集個(gè)數(shù)問題,所以滿足題目條件的集合B共有22=4個(gè).故選擇C.18.在平面幾何里,我們知道,正三角形的外接圓和內(nèi)切圓的半徑之比是2:1。拓展到空間,研究正四面體(四個(gè)面均為全等的正三角形的四面體)的外接球和內(nèi)切球的半徑關(guān)系,可以得出的正確結(jié)論是:正四面體的外接球和內(nèi)切球的半徑之比是(

)。答案:3:119.已知x,y之間的一組數(shù)據(jù):

x0123y1357則y與x的回歸方程必經(jīng)過()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴這組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,4)根據(jù)線性回歸方程一定過樣本中心點(diǎn),∴線性回歸方程y=a+bx所表示的直線必經(jīng)過點(diǎn)(1.5,4)故選C20.將一個(gè)總體分為A、B、C三層,其個(gè)體數(shù)之比為5:3:2,若用分層抽樣的方法抽取容量為180的樣本,則應(yīng)從C中抽取樣本的個(gè)數(shù)為______個(gè).答案:由分層抽樣的定義可得應(yīng)從B中抽取的個(gè)體數(shù)為180×25+3+2=36,故為:36.21.設(shè)向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為

______.答案:|a|=1因?yàn)閨b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因?yàn)?≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:222.已知直線3x+4y-3=0與直線6x+my+14=0平行,則它們之間的距離是______.答案:直線3x+4y-3=0即6x+8y-6=0,它直線6x+my+14=0平行,∴m=8,則它們之間的距離是d=|c1-c2|a2+b2=|-6-14|62+82=2,故為:2.23.若直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為邊長的三角形是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.不能確定答案:B24.從單詞“equation”選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有()A.120個(gè)B.480個(gè)C.720個(gè)D.840個(gè)答案:要選取5個(gè)字母時(shí)首先從其它6個(gè)字母中選3個(gè)有C63種結(jié)果,再與“qu“組成的一個(gè)元素進(jìn)行全排列共有C63A44=480,故選B.25.設(shè)α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個(gè)實(shí)根,當(dāng)m為何值時(shí),α2+β2有最小值?并求出這個(gè)最小值.答案:若α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個(gè)實(shí)根則△=16m2-16(m+2)≥0,即m≤-1,或m≥2則α+β=m,α×β=m+24,則α2+β2=(α+β)2-2αβ=m2-2×m+24=m2-12m-1=(m-14)2-1716∴當(dāng)m=-1時(shí),α2+β2有最小值,最小值是12.26.函數(shù)f(x)=2|log2x|的圖象大致是()

A.

B.

C.

D.

答案:C27.如圖,一個(gè)空間幾何體的正視圖、側(cè)視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長為2,那么

這個(gè)幾何體的體積為()A.13B.23C.43D.2答案:根據(jù)三視圖,可知該幾何體是三棱錐,右圖為該三棱錐的直觀圖,三棱錐的底面是一個(gè)腰長是2的等腰直角三角形,∴底面的面積是12×2×2=2垂直于底面的側(cè)棱長是2,即高為2,∴三棱錐的體積是13×2×2=43故選C.28.已知0<α<π2,方程x2sinα+y2cosα=1表示焦點(diǎn)在y軸上的橢圓,則α的取值范圍______.答案:方程x2sinα+y2cosα=1化成標(biāo)準(zhǔn)形式得:x21sinα+y21cosα=1.∵方程表示焦點(diǎn)在y軸上的橢圓,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范圍是(π4,π2)故為:(π4,π2)29.等于()

A.a(chǎn)16

B.a(chǎn)8

C.a(chǎn)4

D.a(chǎn)2答案:C30.某小組有3名女生、4名男生,從中選出3名代表,要求至少女生與男生各有一名,共有______種不同的選法.(要求用數(shù)字作答)答案:由題意知本題是一個(gè)分類計(jì)數(shù)問題,要求至少女生與男生各有一名有兩個(gè)種不同的結(jié)果,即一個(gè)女生兩個(gè)男生和一個(gè)男生兩個(gè)女生,∴共有C31C42+C32C41=30種結(jié)果,故為:3031.下列各量:①密度

②浮力

③風(fēng)速

④溫度,其中是向量的個(gè)數(shù)有()個(gè).A.1B.3C.2D.4答案:根據(jù)向量的定義,知道需要同時(shí)具有大小和方向兩個(gè)要素才是向量,在所給的四個(gè)量中,密度只有大小,浮力既有大小又有方向,風(fēng)速既有大小又有方向,溫度只有大小沒有方向綜上可知向量的個(gè)數(shù)是2個(gè),故選C.32.若矩陣M=1111,則直線x+y+2=0在M對應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(diǎn)(x0,y0),(x',y')是所得的直線上一點(diǎn),[1

1][x']=[x0][1

1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直線x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故為:x+y+1=0.33.從一批羽毛球產(chǎn)品中任取一個(gè),質(zhì)量小于4.8

g的概率是0.3,質(zhì)量不小于4.85

g的概率是0.32,那么質(zhì)量在[4.8,4.85)g范圍內(nèi)的概率是()

A.0.62

B.0.38

C.0.7

D.0.68答案:B34.如圖,橢圓C2x2a2+

y2b2=1的焦點(diǎn)為F1,F(xiàn)2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)n為過原點(diǎn)的直線,l是與n垂直相交與點(diǎn)P,與橢圓相交于A,B兩點(diǎn)的直線|op|=1,是否存在上述直線l使OA?OB=0成立?若存在,求出直線l的方程;并說出;若不存在,請說明理由.答案:(Ⅰ)由題意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴橢圓C的方程為x24+y33=1.(Ⅱ)設(shè)A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),假設(shè)使OA?OB=0成立的直線l存在.(i)當(dāng)l不垂直于x軸時(shí),設(shè)l的方程為y=kx+m,由l與n垂直相交于P點(diǎn),且|OP|=1得|m|1+

k2=1,即m2=k2+1,由OA?OB=0得x1x2+y1y2=0,將y=kx+m代入橢圓得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化簡得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③將m2=1+k2代入③并化簡得-5(k2+1)=0矛盾.即此時(shí)直線l不存在.(ii)當(dāng)l垂直于x軸時(shí),滿足|OP|=1的直線l的方程為x=1或x=-1,由A、B兩點(diǎn)的坐標(biāo)為(1,32),(1,-32)或(-1,32),(-1,-32).當(dāng)x=1時(shí),OA?OB=(1,32)?

(1,-32)=-54≠0.當(dāng)x=-1時(shí),OA?OB=(-1,32)?

(-1,-32)=-54≠0.∴此時(shí)直線l也不存在.綜上所述,使OA?OB=0成立的直線l不成立.35.某總體容量為M,其中帶有標(biāo)記的有N個(gè),現(xiàn)用簡單隨機(jī)抽樣方法從中抽出一個(gè)容量為m的樣本,則抽取的m個(gè)個(gè)體中帶有標(biāo)記的個(gè)數(shù)估計(jì)為()A.mNMB.mMNC.MNmD.N答案:由題意知,總體中帶有標(biāo)記的魚所占比例是NM,故樣本中帶有標(biāo)記的個(gè)數(shù)估計(jì)為mNM,故選A.36.拋物線y=-12x2上一點(diǎn)N到其焦點(diǎn)F的距離是3,則點(diǎn)N到直線y=1的距離等于______.答案:∵拋物線y=-12x2化成標(biāo)準(zhǔn)方程為x2=-2y∴拋物線的焦點(diǎn)為F(0,-12),準(zhǔn)線方程為y=12∵點(diǎn)N在拋物線上,到焦點(diǎn)F的距離是3,∴點(diǎn)N到準(zhǔn)線y=12的距離也是3因此,點(diǎn)N到直線y=1的距離等于3+(1-12)=72故為:7237.函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大a2,則a的值為()A.32B.2C.12或32D.12答案:當(dāng)a>1時(shí),函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是增函數(shù),由題意可得a2-a=a2,∴a=32.當(dāng)1>a>0時(shí),函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是減函數(shù),由題意可得a-a2=a2,解得

a=12.綜上,a的值為12或32故選C.38.下列四個(gè)散點(diǎn)圖中,使用線性回歸模型擬合效果最好的是()

A.

B.

C.

D.

答案:D39.下列關(guān)于結(jié)構(gòu)圖的說法不正確的是()

A.結(jié)構(gòu)圖中各要素之間通常表現(xiàn)為概念上的從屬關(guān)系和邏輯上的先后關(guān)系

B.結(jié)構(gòu)圖都是“樹形”結(jié)構(gòu)

C.簡潔的結(jié)構(gòu)圖能更好地反映主體要素之間關(guān)系和系統(tǒng)的整體特點(diǎn)

D.復(fù)雜的結(jié)構(gòu)圖能更詳細(xì)地反映系統(tǒng)中各細(xì)節(jié)要素及其關(guān)系答案:B40.如圖,在⊙O中,弦CD垂直于直徑AB,求證:CBCO=CDCA.答案:證明:連接AD,如圖所示:由垂徑定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.41.如圖,設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB

所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:4542.由數(shù)字0、1、2、3、4可組成不同的三位數(shù)的個(gè)數(shù)是()

A.100

B.125

C.64

D.80答案:A43.在三棱錐O-ABC中,M,N分別是OA,BC的中點(diǎn),點(diǎn)G是MN的中點(diǎn),則OG可用基底{OA,OB,OC}表示成:OG=______.答案:如圖,連接ON,在△OBC中,點(diǎn)N是BC中點(diǎn),則由平行四邊形法則得ON=12(OB+OC)在△OMN中,點(diǎn)G是MN中點(diǎn),則由平行四邊形法則得OG=12(OM+ON)=12OM+12ON=14OA+12?12(OB+OC)14(OA+OB+OC),故為:14(OA+OB+OC).44.已知直線過點(diǎn)A(2,0),且平行于y軸,方程:|x|=2,則(

A.l是方程|x|=2的曲線

B.|x|=2是l的方程

C.l上每一點(diǎn)的坐標(biāo)都是方程|x|=2的解

D.以方程|x|=2的解(x,y)為坐標(biāo)的點(diǎn)都在l上答案:C45.點(diǎn)B是點(diǎn)A(1,2,3)在坐標(biāo)平面yOz內(nèi)的正投影,則|OB|等于()

A.

B.

C.

D.答案:B46.O、B、C為空間四個(gè)點(diǎn),又、、為空間的一個(gè)基底,則()

A.O、A、B、C四點(diǎn)不共線

B.O、A、B、C四點(diǎn)共面,但不共線

C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線

D.O、A、B、C四點(diǎn)不共面答案:D47.過點(diǎn)P(2,3)且以a=(1,3)為方向向量的直線l的方程為______.答案:設(shè)直線l的另一個(gè)方向向量為a=(1,k),其中k是直線的斜率可得a=(1,3)與a=(1,k)互相平行∴11=k3?k=3,所以直線l的點(diǎn)斜式方程為:y-3=3(x-2)化成一般式:3x-y-3=0故為:3x-y-3=0.48.已知F1(-2,0),F(xiàn)2(2,0)兩點(diǎn),曲線C上的動(dòng)點(diǎn)P滿足|PF1|+|PF2|

=32|F1F2|.

(Ⅰ)求曲線C的方程;

(Ⅱ)若直線l經(jīng)過點(diǎn)M(0,3),交曲線C于A,B兩點(diǎn),且MA=12MB,求直線l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|

=32|F1F2|

=6>|F1F2|=4,故曲線C是以F1,F(xiàn)2為焦點(diǎn),長軸長為6的橢圓,其方程為x29+y25=1.(Ⅱ)方法一:設(shè)A(x1,y1),B(x2,y2),由條件可知A為MB的中點(diǎn),則有x129+y125=1,

(1)x229+y225=1,(2)2x1=x2,

(3)2y1=y2+3.

(4)將(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理為4x129+4y125-125y1+45=0.將(1)代入上式得y1=2,再代入橢圓方程解得x1=±35,故所求的直線方程為y=±53x+3.方法二:依題意,直線l的斜率存在,設(shè)其方程為y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.設(shè)A(x1,y1),B(x2,y2),則x1+x2=-54k5+9k2,①x1x2=365+9k2.②因?yàn)镸A=12MB,所以A為MB的中點(diǎn),從而x2=2x1.將x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直線l的方程為y=±53x+3.49.下列點(diǎn)在x軸上的是()

A.(0.1,0.2,0.3)

B.(0,0,0.001)

C.(5,0,0)

D.(0,0.01,0)答案:C50.我市某機(jī)構(gòu)為調(diào)查2009年下半年落實(shí)中學(xué)生“陽光體育”活動(dòng)的情況,設(shè)平均每人每天參加體育鍛煉時(shí)間為X(單位:分鐘),按鍛煉時(shí)間分下列四種情況統(tǒng)計(jì):①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學(xué)生參加了此項(xiàng)活動(dòng),右圖是此次調(diào)查中某一項(xiàng)的流程圖,其輸出的結(jié)果是6200,則平均每天參加體育鍛煉時(shí)間在0~20分鐘內(nèi)的學(xué)生的頻率是()A.0.62B.0.38C.6200D.3800答案:由圖知輸出的S的值是運(yùn)動(dòng)時(shí)間超過20分鐘的學(xué)生人數(shù),由于統(tǒng)計(jì)總?cè)藬?shù)是10000,又輸出的S=6200,故運(yùn)動(dòng)時(shí)間不超過20分鐘的學(xué)生人數(shù)是3800事件“平均每天參加體育鍛煉時(shí)間在0~20分鐘內(nèi)的學(xué)生的”頻率是380010000=0.38故選B第2卷一.綜合題(共50題)1.先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b.

(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;

(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.答案:(1)先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b,事件總數(shù)為6×6=36.∵直線ax+by+c=0與圓x2+y2=1相切的充要條件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴滿足條件的情況只有a=3,b=4,c=5;或a=4,b=3,c=5兩種情況.∴直線ax+by+c=0與圓x2+y2=1相切的概率是236=118(2)先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b,事件總數(shù)為6×6=36.∵三角形的一邊長為5∴當(dāng)a=1時(shí),b=5,(1,5,5)1種當(dāng)a=2時(shí),b=5,(2,5,5)1種當(dāng)a=3時(shí),b=3,5,(3,3,5),(3,5,5)2種當(dāng)a=4時(shí),b=4,5,(4,4,5),(4,5,5)2種當(dāng)a=5時(shí),b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6種當(dāng)a=6時(shí),b=5,6,(6,5,5),(6,6,5)2種故滿足條件的不同情況共有14種故三條線段能圍成不同的等腰三角形的概率為1436=718.2.三行三列的方陣.a11a12

a13a21a22

a23a31a32

a33.中有9個(gè)數(shù)aji(i=1,2,3;j=1,2,3),從中任取三個(gè)數(shù),則它們不同行且不同列的概率是()A.37B.47C.114D.1314答案:從給出的9個(gè)數(shù)中任取3個(gè)數(shù),共有C39;從三行三列的方陣中任取三個(gè)數(shù),使它們不同行且不同列:從第一行中任取一個(gè)數(shù)有C13種方法,則第二行只能從另外兩列中的兩個(gè)數(shù)任取一個(gè)有C12種方法,第三行只能從剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴從三行三列的方陣中任取三個(gè)數(shù),則它們不同行且同列的概率P=6C39=114.故選C.3.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點(diǎn),N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.4.半徑分別為1和2的兩圓外切,作半徑為3的圓與這兩圓均相切,一共可作()個(gè).

A.2

B.3

C.4

D.5答案:D5.已知隨機(jī)變量X的分布列是:(

)

X

4

a

9

10

P

0.3

0.1

b

0.2

且EX=7.5,則a的值為()

A.5

B.6

C.7

D.8答案:C6.已知△ABC中,過重心G的直線交邊AB于P,交邊AC于Q,設(shè)AP=pPB,AQ=qQC,則pqp+q=()A.1B.3C.13D.2答案:取特殊直線PQ使其過重心G且平行于邊BC∵點(diǎn)G為重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故選項(xiàng)為A7.下列語句不屬于基本算法語句的是()

A.賦值語句

B.運(yùn)算語句

C.條件語句

D.循環(huán)語句答案:B8.以過橢圓+=1(a>b>0)的右焦點(diǎn)的弦為直徑的圓與其右準(zhǔn)線的位置關(guān)系是()

A.相交

B.相切

C.相離

D.不能確定答案:C9.隨機(jī)變量ξ的分布列為

ξ01xP15p310且Eξ=1.1,則p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故為12;2.10.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-1511.已知三角形ABC的頂點(diǎn)坐標(biāo)為A(0,3)、B(-2,-1)、C(4,3),M是BC邊上的中點(diǎn)。

(1)求AB邊所在的直線方程。

(2)求中線AM的長。

(3)求點(diǎn)C關(guān)于直線AB對稱點(diǎn)的坐標(biāo)。答案:解:(1)由兩點(diǎn)式得AB邊所在的直線方程為:=即2x-y+3=0(2)由中點(diǎn)坐標(biāo)公式得M(1,1)∴|AM|==(3)設(shè)C點(diǎn)關(guān)于直線AB的對稱點(diǎn)為C′(x′,y′)則CC′⊥AB且線段CC′的中點(diǎn)在直線AB上。即解之得x′=

y′=C′點(diǎn)坐標(biāo)為(,)12.某電廠冷卻塔的外形是如圖所示雙曲線的一部分繞其中軸(即雙曲線的虛軸)旋轉(zhuǎn)所成的曲面,其中A、A′是雙曲線的頂點(diǎn),C、C′是冷卻塔上口直徑的兩個(gè)端點(diǎn),B、B′是下底直徑的兩個(gè)端點(diǎn),已知AA′=14m,CC′=18m,BB′=22m,塔高20m.

(Ⅰ)建立坐標(biāo)系并寫出該雙曲線方程;

(Ⅱ)求冷卻塔的容積(精確到10m3,塔壁厚度不計(jì),π取3.14).答案:(I)如圖建立直角坐標(biāo)系xOy,AA′在x軸上,AA′的中點(diǎn)為坐標(biāo)原點(diǎn)O,CC′與BB′平行于x軸.設(shè)雙曲線方程為x2a2-y2b2=1(a>0,b>0),則a=12AA′=7.又設(shè)B(11,y1),C(9,y2),因?yàn)辄c(diǎn)B、C在雙曲線上,所以有11272-y21b2=1,①9272-y22b2=1,②由題意知y2-y1=20.③由①、②、③得y1=-12,y2=8,b=72.故雙曲線方程為x249-y298=1;(II)由雙曲線方程得x2=12y2+49.設(shè)冷卻塔的容積為V(m3),則V=π∫y2y1x2dy=π∫8-12(12y2+49)dy=π(16y3+49y)|8-12,∴V≈4.25×103(m3).答:冷卻塔的容積為4.25×103(m3).13.某海域有A、B兩個(gè)島嶼,B島在A島正東40海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線像一個(gè)橢圓,其焦點(diǎn)恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過魚群.某日,研究人員在A、B兩島同時(shí)用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),A、B兩島收到魚群反射信號的時(shí)間比為5:3.你能否確定魚群此時(shí)分別與A、B兩島的距離?答案:以AB的中點(diǎn)為原點(diǎn),AB所在直線為x軸建立直角坐標(biāo)系設(shè)橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因?yàn)榻裹c(diǎn)A的正西方向橢圓上的點(diǎn)為左頂點(diǎn),所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚群的運(yùn)動(dòng)軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚群反射信號的時(shí)間比為5:3,因此設(shè)此時(shí)距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚群分別距A,B兩島的距離為50海里和30海里.------(14分)14.電子手表廠生產(chǎn)某批電子手表正品率為,次品率為,現(xiàn)對該批電子手表進(jìn)行測試,設(shè)第X次首次測到正品,則P(1≤X≤2013)等于()

A.1-()2012

B.1-()2013

C.1-()2012

D.1-()2013答案:B15.給出下列四個(gè)命題:

①若兩個(gè)向量相等,則它們的起點(diǎn)相同,終點(diǎn)相同;

②在平行四邊形ABCD中,一定有;

③若則

④若則

其中正確的命題個(gè)數(shù)是()

A.1

B.2

C.3

D.4答案:C16.已知P為拋物線y2=4x上一點(diǎn),設(shè)P到準(zhǔn)線的距離為d1,P到點(diǎn)A(1,4)的距離為d2,則d1+d2的最小值為______.答案:∵y2=4x,焦點(diǎn)坐標(biāo)為F(1,0)根據(jù)拋物線定義可知P到準(zhǔn)線的距離為d1=|PF|d1+d2=|PF|+|PA|進(jìn)而可知當(dāng)A,P,F(xiàn)三點(diǎn)共線時(shí),d1+d2的最小值=|AF|=4故為417.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調(diào)遞減∵logax>loga5∴0<x<5故為:(0,5)18.拋物線x2+y=0的焦點(diǎn)位于()

A.y軸的負(fù)半軸上

B.y軸的正半軸上

C.x軸的負(fù)半軸上

D.x軸的正半軸上答案:A19.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.20.給出下列四個(gè)命題,其中正確的一個(gè)是()

A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報(bào)變量對解釋變量的貢獻(xiàn)率是80%

B.在獨(dú)立性檢驗(yàn)時(shí),兩個(gè)變量的2×2列聯(lián)表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個(gè)變量沒有關(guān)系成立的可能性就越大

C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越差

D.隨機(jī)誤差e是衡量預(yù)報(bào)精確度的一個(gè)量,它滿足E(e)=0答案:D21.列舉兩種證明兩個(gè)三角形相似的方法.答案:三邊對應(yīng)成比例,兩個(gè)三角形相似,兩邊對應(yīng)成比例且夾角相等,兩個(gè)三角形相似.22.橢圓x29+y216=1上一動(dòng)點(diǎn)P到兩焦點(diǎn)距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知?jiǎng)狱c(diǎn)P到兩焦點(diǎn)距離之和為2a=8,故選B.23.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,則|a+b|=______;a+b與b的夾角為______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b

由|a|=|b|=2,∠AOB=60°,得:a2=b2=

4,a?b

=2∴|a+b|2=12,∴|a+b|=23令a+b與b的夾角為θ則0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故為:23,π624.函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為

______.答案:∵y=ax與y=loga(x+1)具有相同的單調(diào)性.∴f(x)=ax+loga(x+1)在[0,1]上單調(diào),∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化簡得1+loga2=0,解得a=12故為:1225.如圖所示,圖中線條構(gòu)成的所有矩形中(由6個(gè)小的正方形組成),其中為正方形的概率為

______.答案:它的長有10種取法,由長與寬的對稱性,得到它的寬也有10種取法;因?yàn)?,長與寬相互獨(dú)立,所以得到長X寬的個(gè)數(shù)有:10X10=100個(gè)即總的矩形的個(gè)數(shù)有:100個(gè)長=寬的個(gè)數(shù)為:(1X1的正方形的個(gè)數(shù))+(2X2的正方形個(gè)數(shù))+(3X3的正方形個(gè)數(shù))+(4X4的正方形個(gè)數(shù))=16+9+4+1=30個(gè)即正方形的個(gè)數(shù)有:30個(gè)所以為正方形的概率是30100=0.3故為0.326.在畫兩個(gè)變量的散點(diǎn)圖時(shí),下面哪個(gè)敘述是正確的(

A.預(yù)報(bào)變量x軸上,解釋變量y軸上

B.解釋變量x軸上,預(yù)報(bào)變量y軸上

C.可以選擇兩個(gè)變量中任意一個(gè)變量x軸上

D.可以選擇兩個(gè)變量中任意一個(gè)變量y軸上答案:B27.已知A(4,1,9),B(10,-1,6),則A,B兩點(diǎn)間距離為______.答案:∵A(4,1,9),B(10,-1,6),∴A,B兩點(diǎn)間距離為|AB|=(10-4)2+(-1-1)2+(6-9)2=7故為:728.選做題:如圖,點(diǎn)A、B、C是圓O上的點(diǎn),且AB=4,∠ACB=30°,則圓O的面積等于______.答案:連接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一個(gè)等邊三角形,∴OA=AB=4,∴⊙O的面積是16π故為16π29.α為第一象限角是sinαcosα>0的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:若α為第一象限角,則sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,則①sinα>0,cosα>0,此時(shí)α為第一象限角.或②sinα<0,cosα<0,此時(shí)α為第三象限角.所以α為第一象限角是sinαcosα>0的充分不必要條件.故選A.30.已知某一隨機(jī)變量ξ的分布列如下,且Eξ=6.3,則a的值為()

ξ

4

a

9

P

0.5

0.1

b

A.5

B.6

C.7

D.8答案:C31.用反證法證明某命題時(shí),對結(jié)論:“自然數(shù)a,b,c中恰有一個(gè)偶數(shù)”正確的反設(shè)為()

A.a(chǎn),b,c中至少有兩個(gè)偶數(shù)

B.a(chǎn),b,c中至少有兩個(gè)偶數(shù)或都是奇數(shù)

C.a(chǎn),b,c都是奇數(shù)

D.a(chǎn),b,c都是偶數(shù)答案:B32.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},記x0為拋擲一枚骰子出現(xiàn)的點(diǎn)數(shù),則x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0為拋擲一枚骰子出現(xiàn)的點(diǎn)數(shù)可能有6種,∴P=46=23,故為:23.33.已知|a|=1,|b|=2,向量a與b的夾角為60°,則|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a與b的夾角為60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|

=7,故為7.34.已知函數(shù)y=f(x)是R上的奇函數(shù),其零點(diǎn)為x1,x2,…,x2011,則x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函數(shù),∴0是函數(shù)y=f(x)的零點(diǎn).其他非0的零點(diǎn)關(guān)于原點(diǎn)對稱.∴x1+x2+…+x2011=0.故為:0.35.命題“當(dāng)AB=AC時(shí),△ABC是等腰三角形”與它的逆命題、否命題、逆否命題這四個(gè)命題中,真命題有______個(gè).答案:原命題為真命題.逆命題“當(dāng)△ABC是等腰三角形時(shí),AB=AC”為假命題.否命題“當(dāng)AB≠AC時(shí),△ABC不是等腰三角形”為假命題.逆否命題“當(dāng)△ABC不是等腰三角形時(shí),AB≠AC”為真命題.故為:2.36.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線,向量c=2e1-9e2.問是否存在這樣的實(shí)數(shù)λ、μ,使向量d=λa+μb與c共線?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線,則存在實(shí)數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實(shí)數(shù)λ、μ,只要λ=-2μ,就能使d與c共線.37.把一枚硬幣連續(xù)拋擲兩次,事件A=“第一次出現(xiàn)正面”,事件B=“第二次出現(xiàn)正面”,則P(B|A)等于(

A.

B.

C.

D.答案:A38.長為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上移動(dòng),,則點(diǎn)C的軌跡是()

A.線段

B.圓

C.橢圓

D.雙曲線答案:C39.

如圖,已知PA為⊙O的切線,PBC為⊙O的割線,PA=6,PB=BC,⊙O的半徑OC=5,那么弦BC的弦心距OM=()

A.4

B.3

C.5

D.6

答案:A40.方程組的解集是(

)答案:{(5,-4)}41.一直線傾斜角的正切值為34,且過點(diǎn)P(1,2),則直線方程為______.答案:因?yàn)橹本€傾斜角的正切值為34,即k=3,又直線過點(diǎn)P(1,2),所以直線的點(diǎn)斜式方程為y-2=34(x-1),整理得,3x-4y+5=0.故為3x-4y+5=0.42.若a<b<c,x<y<z,則下列各式中值最大的一個(gè)是()

A.a(chǎn)x+cy+bz

B.bx+ay+cz

C.bx+cy+az

D.a(chǎn)x+by+cz答案:D43.輸入3個(gè)數(shù),輸出其中最大的公約數(shù),編程序完成上述功能.答案:INPUT

m,n,kr=m

MOD

nWHILE

r<>0m=nn=rr=m

MOD

nWENDr=k

MOD

nWHILE

r<>0k=nn=rr=k

MOD

nWENDPRINT

nEND44.下列在曲線上的點(diǎn)是(

A.

B.

C.

D.答案:B45.已知二項(xiàng)分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項(xiàng)分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:146.如果命題“曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()

A.曲線C是方程f(x,y)=0的曲線

B.方程f(x,y)=0的每一組解對應(yīng)的點(diǎn)都在曲線C上

C.不滿足方程f(x,y)=0的點(diǎn)(x,y)不在曲線C上

D.方程f(x,y)=0是曲線C的方程答案:C47.若直線的參數(shù)方程為,則直線的斜率為(

)A.B.C.D.答案:D48.已知A(3,0),B(0,3),O為坐標(biāo)原點(diǎn),點(diǎn)C在第一象限內(nèi),且∠AOC=60°,設(shè)OC=OA+λOB

(λ∈R),則λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=

3tan60°=33又∵|OB|=3∴λ=3故選D.49.三個(gè)數(shù)a=0.52,b=log20.5,c=20.5之間的大小關(guān)系是()A.a(chǎn)<c<bB.b<c<aC.a(chǎn)<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故選D.50.已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,則λ=______.答案:∵a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,∴a∥b.∴存在實(shí)數(shù)k,使得a=kb,∴3λ=k(λ+1)6=3kλ+6=2λk,解得k=2λ=2,故為2第3卷一.綜合題(共50題)1.{,,}=是空間向量的一個(gè)基底,設(shè)=+,=+,=+,給出下列向量組:①{,,},②{,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.

A.1

B.2

C.3

D.4答案:C2.已知空間三點(diǎn)A(1,1,1)、B(-1,0,4)、C(2,-2,3),則AB與CA的夾角θ的大小是

______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14?14=-714=-12,∴θ=<AB,CA>=120°.故為120°3.下列選項(xiàng)中元素的全體可以組成集合的是()A.2013年1月風(fēng)度中學(xué)高一級高個(gè)子學(xué)生B.校園中長的高大的樹木C.2013年1月風(fēng)度中學(xué)高一級在校學(xué)生D.學(xué)?;@球水平較高的學(xué)生答案:因?yàn)榧现性鼐哂校捍_定性、互異性、無序性.所以A、B、D都不是集合,元素不確定;故選C.4.用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n?1?2?…?(2n-1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是______.答案:當(dāng)n=k時(shí),左邊等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),當(dāng)n=k+1時(shí),左邊等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故從“k”到“k+1”的證明,左邊需增添的代數(shù)式是(2k+1)(2k+2)(k+1)=2(2k+1),故為:2(2k+1).5.已知a、b、c是實(shí)數(shù),且a2+b2+c2=1,求2a+b+2c的最大值.答案:因?yàn)橐阎猘、b、c是實(shí)數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(22+1+22)≥(2a+b+2c)2故(2a+b+2c)2≤9,即2a+b+2c≤3即2a+b+2c的最大值為3.6.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題中正確的是()

A.若m∥n,m∥α,則n∥α

B.若α⊥β,m∥α,則m⊥β

C.若α⊥β,m⊥β,則m∥α

D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D7.已知△ABC的三個(gè)頂點(diǎn)為A(1,-2,5),B(-1,0,1),C(3,-4,5),則邊BC上的中線長為______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中點(diǎn)為D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故為:2.8.已知點(diǎn)P是拋物線y2=2x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為()

A.

B.3

C.

D.答案:A9.在極坐標(biāo)系中,點(diǎn)(2,π6)到直線ρsinθ=2的距離等于______.答案:在極坐標(biāo)系中,點(diǎn)(2

π6)化為直角坐標(biāo)為(3,1),直線ρsinθ=2化為直角坐標(biāo)方程為y=2,(3,1),到y(tǒng)=2的距離1,即為點(diǎn)(2

,

π6)到直線ρsinθ=2的距離1,故為:1.10.方程2x2+ky2=1表示的曲線是長軸在y軸的橢圓,則實(shí)數(shù)k的范圍是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:橢圓方程化為x212+y21k=1.焦點(diǎn)在y軸上,則1k>12,即k<2.又k>0,∴0<k<2.故選C.11.在120個(gè)零件中,一級品24個(gè),二級品36個(gè),三級品60個(gè).用系統(tǒng)抽樣法從中抽取容量為20的樣本、則每個(gè)個(gè)體被抽取到的概率是()

A.

B.

C.

D.答案:D12.平面向量a與b的夾角為60°,a=(2,0),|b|=1

則|a+2b|=______.答案:∵平面向量a與b的夾角為60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故為:23.13.一個(gè)底面是正三角形的三棱柱的側(cè)視圖如圖所示,則該幾何體的側(cè)面積等于()A.3B.6C.23D.2答案:由正視圖知:三棱柱是以底面邊長為2,高為1的正三棱柱,側(cè)面積為3×2×1=6,故為:B.14.三個(gè)數(shù)a=0.32,b=log20.3,c=20.3之間的大小關(guān)系是()A.a(chǎn)<c<bB.a(chǎn)<b<cC.b<a<cD.b<c<a答案:由對數(shù)函數(shù)的性質(zhì)可知:b=log20.3<0,由指數(shù)函數(shù)的性質(zhì)可知:0<a<1,c>1∴b<a<c故選C15.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()

A.

B.

C.

D.答案:C16.如圖所示的圓盤由八個(gè)全等的扇形構(gòu)成,指針繞中心旋轉(zhuǎn),可能隨機(jī)停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉(zhuǎn)動(dòng)轉(zhuǎn)盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.17.在平面直角坐標(biāo)中,h為坐標(biāo)原點(diǎn),設(shè)向量OA=a,OB=b,其中a=(3,1),b=(1,3),若OC=λa+μb,且0≤λ≤μ≤1,C點(diǎn)所有可能的位置區(qū)域用陰影表示正確的是()A.

B.

C.

D.

答案:∵向量OA=a,OB=b,a=(3,1),b=(1,3),OC=λa+μb,∴OC=(3λ,λ)+(μ,3μ)=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故選A.18.如果方程x2+(m-1)x+m2-2=0的兩個(gè)實(shí)根一個(gè)小于1,另一個(gè)大于1,那么實(shí)數(shù)m的取值范圍是()

A.

B.(-2,0)

C.(-2,1)

D.(0,1)答案:C19.(幾何證明選講)如圖,點(diǎn)A、B、C都在⊙O上,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若AB=5,BC=3,CD=6,則線段AC的長為______.答案:∵過點(diǎn)C的切線交AB的延長線于點(diǎn)D,∴DC是圓的切線,DBA是圓的割線,根據(jù)切割線定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由題意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故為:4.520.兩個(gè)樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動(dòng)()

A.大

B.相等

C.小

D.無法確定答案:A21.在極坐標(biāo)系中,極點(diǎn)到直線ρcosθ=2的距離為______.答案:直線ρcosθ=2即x=2,極點(diǎn)的直角坐標(biāo)為(0,0),故極點(diǎn)到直線ρcosθ=2的距離為2,故為2.22.已知f(x)=,若f(x0)>1,則x0的取值范圍是()

A.(0,1)

B.(-∞,0)∪(0,+∞)

C.(-∞,0)∪(1,+∞)

D.(1,+∞)答案:C23.已知點(diǎn)M(1,2),N(1,1),則直線MN的傾斜角是()A.90°B.45°C.135°D.不存在答案:∵點(diǎn)M(1,2),N(1,1),則直線MN的斜率不存在,故直線MN的傾斜角是90°,故選A.24.關(guān)于直線a,b,c以及平面M,N,給出下面命題:

①若a∥M,b∥M,則a∥b

②若a∥M,b⊥M,則b⊥a

③若a∥M,b⊥M,且c⊥a,c⊥b,則c⊥M

④若a⊥M,a∥N,則M⊥N,

其中正確命題的個(gè)數(shù)為()

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.3個(gè)答案:C25.否定結(jié)論“至少有一個(gè)解”的說法中,正確的是()

A.至多有一個(gè)解

B.至少有兩個(gè)解

C.恰有一個(gè)解

D.沒有解答案:D26.設(shè)x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)當(dāng)且僅當(dāng)2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)27.若點(diǎn)A分有向線段所成的比是2,則點(diǎn)C分有向線段所成的比是()

A.

B.3

C.-2

D.-3答案:D28.學(xué)校成員、教師、后勤人員、理科教師、文科教師的結(jié)構(gòu)圖正確的是()

A.

B.

C.

D.

答案:A29.若對n個(gè)向量a1,a2,…,an,存在n個(gè)不全為零的實(shí)數(shù)k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,則稱向量a1,a2,…,an為“線性相關(guān)”.依此規(guī)定,請你求出一組實(shí)數(shù)k1,k2,k3的值,它能說明a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.k1,k2,k3的值分別是______(寫出一組即可).答案:設(shè)a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.則存在實(shí)數(shù),k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,則k2=2,k1=-4故為:-4,2,130.直線l只經(jīng)過第一、三、四象限,則直線l的斜率k()

A.大于零

B.小于零

C.大于零或小于零

D.以上結(jié)論都有可能答案:A31.圓x2+y2-6x+4y+12=0與圓x2+y2-14x-2y+14=0的位置關(guān)系是______.答案:∵圓x2+y2-6x+4y+12=0化成標(biāo)準(zhǔn)形式,得(x-3)2+(y+2)2=1∴圓x2+y2-6x+4y+12=0的圓心為C1(3,-2),半徑r1=1同理可得圓x2+y2-14x-2y+14=0的C2(7,1),半徑r2=6∵兩圓的圓心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得兩圓的位置關(guān)系是內(nèi)切故為:內(nèi)切32.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()

A.2

B.3

C.4

D.5答案:C33.若p、q是兩個(gè)簡單命題,且“p或q”的否定形式是真命題,則()

A.p真q真

B.p真q假

C.p假q真

D.p假q假答案:D34.(坐標(biāo)系與參數(shù)方程選做題)過點(diǎn)(2,π3)且平行于極軸的直線的極坐標(biāo)方程為______.答案:法一:先將極坐標(biāo)化成直角坐標(biāo)表示,(2,π3)化為(1,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論