版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年阜陽(yáng)科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),則向量2-3+4的坐標(biāo)為()
A.(16,0,-23)
B.(28,0,-23)
C.(16,-4,-1)
D.(0,0,9)答案:A2.已知橢圓的中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸,焦點(diǎn)在x軸上,短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2組成的三角形的周長(zhǎng)為4+23,且∠F1BF2=2π3,求橢圓的標(biāo)準(zhǔn)方程.答案::設(shè)長(zhǎng)軸長(zhǎng)為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長(zhǎng)為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標(biāo)準(zhǔn)方程為x24+y2=1.3.(選做題)圓內(nèi)非直徑的兩條弦AB、CD相交于圓內(nèi)一點(diǎn)P,已知PA=PB=4,PC=14PD,則CD=______.答案:連接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故為:104.函數(shù)f(x)=log2(3x+1)的值域?yàn)椋ǎ?/p>
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)答案:根據(jù)對(duì)數(shù)函數(shù)的定義可知,真數(shù)3x+1>0恒成立,解得x∈R.因此,該函數(shù)的定義域?yàn)镽,原函數(shù)f(x)=log2(3x+1)是由對(duì)數(shù)函數(shù)y=log2t和t=3x+1復(fù)合的復(fù)合函數(shù).由復(fù)合函數(shù)的單調(diào)性定義(同増異減)知道,原函數(shù)在定義域R上是單調(diào)遞增的.根據(jù)指數(shù)函數(shù)的性質(zhì)可知,3x>0,所以,3x+1>1,所以f(x)=log2(3x+1)>log21=0,故選A.解析:試題分析5.與橢圓+y2=1共焦點(diǎn)且過(guò)點(diǎn)P(2,1)的雙曲線(xiàn)方程是()
A.-y2=1
B.-y2=1
C.-=1
D.x2-=1答案:B6.(選做題)參數(shù)方程中當(dāng)t為參數(shù)時(shí),化為普通方程為(
)。答案:x2-y2=17.點(diǎn)(2,-2)的極坐標(biāo)為_(kāi)_____.答案:∵點(diǎn)(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(diǎn)(2,-2)的極坐標(biāo)為(22,-π4)故為(22,-π4).8.復(fù)數(shù)Z=arccosx-π+(-2x)i(x∈R,i是虛數(shù)單位),在復(fù)平面上的對(duì)應(yīng)點(diǎn)只可能位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴復(fù)數(shù)Z對(duì)應(yīng)的點(diǎn)的實(shí)部和虛部都小于零,∴復(fù)數(shù)在第三象限,故選C.9.ab>0,則①|(zhì)a+b|>|a|②|a+b|<|b|③|a+b|<|a-b|④|a+b|>|a-b|四個(gè)式中正確的是()
A.①②
B.②③
C.①④
D.②④答案:C10.一個(gè)箱中原來(lái)裝有大小相同的
5
個(gè)球,其中
3
個(gè)紅球,2
個(gè)白球.規(guī)定:進(jìn)行一次操
作是指“從箱中隨機(jī)取出一個(gè)球,如果取出的是紅球,則把它放回箱中;如果取出的是白
球,則該球不放回,并另補(bǔ)一個(gè)紅球放到箱中.”
(1)求進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為
4
的概率;
(2)求進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)的分布列和數(shù)學(xué)期望.答案:(1)設(shè)A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計(jì)算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計(jì)算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為
4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設(shè)進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)X的分布列為:進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)X的數(shù)學(xué)期望EX=3×925+4×1425+5×225=9325.11.給出20個(gè)數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個(gè)求和問(wèn)題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.12.將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.答案:y=-cos2x,
=(,0)解析:將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.13.如圖程序輸出的結(jié)果是()
A.3,4
B.4,4
C.3,3
D.4,3
答案:B14.不等式0.52x>0.5x-1的解集為_(kāi)_____.答案:由于函數(shù)y=0.5x
是R上的減函數(shù),故由0.52x>0.5x-1可得2x<x-1,解得x<-1.故不等式0.52x>0.5x-1的解集為(-∞,-1),故為(-∞,-1).15.已知隨機(jī)變量x服從二項(xiàng)分布x~B(6,),則P(x=2)=()
A.
B.
C.
D.答案:D16.下列命題中正確的是()
A.若,則
B.若,則
.若,則
D.若,則答案:C17.三行三列的方陣.a11a12
a13a21a22
a23a31a32
a33.中有9個(gè)數(shù)aji(i=1,2,3;j=1,2,3),從中任取三個(gè)數(shù),則它們不同行且不同列的概率是()A.37B.47C.114D.1314答案:從給出的9個(gè)數(shù)中任取3個(gè)數(shù),共有C39;從三行三列的方陣中任取三個(gè)數(shù),使它們不同行且不同列:從第一行中任取一個(gè)數(shù)有C13種方法,則第二行只能從另外兩列中的兩個(gè)數(shù)任取一個(gè)有C12種方法,第三行只能從剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴從三行三列的方陣中任取三個(gè)數(shù),則它們不同行且同列的概率P=6C39=114.故選C.18.參數(shù)方程x=3cosθy=4sinθ,(θ為參數(shù))化為普通方程是______.答案:由參數(shù)方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化簡(jiǎn)得x29+y216=1,即為橢圓的普通方程故為:x29+y216=119.已知f(n)=1+12+13+L+1n(n∈N*),用數(shù)學(xué)歸納法證明f(2n)>n2時(shí),f(2k+1)-f(2k)等于______.答案:因?yàn)榧僭O(shè)n=k時(shí),f(2k)=1+12+13+…+12k,當(dāng)n=k+1時(shí),f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故為:12k+1+12k+2+…+12k+120.若e1,e2是兩個(gè)不共線(xiàn)的向量,已知AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,若A,B,D三點(diǎn)共線(xiàn),則k=______.答案:BD=CD-CB=(2e1-e2)-(e1+3e2)=2e1-4e2因?yàn)锳,B,D三點(diǎn)共線(xiàn),所以AB=kBD,已知AB=2e1+ke2,BD=2e1-4e2所以k=-4故為:-421.把方程化為以參數(shù)的參數(shù)方程是(
)A.B.C.D.答案:D解析:,取非零實(shí)數(shù),而A,B,C中的的范圍有各自的限制22.擬定從甲地到乙地通話(huà)m分鐘的電話(huà)費(fèi)由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù)(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話(huà)時(shí)間為5.5分鐘的話(huà)費(fèi)為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數(shù)可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.23.如圖給出了一個(gè)算法程序框圖,該算法程序框圖的功能是()A.求a,b,c三數(shù)的最大數(shù)B.求a,b,c三數(shù)的最小數(shù)C.將a,b,c按從小到大排列D.將a,b,c按從大到小排列答案:逐步分析框圖中的各框語(yǔ)句的功能,第一個(gè)條件結(jié)構(gòu)是比較a,b的大小,并將a,b中的較小值保存在變量a中,第二個(gè)條件結(jié)構(gòu)是比較a,c的大小,并將a,c中的較小值保存在變量a中,故變量a的值最終為a,b,c中的最小值.由此程序的功能為求a,b,c三個(gè)數(shù)的最小數(shù).故選B24.把矩陣變?yōu)楹?,與對(duì)應(yīng)的值是()
A.
B.
C.
D.答案:C25.袋中有5個(gè)小球(3白2黑),現(xiàn)從袋中每次取一個(gè)球,不放回地抽取兩次,則在第一次取到白球的條件下,第二次取到白球的概率是()
A.
B.
C.
D.答案:C26.在吸煙與患肺病這兩個(gè)分類(lèi)變量的計(jì)算中,下列說(shuō)法正確的是()
A.若K2的觀(guān)測(cè)值為k=6.635,而p(K2≥6.635)=0.010,故我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病
B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說(shuō)某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推判出現(xiàn)錯(cuò)誤
D.以上三種說(shuō)法都不正確答案:C27.在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是橢圓x23+y2=1上的一個(gè)動(dòng)點(diǎn),求S=x+y的最大值.答案:因橢圓x23+y2=1的參數(shù)方程為x=3cos?y=sin?(?為參數(shù))故可設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,當(dāng)?=π6時(shí),S取最大值2.28.如圖,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個(gè)動(dòng)點(diǎn),求PM的最小值.答案:過(guò)C作CM⊥AB,連接PM,因?yàn)镻C⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此時(shí)PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.29.有外形相同的球分裝三個(gè)盒子,每盒10個(gè).其中,第一個(gè)盒子中7個(gè)球標(biāo)有字母A、3個(gè)球標(biāo)有字母B;第二個(gè)盒子中有紅球和白球各5個(gè);第三個(gè)盒子中則有紅球8個(gè),白球2個(gè).試驗(yàn)按如下規(guī)則進(jìn)行:先在第一號(hào)盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號(hào)盒子中任取一個(gè)球;若第一次取得標(biāo)有字母B的球,則在第三號(hào)盒子中任取一個(gè)球.如果第二次取出的是紅球,則稱(chēng)試驗(yàn)成功,那么試驗(yàn)成功的概率為()
A.0.59
B.0.54
C.0.8
D.0.15答案:A30.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等價(jià)于或解得或即故不等式的解集為。31.如圖,在△ABC中,BC邊上的高所在的直線(xiàn)方程為x-2y+1=0,∠A的平分線(xiàn)所在的直線(xiàn)方程為y=0,若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).答案:點(diǎn)A為y=0與x-2y+1=0兩直線(xiàn)的交點(diǎn),∴點(diǎn)A的坐標(biāo)為(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分線(xiàn)所在直線(xiàn)的方程是y=0,∴kAC=-1.∴直線(xiàn)AC的方程是y=-x-1.而B(niǎo)C與x-2y+1=0垂直,∴kBC=-2.∴直線(xiàn)BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴點(diǎn)A和點(diǎn)C的坐標(biāo)分別為(-1,0)和(5,-6)32.設(shè)a,b是非負(fù)實(shí)數(shù),求證:a3+b3≥ab(a2+b2).答案:證明:由a,b是非負(fù)實(shí)數(shù),作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)[(a)5-(b)5].當(dāng)a≥b時(shí),a≥b,從而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;當(dāng)a<b時(shí),a<b,從而(a)5<(b)5,得(a-b)[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).33.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.34.若直線(xiàn)l經(jīng)過(guò)原點(diǎn)和點(diǎn)A(-2,-2),則它的斜率為()
A.-1
B.1
C.1或-1
D.0答案:B35.用數(shù)學(xué)歸納法證明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:證明:(1)當(dāng)n=1時(shí),左邊=12=1,右邊=1×2×36=1,等式成立.(4分)(2)假設(shè)當(dāng)n=k時(shí),等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,當(dāng)n=k+1時(shí),12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6這就是說(shuō),當(dāng)n=k+1時(shí)等式也成立.(10分)根據(jù)(1)和(2),可知等式對(duì)任何n∈N*都成立.(12分)36.如圖是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊BD長(zhǎng)為2;側(cè)視圖一直角三角形;俯視圖為一直角梯形,且AB=BC=1,則異面直線(xiàn)PB與CD所成角的正切值是()A.1B.2C.12D.12答案:取AD的中點(diǎn)E,連接BE,PE,CE,根據(jù)題意可知BE∥CD,∴∠PBE為異面直線(xiàn)PB與CD所成角根據(jù)條件知,PE=1,BE=2,PE⊥BE∴tan∠PBE=12故選C.37.中,是邊上的中線(xiàn)(如圖).
求證:.
答案:證明見(jiàn)解析解析:取線(xiàn)段所在的直線(xiàn)為軸,點(diǎn)為原點(diǎn)建立直角坐標(biāo)系.設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為.可得,,,.,..38.已知曲線(xiàn),
θ∈[0,2π)上一點(diǎn)P到點(diǎn)A(-2,0)、B(2,0)的距離之差為2,則△PAB是()
A.銳角三角形
B.鈍角三角形
C.直角三角形
D.等腰三角形答案:C39.三棱柱ABC-A1B1C1中,M、N分別是BB1、AC的中點(diǎn),設(shè),,=,則等于()
A.
B.
C.
D.答案:A40.函數(shù)f(x)=-2x+1(x∈[-2,2])的最小、最大值分別為()A.3,5B.-3,5C.1,5D.5,-3答案:因?yàn)閒(x)=-2x+1(x∈[-2,2])是單調(diào)遞減函數(shù),所以當(dāng)x=2時(shí),函數(shù)的最小值為-3.當(dāng)x=-2時(shí),函數(shù)的最大值為5.故選B.41.定點(diǎn)F1,F(xiàn)2,且|F1F2|=8,動(dòng)點(diǎn)P滿(mǎn)足|PF1|+|PF2|=8,則點(diǎn)P的軌跡是()A.橢圓B.圓C.直線(xiàn)D.線(xiàn)段答案:∵|PF1|+|PF2|=8,且|F1F2|=8∴|PF1|+|PF2|=|F1F2|①當(dāng)點(diǎn)P不在直線(xiàn)F1F2上時(shí),根據(jù)三角形兩邊之和大于第三邊,得|PF1|+|PF2|>|F1F2|,不符合題意;②當(dāng)點(diǎn)P在直線(xiàn)F1F2上時(shí),若點(diǎn)P在F1、F2兩點(diǎn)之外時(shí),可得|PF1|+|PF2|>8,得到|PF1|+|PF2|>|F1F2|,不符合題意;若點(diǎn)P在F1、F2兩點(diǎn)之間(或與F1、F2重合)時(shí),可得|PF1|+|PF2|=|F1F2|,符合題意.綜上所述,得點(diǎn)P在直線(xiàn)F1F2上且在F1、F2兩點(diǎn)之間或與F1、F2重合,故點(diǎn)P的軌跡是線(xiàn)段F1F2.故選:D42.設(shè)a、b∈R+且a+b=3,求證1+a+1+b≤10.答案:證明:證法一:(綜合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10證法二:(分析法)∵a、b∈R+且a+b=3,∴欲證1+a+1+b≤10只需證(1+a+1+b)2≤10即證2+a+b+2(1+a)?(1+b)≤10即證2(1+a)?(1+b)≤5只需證4(1+a)?(1+b)≤25只需證4(1+a)?(1+b)≤25即證4(1+a+b+ab)≤25只需證4ab≤9即證ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立43.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C44.有50件產(chǎn)品編號(hào)從1到50,現(xiàn)在從中抽取抽取5件檢驗(yàn),用系統(tǒng)抽樣確定所抽取的編號(hào)為()
A.5,10,15,20,25
B.5,15,20,35,40
C.5,11,17,23,29
D.10,20,30,40,50答案:D45.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為_(kāi)_____.答案:∵E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,∴EF是梯形的中位線(xiàn),設(shè)兩個(gè)梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:546.=(2,1),=(3,4),則向量在向量方向上的投影為()
A.
B.
C.2
D.10答案:C47.已知過(guò)點(diǎn)A(-2,m)和B(m,4)的直線(xiàn)與直線(xiàn)2x+y-1=0平行,則m的值為()
A.0
B.-8
C.2
D.10答案:B48.過(guò)點(diǎn)(-1,3)且平行于直線(xiàn)x-2y+3=0的直線(xiàn)方程為()
A.x-2y+7=0
B.2x+y-1=0
C.x-2y-5=0
D.2x+y-5=0答案:A49.已知橢圓C:+y2=1的右焦點(diǎn)為F,右準(zhǔn)線(xiàn)l,點(diǎn)A∈l,線(xiàn)段AF交C于點(diǎn)B.若=3,則=(
)
A.
B.2
C.
D.3答案:A50.方程2x2+ky2=1表示的曲線(xiàn)是長(zhǎng)軸在y軸的橢圓,則實(shí)數(shù)k的范圍是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:橢圓方程化為x212+y21k=1.焦點(diǎn)在y軸上,則1k>12,即k<2.又k>0,∴0<k<2.故選C.第2卷一.綜合題(共50題)1.如果圓x2+y2+Gx+Ey+F=0與x軸相切于原點(diǎn),那么()A.F=0,G≠0,E≠0B.E=0,F(xiàn)=0,G≠0C.G=0,F(xiàn)=0,E≠0D.G=0,E=0,F(xiàn)≠0答案:圓與x軸相切于原點(diǎn),則圓心在y軸上,G=0,圓心的縱坐標(biāo)的絕對(duì)值等于半徑,F(xiàn)=0,E≠0.故選C.2.已知拋物線(xiàn)和雙曲線(xiàn)都經(jīng)過(guò)點(diǎn)M(1,2),它們?cè)趚軸上有共同焦點(diǎn),拋物線(xiàn)的頂點(diǎn)為坐標(biāo)原點(diǎn),則雙曲線(xiàn)的標(biāo)準(zhǔn)方程是______.答案:設(shè)拋物線(xiàn)方程為y2=2px(p>0),將M(1,2)代入y2=2px,得P=2.∴拋物線(xiàn)方程為y2=4x,焦點(diǎn)為F(1,0)由題意知雙曲線(xiàn)的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0)∴c=1對(duì)于雙曲線(xiàn),2a=||MF1|-|MF2||=22-2∴a=2-1,a2=3-22,b2=22-2∴雙曲線(xiàn)方程為x23-22-y222-2=1.故為:x23-22-y222-2=1.3.如圖,O為直線(xiàn)A0A2013外一點(diǎn),若A0,A1,A2,A3,A4,A5,…,A2013中任意相鄰兩點(diǎn)的距離相等,設(shè)OA0=a,OA2013=b,用a,b表示OA0+OA1+OA2+…+OA2013,其結(jié)果為_(kāi)_____.答案:設(shè)A0A2013的中點(diǎn)為A,則A也是A1A2012,…A1006A1007的中點(diǎn),由向量的中點(diǎn)公式可得OA0+OA2013=2OA=a+b,同理可得OA1+OA2012=OA2+OA2011=…=OA1006+OA1007,故OA0+OA1+OA2+…+OA2013=1007×2OA=1007(a+b)故為:1007(a+b)4.把兩條直線(xiàn)的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當(dāng)?shù)氖牵ǎ?/p>
①平行
②垂直
③相交
④斜交.
A.①②③④
B.①④②③
C.①③②④
D.②①③④
答案:C5.如圖,已知Rt△ABC的兩條直角邊AC,BC的長(zhǎng)分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則BD=______cm.答案:∵易知AB=32+42=5,又由切割線(xiàn)定理得BC2=BD?AB,∴42=BD?5∴BD=165.故為:1656.4名同學(xué)分別報(bào)名參加學(xué)校的足球隊(duì),籃球隊(duì),乒乓球隊(duì),每人限報(bào)其中的一個(gè)運(yùn)動(dòng)隊(duì),不同報(bào)法的種數(shù)是()
A.34
B.43
C.24
D.12答案:A7.已知曲線(xiàn)x2a+y2b=1和直線(xiàn)ax+by+1=0(a,b為非零實(shí)數(shù)),在同一坐標(biāo)系中,它們的圖形可能是()A.
B.
C.
D.
答案:A選項(xiàng)中,直線(xiàn)的斜率大于0,故系數(shù)a,b的符號(hào)相反,此時(shí)曲線(xiàn)應(yīng)是雙曲線(xiàn),故不對(duì);B選項(xiàng)中直線(xiàn)的斜率小于0,故系數(shù)a,b的符號(hào)相同且都為負(fù),此時(shí)曲線(xiàn)不存在,故不對(duì);C選項(xiàng)中,直線(xiàn)斜率為正,故系數(shù)a,b的符號(hào)相反,且a正,b負(fù),此時(shí)曲線(xiàn)應(yīng)是焦點(diǎn)在x軸上的雙曲線(xiàn),圖形符合結(jié)論,可選;D選項(xiàng)中不正確,由C選項(xiàng)的判斷可知D不正確.故選D8.解不等式logx(2x+1)>logx2.答案:當(dāng)0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;當(dāng)x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.綜上所述,原不等式的解集為{x|0<x<12或x>1}.9.若x、y∈R+且x+2y≤ax+y恒成立,則a的最小值是()A.1B.2C.3D.1+22答案:由題意,根據(jù)柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故選C.10.已知離心率為63的橢圓C:x2a
2+y2b2=1(a>b>0)經(jīng)過(guò)點(diǎn)P(3,1).
(1)求橢圓C的方程;
(2)過(guò)左焦點(diǎn)F1且不與x軸垂直的直線(xiàn)l交橢圓C于M、N兩點(diǎn),若OM?ON=463tan∠MON(O為坐標(biāo)原點(diǎn)),求直線(xiàn)l的方程.答案:(1)依題意,離心率為63的橢圓C:x2a
2+y2b2=1(a>b>0)經(jīng)過(guò)點(diǎn)P(3,1).∴3a
2+1b2=1,且e2=c2a2=a2-b2a2=23解得:a2=6,b2=2故橢圓方程為x26+y22=1…(4分)(2)橢圓的左焦點(diǎn)為F1(-2,0),則直線(xiàn)l的方程可設(shè)為y=k(x+2)代入橢圓方程得:(3k2+1)x2+12k2x+12k2-6=0設(shè)M(x1,y1),N(x2,y2),∴x1+x2=-12k23k2+1,x1?x2=12k2-63k2+1…(6分)由OM?ON=463tan∠MON得:|OM|?|ON|sin∠MON=436,∴S△OMN=236…(9分)又|MN|=1+k2|x1-x2|=26(1+k2)3k2+1,原點(diǎn)O到l的距離d=|2k|1+k2,則S△OMN=12|MN|d=6(1+k2)3k2+1?|2k|1+k2=236解得k=±33∴l(xiāng)的方程是y=±33(x+2)…(13分)(用其他方法解答參照給分)11.設(shè)拋物線(xiàn)x2=12y的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)P(2,1)的直線(xiàn)l與拋物線(xiàn)相交于A、B兩點(diǎn),若點(diǎn)P恰為線(xiàn)段AB的中點(diǎn),則|AF|+|BF|=______.答案:過(guò)點(diǎn)A,B,P分別作拋物線(xiàn)準(zhǔn)線(xiàn)y=-3的垂線(xiàn),垂足為C,D,Q,據(jù)拋物線(xiàn)定義,得|AF|+|BF|=|AC|+|BD|=2|PQ|=8.故為812.三個(gè)數(shù)a=0.52,b=log20.5,c=20.5之間的大小關(guān)系是()A.a(chǎn)<c<bB.b<c<aC.a(chǎn)<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故選D.13.在我市新一輪農(nóng)村電網(wǎng)改造升級(jí)過(guò)程中,需要選一個(gè)電阻調(diào)試某村某設(shè)備的線(xiàn)路,但調(diào)試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)選試驗(yàn)時(shí),依次將電阻從小到大安排序號(hào),如果第1個(gè)試點(diǎn)與第2個(gè)試點(diǎn)比較,第1個(gè)試點(diǎn)是一個(gè)好點(diǎn),則第3個(gè)試點(diǎn)值的阻值為[
]A、1KΩ
B、1.3KΩ
C、5KΩ
D、1KΩ或5KΩ答案:C14.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時(shí),可假設(shè)p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對(duì)值都小于1.用反證法證明時(shí)可假設(shè)方程有一根x1的絕對(duì)值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是()
A.(1)的假設(shè)錯(cuò)誤,(2)的假設(shè)正確
B.(1)與(2)的假設(shè)都正確
C.(1)的假設(shè)正確,(2)的假設(shè)錯(cuò)誤
D.(1)與(2)的假設(shè)都錯(cuò)誤答案:A15.一次函數(shù)y=3x+2的斜率和截距分別是()A.2、3B.2、2C.3、2D.3、3答案:根據(jù)一次函數(shù)的定義和直線(xiàn)的斜截式方程知,此一次函數(shù)的斜率為3、截距為2故選C16.教材中“坐標(biāo)平面上的直線(xiàn)”與“圓錐曲線(xiàn)”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.答案:這兩章的內(nèi)容都是通過(guò)建立直角坐標(biāo)系,用代數(shù)中的函數(shù)思想來(lái)解決圖形中的幾何性質(zhì).故為用代數(shù)的方法研究圖形的幾何性質(zhì)解析:教材中“坐標(biāo)平面上的直線(xiàn)”與“圓錐曲線(xiàn)”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.17.參數(shù)方程(θ為參數(shù))表示的曲線(xiàn)為()
A.圓的一部分
B.橢圓的一部分
C.雙曲線(xiàn)的一部分
D.拋物線(xiàn)的一部分答案:D18.曲線(xiàn)x=sin2ty=sint(t為參數(shù))的普通方程為_(kāi)_____.答案:因?yàn)榍€(xiàn)x=sin2ty=sint(t為參數(shù))∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故為:x=y2,(-1≤y≤1).19.對(duì)于函數(shù)y=f(x),在給定區(qū)間上有兩個(gè)數(shù)x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數(shù)B.一定是減函數(shù)C.可能是常數(shù)函數(shù)D.單調(diào)性不能確定答案:解析:由單調(diào)性定義可知,不能用特殊值代替一般值.故選D.20.設(shè)P點(diǎn)在x軸上,Q點(diǎn)在y軸上,PQ的中點(diǎn)是M(-1,2),則|PQ|等于______.答案:設(shè)P(a,0),Q(0,b),∵PQ的中點(diǎn)是M(-1,2),∴由中點(diǎn)坐標(biāo)公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故為:2521.如果命題“曲線(xiàn)C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()
A.曲線(xiàn)C是方程f(x,y)=0的曲線(xiàn)
B.方程f(x,y)=0的每一組解對(duì)應(yīng)的點(diǎn)都在曲線(xiàn)C上
C.不滿(mǎn)足方程f(x,y)=0的點(diǎn)(x,y)不在曲線(xiàn)C上
D.方程f(x,y)=0是曲線(xiàn)C的方程答案:C22.{,,}=是空間向量的一個(gè)基底,設(shè)=+,=+,=+,給出下列向量組:①{,,},②{,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.
A.1
B.2
C.3
D.4答案:C23.用數(shù)學(xué)歸納法證明“<n(n∈N*,n>1)”時(shí),由n=k(k>1)不等式成立,推證n=k+1時(shí),左邊應(yīng)增加的項(xiàng)數(shù)是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C24.給出以下四個(gè)對(duì)象,其中能構(gòu)成集合的有()
①教2011屆高一的年輕教師;
②你所在班中身高超過(guò)1.70米的同學(xué);
③2010年廣州亞運(yùn)會(huì)的比賽項(xiàng)目;
④1,3,5.A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案:解析:因?yàn)槲匆?guī)定年輕的標(biāo)準(zhǔn),所以①不能構(gòu)成集合;由于②③④中的對(duì)象具備確定性、互異性,所以②③④能構(gòu)成集合.故選C.25.一段雙行道隧道的橫截面邊界由橢圓的上半部分和矩形的三邊組成,如圖所示.一輛卡車(chē)運(yùn)載一個(gè)長(zhǎng)方形的集裝箱,此箱平放在車(chē)上與車(chē)同寬,車(chē)與箱的高度共計(jì)4.2米,箱寬3米,若要求通過(guò)隧道時(shí),車(chē)體不得超過(guò)中線(xiàn).試問(wèn)這輛卡車(chē)是否能通過(guò)此隧道,請(qǐng)說(shuō)明理由.答案:建立如圖所示的坐標(biāo)系,則此隧道橫截面的橢圓上半部分方程為:x225+y24=1,y≥0.令x=3,則代入橢圓方程,解得y=1.6,因?yàn)?.6+3=4.6>4.2,所以,卡車(chē)能夠通過(guò)此隧道.26.(幾何證明選講選做題)如圖,梯形,,是對(duì)角線(xiàn)和的交點(diǎn),,則
。
答案:1:6解析:,
,,∵,,而∴。27.已知矩形ABCD,R、P分別在邊CD、BC上,E、F分別為AP、PR的中點(diǎn),當(dāng)P在BC上由B向C運(yùn)動(dòng)時(shí),點(diǎn)R在CD上固定不變,設(shè)BP=x,EF=y,那么下列結(jié)論中正確的是()A.y是x的增函數(shù)B.y是x的減函數(shù)C.y隨x先增大后減小D.無(wú)論x怎樣變化,y是常數(shù)答案:連接AR,如圖所示:由于點(diǎn)R在CD上固定不變,故AR的長(zhǎng)為定值又∵E、F分別為AP、PR的中點(diǎn),∴EF為△APR的中位線(xiàn),則EF=12AR為定值故無(wú)論x怎樣變化,y是常數(shù)故選D28.在數(shù)列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時(shí),數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時(shí),試比較an與n2+1的大小,證明你的結(jié)論.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假設(shè)數(shù)列{an}是等比數(shù)列,則a1,a2,a3也成等比數(shù)列,∴a22=a1?a3?(λ2+4)2=2(2λ3+8)?λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴數(shù)列{an}不是等比數(shù)列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵當(dāng)n=1,2,3時(shí),2n=n2-n+2,∴an=n2+1.當(dāng)n≥4時(shí),猜想2n>n2-n+2,證明如下:當(dāng)n=4時(shí),顯然2k>k2-4+2假設(shè)當(dāng)n=k≥4時(shí),猜想成立,即2k>k2-k+2,則當(dāng)n=k+1時(shí),2k+1=2?2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴當(dāng)n≥4時(shí),猜想2n>n2-n+2成立,∴當(dāng)n≥4時(shí),an>n2+1.29.設(shè)F1,F(xiàn)2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點(diǎn),過(guò)F1的直線(xiàn)l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長(zhǎng)為_(kāi)_____.答案:∵|AF2|,|AB|,|BF2|成等差數(shù)列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:4330.若方程mx2+(m+1)x+m=0有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)m的取值范圍是()
A.m>0
B.-<m<1
C.-<m<0或0<m<1
D.不確定答案:C31.某個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是()A.23B.3C.334D.332答案:由三視圖可知該幾何體是直三棱柱,高為1,底面三角形一邊長(zhǎng)為2,此邊上的高為3,所以V=Sh=12×2×3×1=3故選B.32.已知點(diǎn)P1的球坐標(biāo)是P1(4,,),P2的柱坐標(biāo)是P2(2,,1),則|P1P2|=()
A.
B.
C.
D.4答案:A33.已知a,b,c,d都是正數(shù),S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,則S的取值范圍是______.答案:∵a,b,c,d都是正數(shù),∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故為:(1,2)34.甲、乙、丙、丁四位同學(xué)各自對(duì)A、B兩個(gè)變量的線(xiàn)性相關(guān)性作試驗(yàn),并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m如表:
則哪位同學(xué)的實(shí)驗(yàn)結(jié)果體現(xiàn)A、B兩個(gè)變量更強(qiáng)的線(xiàn)性相關(guān)性()
A.丙
B.乙
C.甲
D.丁答案:C35.如圖過(guò)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)F的直線(xiàn)依次交拋物線(xiàn)及準(zhǔn)線(xiàn)于點(diǎn)A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線(xiàn)的方程為()
A.y2=x
B.y2=9x
C.y2=x
D.y2=3x
答案:D36.閱讀下面的程序框圖,則輸出的S=()A.14B.20C.30D.55答案:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循環(huán),故為C.37.某房間有四個(gè)門(mén),甲要各進(jìn)、出這個(gè)房間一次,不同的走法有多少種?()
A.12
B.7
C.16
D.64答案:C38.點(diǎn)O是△ABC內(nèi)一點(diǎn),若+=-,則是S△AOB:S△AOC=()
A.1
B.
C.
D.答案:A39.已知隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),P(ξ≤4)=0.84,則P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故選A.40.已知圓柱的軸截面周長(zhǎng)為6,體積為V,則下列關(guān)系式總成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:設(shè)圓柱的底面半徑為r,高為h,由題意得:4r+2h=6,即2r+h=3,∴體積為V=πr2h≤π[13(r+r+h)]2=π×(33)2=π當(dāng)且僅當(dāng)r=h時(shí)取等號(hào),由此可得V≤π恒成立故選:B41.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|等于______.答案:解;∵a,b均為單位向量,∴|a|=1,|b|=1又∵兩向量的夾角為60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故為1342.點(diǎn)(1,2)到直線(xiàn)x+2y+5=0的距離為_(kāi)_____.答案:點(diǎn)(1,2)到直線(xiàn)x+2y+5=0的距離為d=|1+2×2+5|12+22=25故為:2543.把函數(shù)y=ex的圖像按向量=(2,3)平移,得到y(tǒng)=f(x)的圖像,則f(x)=(
)
A.ex+2+3
B.ex+2-3
C.ex-2+3
D.ex-2-3答案:C44.設(shè)橢圓=1和x軸正方向的交點(diǎn)為A,和y軸的正方向的交點(diǎn)為B,P為第一象限內(nèi)橢圓上的點(diǎn),使四邊形OAPB面積最大(O為原點(diǎn)),那么四邊形OAPB面積最大值為()
A.a(chǎn)b
B.ab
C.a(chǎn)b
D.2ab答案:B45.用反證法證明“a+b=1”時(shí)的反設(shè)為()
A.a(chǎn)+b>1且a+b<1
B.a(chǎn)+b>1
C.a(chǎn)+b>1或a+b<1
D.a(chǎn)+b<1答案:C46.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線(xiàn),向量c=2e1-9e2.問(wèn)是否存在這樣的實(shí)數(shù)λ、μ,使向量d=λa+μb與c共線(xiàn)?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線(xiàn),則存在實(shí)數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實(shí)數(shù)λ、μ,只要λ=-2μ,就能使d與c共線(xiàn).47.直線(xiàn)L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,則a的值為(
)
A.-3
B.2
C.-3或2
D.3或-2答案:A48.根據(jù)下列條件,求圓的方程:
(1)過(guò)點(diǎn)A(1,1),B(-1,3)且面積最?。?/p>
(2)圓心在直線(xiàn)2x-y-7=0上且與y軸交于點(diǎn)A(0,-4),B(0,-2).答案:(1)過(guò)A、B兩點(diǎn)且面積最小的圓就是以線(xiàn)段AB為直徑的圓,∴圓心坐標(biāo)為(0,2),半徑r=12|AB|=12(-1+1)2+(1-3)2=12×8=2,∴所求圓的方程為x2+(y-2)2=2;(2)由圓與y軸交于點(diǎn)A(0,-4),B(0,-2)可知,圓心在直線(xiàn)y=-3上,由2x-y-7=0y=-3,解得x=2y=-3,∴圓心坐標(biāo)為(2,-3),半徑r=5,∴所求圓的方程為(x-2)2+(y+3)2=5.49.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c50.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),則a?(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a?(b+c)=(2,-3,1)?(2,2,5)=4-6+5=3.故為:3.第3卷一.綜合題(共50題)1.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C2.4名學(xué)生參加3項(xiàng)不同的競(jìng)賽,則不同參賽方法有()A.34B.A43C.3!D.43答案:由題意知本題是一個(gè)分步計(jì)數(shù)問(wèn)題,首先第一名學(xué)生從三種不同的競(jìng)賽中選有三種不同的結(jié)果,第二名學(xué)生從三種不同的競(jìng)賽中選有3種結(jié)果,同理第三個(gè)和第四個(gè)同學(xué)從三種競(jìng)賽中選都有3種結(jié)果,∴根據(jù)分步計(jì)數(shù)原理得到共有3×3×3×3=34故選A.3.用反證法證明命題“三角形的內(nèi)角中至多有一個(gè)是鈍角”時(shí),第一步是:“假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,應(yīng)先假設(shè)命題的否定成立,而命題“三角形的內(nèi)角中至多有一個(gè)是鈍角”的否定為:“三角形的內(nèi)角中至少有兩個(gè)鈍角”,故為“三角形的內(nèi)角中至少有兩個(gè)鈍角”.4.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個(gè)新的幾何體,想象幾何體的結(jié)構(gòu),畫(huà)出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀(guān)圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.5.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(xiàn)(
)。答案:圓,雙曲線(xiàn)6.過(guò)點(diǎn)A(-1,4)作圓C:(x-2)2+(y-3)2=1的切線(xiàn)l,求切線(xiàn)l的方程.答案:設(shè)方程為y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切線(xiàn)l的方程為y=4或3x+4y-13=07.如圖,直線(xiàn)AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB,⊙O交直線(xiàn)OB于E、D,連接EC、CD.
(1)求證:直線(xiàn)AB是⊙O的切線(xiàn);
(2)若tan∠CED=12,⊙O的半徑為3,求OA的長(zhǎng).答案:(1)如圖,連接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切線(xiàn);(2)∵BC是圓O切線(xiàn),且BE是圓O割線(xiàn),∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,設(shè)BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).8.數(shù)列{an}滿(mǎn)足a1=1且an+1=(1+1n2+n)an+12n(n≥1).
(Ⅰ)用數(shù)學(xué)歸納法證明:an≥2(n≥2);
(Ⅱ)已知不等式ln(1+x)<x對(duì)x>0成立,證明:an<e2(n≥1),其中無(wú)理數(shù)e=2.71828….答案:(Ⅰ)證明:①當(dāng)n=2時(shí),a2=2≥2,不等式成立.②假設(shè)當(dāng)n=k(k≥2)時(shí)不等式成立,即ak≥2(k≥2),那么ak+1=(1+1k(k+1))ak+12k≥2.這就是說(shuō),當(dāng)n=k+1時(shí)不等式成立.根據(jù)(1)、(2)可知:ak≥2對(duì)所有n≥2成立.(Ⅱ)由遞推公式及(Ⅰ)的結(jié)論有an+1=(1+1n2+n)an+12n≤(1+1n2+n+12n)an(n≥1)兩邊取對(duì)數(shù)并利用已知不等式得lnan+1≤ln(1+1n2+n+12n)+lnan≤lnan+1n2+n+12n故lnan+1-lnan≤1n(n+1)+12n(n≥1).上式從1到n-1求和可得lnan-lna1≤11×2+12×3+…+1(n-1)n+12+122+…+12n-1=1-12+(12-13)+…+1n-1-1n+12?1-12n1-12=1-1n+1-12n<2即lnan<2,故an<e2(n≥1).9.若矩陣滿(mǎn)足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為()
A.24
B.48
C.144
D.288答案:C10.某次考試,滿(mǎn)分100分,按規(guī)定x≥80者為良好,60≤x<80者為及格,小于60者不及格,畫(huà)出當(dāng)輸入一個(gè)同學(xué)的成績(jī)x時(shí),輸出這個(gè)同學(xué)屬于良好、及格還是不及格的程序框圖.答案:第一步:輸入一個(gè)成績(jī)X(0≤X≤100)第二步:判斷X是否大于等于80,若是,則輸出良好;否則,判斷X是否大于等于60,若是,則輸出及格;否則,輸出不及格;第三步:算法結(jié)束11.全稱(chēng)命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()
A.若2x+1是整數(shù),則x∈Z
B.若2x+1是奇數(shù),則x∈Z
C.若2x+1是偶數(shù),則x∈Z
D.若2x+1能被3整除,則x∈Z
E.若2x+1是整數(shù),則x∈Z答案:A12.設(shè)a,b是非負(fù)實(shí)數(shù),求證:a3+b3≥ab(a2+b2).答案:證明:由a,b是非負(fù)實(shí)數(shù),作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)[(a)5-(b)5].當(dāng)a≥b時(shí),a≥b,從而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;當(dāng)a<b時(shí),a<b,從而(a)5<(b)5,得(a-b)[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).13.命題“若A∪B=A,則A∩B=B”的否命題是()A.若A∪B≠A,則A∩B≠BB.若A∩B=B,則A∪B=AC.若A∩B≠A,則A∪B≠BD.若A∪B=B,則A∩B=A答案:“若A∪B=A,則A∩B=B”的否命題:“若A∪B≠A則A∩B≠B”故選A.14.已知0<a<2,復(fù)數(shù)z的實(shí)部為a,虛部為1,則|z|的取值范圍是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故選C.15.(本小題滿(mǎn)分10分)如圖,D、E分別是AB、AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知為方程的兩根
(1)證明四點(diǎn)共圓
(2)若求四點(diǎn)所在圓的半徑答案:(1)見(jiàn)解析;(2)解析:解:(Ⅰ)如圖,連接DE,依題意在中,,由因?yàn)樗裕?四點(diǎn)C、B、D、E共圓。(Ⅱ)當(dāng)時(shí),方程的根因而,取CE中點(diǎn)G,BD中點(diǎn)F,分別過(guò)G,F做AC,AB的垂線(xiàn),兩垂線(xiàn)交于點(diǎn)H,連接DH,因?yàn)樗狞c(diǎn)C、B、D、E共圓,所以,H為圓心,半徑為DH.,,所以,,點(diǎn)評(píng):此題考查平面幾何中的圓與相似三角形及方程等概念和性質(zhì)。注意把握判定與性質(zhì)的作用。16.已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為_(kāi)_____.答案:∵a+2b+3c=6,∴根據(jù)柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化簡(jiǎn)得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,當(dāng)且僅當(dāng)a:2b:3c=1:1:1時(shí),即a=2,b=1,c=23時(shí)等號(hào)成立由此可得:當(dāng)且僅當(dāng)a=2,b=1,c=23時(shí),a2+4b2+9c2的最小值為12故為:1217.請(qǐng)輸入一個(gè)奇數(shù)n的BASIC語(yǔ)句為_(kāi)_____.答案:INPUT表示輸入語(yǔ)句,輸入一個(gè)奇數(shù)n的BASIC語(yǔ)句為:INPUT“輸入一個(gè)奇數(shù)n”;n.故為:INPUT“輸入一個(gè)奇數(shù)n”;n.18.命題:“若a>0,則a2>0”的否命題是()A.若a2>0,則a>0B.若a<0,則a2<0C.若a≤0,則a2≤0D.若a≤0,則a2≤0答案:否命題是將條件,結(jié)論同時(shí)否定,∴若a>0,則a2>0”的否命題是若a≤0,則a2≤0,故為:C19.設(shè)直線(xiàn)l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C20.如圖在長(zhǎng)方形ABCD中,AB=,BC=1,E為線(xiàn)段DC上一動(dòng)點(diǎn),現(xiàn)將△AED沿AE折起,使點(diǎn)D在面ABC上的射影K在直線(xiàn)AE上,當(dāng)E從D運(yùn)動(dòng)到C,則K所形成軌跡的長(zhǎng)度為()
A.
B.
C.
D.答案:B21.2005年10月,我國(guó)載人航天飛船“神六”飛行獲得圓滿(mǎn)成功.已知“神六”飛船變軌前的運(yùn)行軌道是一個(gè)以地心為焦點(diǎn)的橢圓,飛船近地點(diǎn)、遠(yuǎn)地點(diǎn)離地面的距離分別為200公里、250公里.設(shè)地球半徑為R公里,則此時(shí)飛船軌道的離心率為_(kāi)_____.(結(jié)果用R的式子表示)答案:(I)設(shè)橢圓的方程為x2a2+y2b2=1由題設(shè)條件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25則此時(shí)飛船軌道的離心率為25225+R故為:25225+R.22.如圖是一個(gè)空間幾何體的三視圖,試用斜二測(cè)畫(huà)法畫(huà)出它的直觀(guān)圖.(尺寸不作嚴(yán)格要求,但是凡是未用鉛筆作圖不得分,隨手畫(huà)圖也不得分)答案:由題可知題目所述幾何體是正六棱臺(tái),畫(huà)法如下:畫(huà)法:(1)、畫(huà)軸畫(huà)x軸、y軸、z軸,使∠x(chóng)′O′y′=45°,∠x(chóng)′O′z′=90°
(圖1)(2)、畫(huà)底面以O(shè)′為中心,在XOY坐標(biāo)系內(nèi)畫(huà)正六棱臺(tái)下底面正方形的直觀(guān)圖ABCDEF.在z′軸上取線(xiàn)段O′O1等于正六棱臺(tái)的高;過(guò)O1
畫(huà)O1M、O1N分別平行O’x′、O′y′,再以O(shè)1為中心,畫(huà)正六棱臺(tái)上底面正方形的直觀(guān)圖A′B′C′E′F′(3)、成圖連接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱臺(tái)的直觀(guān)圖
(如圖2).23.曲線(xiàn)的極坐標(biāo)方程ρ=4sinθ化為直角坐標(biāo)方程為_(kāi)_____.答案:將原極坐標(biāo)方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標(biāo)方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.24.若不共線(xiàn)的平面向量,,兩兩所成角相等,且||=1,||=1,||=3,則|++|等于(
)
A.2
B.5
C.2或5
D.或答案:A25.若拋物線(xiàn)y2=4x上一點(diǎn)P到其焦點(diǎn)的距離為3,則點(diǎn)P的橫坐標(biāo)等于______.答案:∵拋物線(xiàn)y2=4x=2px,∴p=2,由拋物線(xiàn)定義可知,拋物線(xiàn)上任一點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線(xiàn)的距離是相等的,∴|MF|=3=x+p2=3,∴x=2,故為:2.26.若直線(xiàn)l:ax+by=1與圓C:x2+y2=1有兩個(gè)不同交點(diǎn),則點(diǎn)P(a,b)與圓C的位置關(guān)系是(
)
A.點(diǎn)在圓上
B.點(diǎn)在圓內(nèi)
C.點(diǎn)在圓外
D.不能確定答案:C27.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()
A.橢圓
B.AB所在直線(xiàn)
C.線(xiàn)段AB
D.無(wú)軌跡答案:C28.某醫(yī)院計(jì)劃從10名醫(yī)生(7男3女)中選5人組成醫(yī)療小組下鄉(xiāng)巡診.
(I)設(shè)所選5人中女醫(yī)生的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;
(II)現(xiàn)從10名醫(yī)生中的張強(qiáng)、李軍、王剛、趙永4名男醫(yī)生,李莉、孫萍2名女醫(yī)生共6人中選一正二副3名組長(zhǎng),在張強(qiáng)被選中的情況下,求李莉也被選中的概率.答案:(I)ξ的所有可能的取值為0,1,2,3,….….(2分)則P(ξ=0)=C57C510=112P(ξ=1)=C47C13C510=512P(ξ=2)=C27C23C510=512;P(ξ=3)=C27C33C510=112…(6分)ξ.的分布列為ξ0123P112512512112Eξ=1×112+2×512+3×112=32…(9分)(II)記“張強(qiáng)被選中”為事件A,“李莉也被選中”為事件B,則P(A)=C25C36=12,P(BA)=C14C36=15,所以P(B|A)=P(BA)P(A)=25…(12分)29.某學(xué)校高一年級(jí)男生人數(shù)占該年級(jí)學(xué)生人數(shù)的40%,在一次考試中,男,女平均分?jǐn)?shù)分別為75、80,則這次考試該年級(jí)學(xué)生平均分?jǐn)?shù)為_(kāi)_____.答案:設(shè)該班男生有x人,女生有y人,這次考試該年級(jí)學(xué)生平均分?jǐn)?shù)為a.根據(jù)題意可知:75x+80y=(x+y)×a,且xx+y=40%.所以a=78,則這次考試該年級(jí)學(xué)生平均分?jǐn)?shù)為78.故為:78.30.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,531.曲線(xiàn)(t為參數(shù))上的點(diǎn)與A(-2,3)的距離為,則該點(diǎn)坐標(biāo)是()
A.(-4,5)
B.(-3,4)或(-1,2)
C.(-3,4)
D.(-4,5)或(0,1)答案:B32.從集合{0,1,2,3,4,5,6}中任取兩個(gè)互不相等的數(shù)a,b,組成復(fù)數(shù)a+bi,其中虛數(shù)有()
A.36個(gè)
B.42個(gè)
C.30個(gè)
D.35個(gè)答案:A33.在平面直角坐標(biāo)系中,經(jīng)伸縮變換后曲線(xiàn)方程變換為橢圓方程,此伸縮變換公式是(
)A.B.C.D.答案:B解析:解:因?yàn)樵谄矫嬷苯亲鴺?biāo)系中,經(jīng)伸縮變換后曲線(xiàn)方程變換為橢圓方程,設(shè)變換為,將其代入方程中,得到x,y的關(guān)系式,對(duì)應(yīng)相等可知,選B34.在空間直角坐標(biāo)系0xyz中有兩點(diǎn)A(2,5,1)和B(2,4,-1),則|AB|=______.答案:∵點(diǎn)A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故為5.35.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線(xiàn)HF交BC的延長(zhǎng)線(xiàn)于點(diǎn)G.
(1)求證:圓心O在直線(xiàn)AD上.
(2)求證:點(diǎn)C是線(xiàn)段GD的中點(diǎn).答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線(xiàn)∴圓心O在直線(xiàn)AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點(diǎn)F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點(diǎn)C是線(xiàn)段GD的中點(diǎn).(10分)36.求證:答案:證明見(jiàn)解析解析:證明:此題采用了從第三項(xiàng)開(kāi)始拆項(xiàng)放縮的技巧,放縮拆項(xiàng)時(shí),不一定從第一項(xiàng)開(kāi)始,須根據(jù)具體題型分別對(duì)待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。37.設(shè)曲線(xiàn)C的參數(shù)方程為(θ為參數(shù)),直線(xiàn)l的方程為x-3y+2=0,則曲線(xiàn)C上到直線(xiàn)l距離為的點(diǎn)的個(gè)數(shù)為()
A.1
B.2
C.3
D.4答案:B38.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且滿(mǎn)足1對(duì)應(yīng)的元素是4,則這樣的映射有()A.2個(gè)B.4個(gè)C.8個(gè)D.9個(gè)答案:∵滿(mǎn)足1對(duì)應(yīng)的元素是4,集合A中還有兩個(gè)元素2和3,2可以和4對(duì)應(yīng),也可以和5對(duì)應(yīng),3可以和4對(duì)應(yīng),也可以和5對(duì)應(yīng),每個(gè)元素有兩種不同的對(duì)應(yīng),∴共有2×2=4種結(jié)果,故選B.39.設(shè)U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}40.如圖,海中有一小島,周?chē)?.8海里內(nèi)有暗礁.一軍艦從A地出發(fā)由西向東航行,望見(jiàn)小島B在北偏東75°,航行8海里到達(dá)C處,望見(jiàn)小島B在北偏東60°.若此艦不改變艦行的方向繼續(xù)前進(jìn),問(wèn)此艦有沒(méi)有觸礁的危險(xiǎn)?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,過(guò)B作AC的垂線(xiàn)垂足為D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴沒(méi)有危險(xiǎn).41.如圖,橢圓C2x2a2+
y2b2=1的焦點(diǎn)為F1,F(xiàn)2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.
(Ⅰ)求橢圓C的方程;
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年新版加工場(chǎng)地租賃合同
- 2024年度廢渣運(yùn)輸合同環(huán)保責(zé)任與效益評(píng)估范本3篇
- 2024年度網(wǎng)絡(luò)安全與數(shù)據(jù)中心建設(shè)合同3篇
- 2024年度個(gè)人股權(quán)轉(zhuǎn)讓合同書(shū)含股權(quán)代持及解除條款3篇
- 2024年物聯(lián)網(wǎng)平臺(tái)開(kāi)發(fā)與運(yùn)營(yíng)合同
- 2024年WPS定制版古建筑修復(fù)施工合同
- 2024年度建筑材料裝卸服務(wù)合同2篇
- 2024土石方運(yùn)輸與廢棄材料資源化利用服務(wù)合同書(shū)3篇
- 2024年度工程分包精準(zhǔn)管理服務(wù)合同3篇
- 2024全新醫(yī)療設(shè)備購(gòu)銷(xiāo)及質(zhì)量控制體系認(rèn)證合同3篇
- 《電力工程電纜防火封堵施工工藝導(dǎo)則》
- MOOC 作物育種學(xué)-四川農(nóng)業(yè)大學(xué) 中國(guó)大學(xué)慕課答案
- 變電站隱患排查治理總結(jié)報(bào)告
- 異彩紛呈的民族文化智慧樹(shù)知到期末考試答案2024年
- 車(chē)輛救援及維修服務(wù)方案
- 三體讀書(shū)分享
- 《腎內(nèi)科品管圈》
- 空氣預(yù)熱器市場(chǎng)前景調(diào)研數(shù)據(jù)分析報(bào)告
- 2024年南平實(shí)業(yè)集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- PLC在變電站自動(dòng)化控制中的應(yīng)用案例
- 2024版國(guó)開(kāi)電大法學(xué)本科《合同法》歷年期末考試案例分析題題庫(kù)
評(píng)論
0/150
提交評(píng)論