版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年赤峰職業(yè)技術學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.袋中有4個形狀大小一樣的球,編號分別為1,2,3,4,從中任取2個球,則這2個球的編號之和為偶數的概率為()A.16B.23C.12D.13答案:根據題意,從4個球中取出2個,其編號的情況有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6種;其中編號之和為偶數的有(1,3),(2,4),共2種;則2個球的編號之和為偶數的概率P=26=13;故選D.2.如圖⊙0的直徑AD=2,四邊形ABCD內接于⊙0,直線MN切⊙0于點B,∠MBA=30°,則AB的長為______.答案:連BD,則∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故為:13.已知△ABC是邊長為4的正三角形,D、P是△ABC內部兩點,且滿足AD=14(AB+AC),AP=AD+18BC,則△APD的面積為______.答案:取BC的中點E,連接AE,根據△ABC是邊長為4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),則點D為AE的中點,AD=3取AF=18BC,以AD,AF為邊作平行四邊形,可知AP=AD+18BC=AD+AF而△APD為直角三角形,AF=12∴△APD的面積為12×12×3=34故為:344.過直線x+y-22=0上點P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點P的坐標是______.答案:根據題意畫出相應的圖形,如圖所示:直線PA和PB為過點P的兩條切線,且∠APB=60°,設P的坐標為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標為(2,2).故為:(2,2)5.已知點G是△ABC的重心,O是空間任一點,若OA+OB+OC=λOG,則實數λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:36.已知拋物線C的參數方程為x=8t2y=8t(t為參數),設拋物線C的焦點為F,準線為l,P為拋物線上一點,PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數方程x=8t2y=8t(t為參數),消去參數化為普通方程為y2=8x.故焦點F(2,0),準線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設準線和x軸的交點為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點A(0,43),把y=43代入拋物線求得x=6,∴點P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.7.一個家庭有兩個小孩,假設生男生女是等可能的,已知這個家庭有一個是女孩的條件下,這時另一個也是女孩的概率是()
A.
B.
C.
D.答案:D8.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a9.某籃球運動員在一個賽季的40場比賽中的得分的莖葉圖如圖所示,則這組數據的中位數是______;眾數是______.
答案:將比賽中的得分按照從小到大的順序排,中間兩個數為23,23,所以這組數據的中位數是23,所有的數據中出現次數最多的數是23故為23;2310.下列語句不屬于基本算法語句的是()
A.賦值語句
B.運算語句
C.條件語句
D.循環(huán)語句答案:B11.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點B為原點,BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(1,0,1).∴=(0,2,1),=(1,-2,0).設平面BDF的一個法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.12.直線的參數方程為,l上的點P1對應的參數是t1,則點P1與P(a,b)之間的距離是(
)
A.|t1|
B.2|t1|
C.
D.答案:C13.設ABC是坐標平面上的一個三角形,P為平面上一點且AP=15AB+25AC,則△ABP的面積△ABC的面積=()A.12B.15C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點共線,∴AP=λAD+μAC且λ+μ=1設AB=kAD,結合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C14.若函數,則下列結論正確的是(
)A.,在上是增函數B.,在上是減函數C.,是偶函數D.,是奇函數答案:C解析:對于時有是一個偶函數15.在程序語言中,下列符號分別表示什么運算*;\;∧;SQR;ABS?答案:“*”表示乘法運算;“\”表示除法運算;“∧”表示乘方運算;“SQR()”表示求算術平方根運算;“ABS()”表示求絕對值運算.16.某細胞在培養(yǎng)過程中,每15分鐘分裂一次(由1個細胞分裂成2個),則經過兩個小時后,1個這樣的細胞可以分裂成______個.答案:由于每15分鐘分裂一次,則兩個小時共分裂8次.一個這樣的細胞經過一次分裂后,由1個分裂成2個;經過2次分裂后,由1個分裂成22個;…經過8次分裂后,由1個分裂成28個.∴1個這樣的細胞經過兩個小時后,共分裂成28個,即256個.故為:25617.已知f(x)=,則不等式xf(x)+x≤2的解集是(
)。答案:{x|x≤1}18.已知直線l的參數方程為x=-4+4ty=-1-2t(t為參數),圓C的極坐標方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.19.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數單位),求復數z2+i的虛部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數單位),且z1z2為純虛數,求實數a的值.答案:(Ⅰ)設z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復數z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數則3a-8=0,且4a+6≠0,解得a=8320.圓x2+y2-6x+4y+12=0與圓x2+y2-14x-2y+14=0的位置關系是______.答案:∵圓x2+y2-6x+4y+12=0化成標準形式,得(x-3)2+(y+2)2=1∴圓x2+y2-6x+4y+12=0的圓心為C1(3,-2),半徑r1=1同理可得圓x2+y2-14x-2y+14=0的C2(7,1),半徑r2=6∵兩圓的圓心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得兩圓的位置關系是內切故為:內切21.參數方程x=3cosθy=4sinθ,(θ為參數)化為普通方程是______.答案:由參數方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化簡得x29+y216=1,即為橢圓的普通方程故為:x29+y216=122.用輾轉相除法或者更相減損術求三個數的最大公約數.答案:同解析解析:解:324=243×1+81
243=81×3+0
則324與243的最大公約數為81又135=81×1+54
81=54×1+27
54=27×2+0則81與135的最大公約數為27所以,三個數324、243、135的最大公約數為27.另法為所求。23.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為______.答案:如圖所示,因為半徑為5,圓心在y軸上,且與直線y=6相切,所以可知有兩個圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11)2=25.24.函數f(x)=x+1x的定義域是______.答案:要使原函數有意義,則x≥0x≠0,所以x>0.所以原函數的定義域為(0,+∞).故為(0,+∞).25.雙曲線x29-y216=1的兩個焦點為F1、F2,點P在雙曲線上,若PF1⊥PF2,則點P到x軸的距離為______.答案:設點P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5?y-0x-5=-1,∴x2+y2=25
①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x軸的距離是165.26.高二年級某班有男生36人,女生28人,從中任選一位同學為數學科代表,則不同選法的種數是()A.36B.28C.64D.1008答案:高二年級某班有男生36人,女生28人,即共有64人,從中任選一位同學為數學科代表,則不同選法的種數64,故選C.27.下面為一個求20個數的平均數的程序,在橫線上應填充的語句為()
A.i>20
B.i<20
C.i>=20
D.i<=20
答案:A28.設雙曲線C:x2a2-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B.
(I)求雙曲線C的離心率e的取值范圍:
(II)設直線l與y軸的交點為P,且PA=512PB.求a的值.答案:(I)由C與l相交于兩個不同的點,故知方程組x2a2-y2=1x+y=1.有兩個不同的實數解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①所以1-a2≠0.4a4+8a2(1-a2)>0.解得0<a<2且a≠1.雙曲線的離心率e=1+a2a=1a2+1.∵0<a<2且a≠1,∴e>62且e≠2即離心率e的取值范圍為(62,2)∪(2,+∞).(II)設A(x1,y1),B(x2,y2),P(0,1)∵PA=512PB,∴(x1,y1-1)=512(x2,y2-1).由此得x1=512x2.由于x1和x2都是方程①的根,且1-a2≠0,所以1712x2=-2a21-a2.x1?x2=512x22=-2a21-a2.消去x2,得-2a21-a2=28960由a>0,所以a=1713.29.已知△ABC∽△DEF,且相似比為3:4,S△ABC=2cm2,則S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比為3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故為:329.30.節(jié)假日時,國人發(fā)手機短信問候親友已成為一種時尚,若小李的40名同事中,給其發(fā)短信問候的概率為1,0.8,0.5,0的人數分別是8,15,14,3(人),通常情況下,小李應收到同事問候的信息條數為()
A.27
B.37
C.38
D.8答案:A31.直線kx-y+1=3k,當k變動時,所有直線都通過定點()
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C32.在下列圖象中,二次函數y=ax2+bx+c與函數(的圖象可能是()
A.
B.
C.
D.
答案:A33.如圖,AB是⊙O的直徑,點D在AB的延長線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°34.若直線ax+by+1=0與圓x2+y2=1相離,則點P(a,b)的位置是()
A.在圓上
B.在圓外
C.在圓內
D.以上都有可能答案:C35.某市某年一個月中30天對空氣質量指數的監(jiān)測數據如下:
61
76
70
56
81
91
55
91
75
81
88
67
101
103
57
91
77
86
81
83
82
82
64
79
86
85
75
71
49
45
(Ⅰ)完成下面的頻率分布表;
(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中a的值;
(Ⅲ)在本月空氣質量指數大于等于91的這些天中隨機選取兩天,求這兩天中至少有一天空氣質量指數在區(qū)間[101,111)內的概率.
分組頻數頻率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下圖所示.
…(4分)(Ⅱ)如下圖所示.…(6分)由己知,空氣質量指數在區(qū)間[71,81)的頻率為630,所以a=0.02.…(8分)分組頻數頻率………[81,91)101030[91,101)3330………(Ⅲ)設A表示事件“在本月空氣質量指數大于等于91的這些天中隨機選取兩天,這兩天中至少有一天空氣質量指數在區(qū)間[101,111)內”,由己知,質量指數在區(qū)間[91,101)內的有3天,記這三天分別為a,b,c,質量指數在區(qū)間[101,111)內的有2天,記這兩天分別為d,e,則選取的所有可能結果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數為10.…(10分)事件“至少有一天空氣質量指數在區(qū)間[101,111)內”的可能結果為:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數為7,…(12分)所以P(A)=710.…(13分)36.有一個容量為66的樣本,數據的分組及各組的頻數如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根據樣本的頻率分布估計,大于或等于31.5的數據約占()A.211B.13C.12D.23答案:根據所給的數據的分組和各組的頻數知道,大于或等于31.5的數據有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數據共有66個,∴大于或等于31.5的數據約占2266=13,故選B37.若方程x2+ky2=2表示焦點在y軸上的橢圓,那么實數k的取值范圍是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦點在y軸上的橢圓∴2k>2故0<k<1故選D.38.在平面直角坐標系xOy中,點P的坐標為(-1,1),若取原點O為極點,x軸正半軸為極軸,建立極坐標系,則在下列選項中,不是點P極坐標的是()
A.()
B.()
C.()
D.()答案:D39.在極坐標系中,圓ρ=-2cosθ的圓心的極坐標是()
A.(1,)
B.(1,-)
C.(1,0)
D.(1,π)答案:D40.已知曲線C上的動點P(x,y)滿足到點F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動點E在直線l上,過點E分別作曲線C的切線EA,EB,切點為A、B.
(?。┣笞C:直線AB恒過一定點,并求出該定點的坐標;
(ⅱ)在直線l上是否存在一點E,使得△ABM為等邊三角形(M點也在直線l上)?若存在,求出點E坐標,若不存在,請說明理由.答案:(Ⅰ)曲線C的方程x2=4y(5分)(Ⅱ)(ⅰ)設E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x過點A的拋物線切線方程為y-x214=12x1(x-x1),∵切線過E點,∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1?x2=-8可得AB中點為(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直線AB的方程為y-(a22+2)=a2(x-a)即y=a2x+2,∴AB過定點(0,2)(10分)(ⅱ)由(?。┲狝B中點N(a,a2+42),直線AB的方程為y=a2x+2當a≠0時,則AB的中垂線方程為y-a2+42=-2a(x-a),∴AB的中垂線與直線y=-2的交點M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM為等邊三角形,則|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此時E(±2,-2),當a=0時,經檢驗不存在滿足條件的點E綜上可得:滿足條件的點E存在,坐標為E(±2,-2).(15分)41.用反證法證明某命題時,對結論:“自然數a,b,c中恰有一個偶數”正確的假設為()
A.a,b,c都是奇數
B.a,b,c都是偶數
C.a,b,c中至少有兩個偶數
D.a,b,c中至少有兩個偶數或都是奇數答案:D42.若直線
3x+y+a=0過圓x2+y2+2x-4y=0的圓心,則a的值為()
A.-1
B.1
C.3
D.-3答案:B43.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分別為AD,BC上點,且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為______.答案:∵E,F分別為AD,BC上點,且EF=3,EF∥AB,∴EF是梯形的中位線,設兩個梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:544.隋機變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C45.為了調查上海市中學生的身體狀況,在甲、乙兩所學校中各隨意抽取了
100名學生,測試引體向上,結果如下表所示:
(1)甲乙兩校被測學生引體向上的平均數分別是:甲校______個,乙校______個.
(2)若5個以下(不含5個)為不合格,則甲乙兩校的合格率分別為甲校______
乙校______
(3)若15個以上(含15個)為優(yōu)秀,則甲乙兩校中優(yōu)秀率______校較高(填“甲”或“乙”)
(4)用你所學的統(tǒng)計知識對兩所學校學生的身體狀況作一個比較.你的結論是______.答案:(1)甲校被測學生引體向上的平均數是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被測學生引體向上的平均數是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中優(yōu)秀率=9+6100×100%=15%,乙校中優(yōu)秀率=8+6100×100%=14%,所以甲校較高;(4)雖然合格率相等,但是乙校平均數更高一些,所以乙校更好一些.故為:8.3,9.19,94%,94%,乙校更好一些46.正多面體只有______種,分別為______.答案:正多面體只有5種,分別為正四面體、正六面體、正八面體、正十二面體、正二十面體.故為:5,正四面體、正六面體、正八面體、正十二面體、正二十面體.47.曲線(θ為參數)上的點到兩坐標軸的距離之和的最大值是()
A.
B.
C.1
D.答案:D48.拋物線y2=4px(p>0)的準線與x軸交于M點,過點M作直線l交拋物線于A、B兩點.
(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;
(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點依次為N1,N2,N3,…,當0<p<1時,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點坐標為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時,AB中垂線與x軸交點依次為N1,N2,N3,(0<p<1).∴點Nn的坐標為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).49.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為______.答案:∵AC是⊙O的直徑,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP為切線,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴周長=33.故填:33.50.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當A=45°時,sinA=22成立.若當A=135°時,滿足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要條件.故選A.第2卷一.綜合題(共50題)1.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點B為原點,BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(1,0,1).∴=(0,2,1),=(1,-2,0).設平面BDF的一個法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.2.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過
B作BD⊥AC于D,BD交⊙O于E點,若AE平分
∠BAD,則∠BAD=()
A.30°
B.45°
C.50°
D.60°
答案:D3.將函數的圖象F按向量平移后所得到的圖象的解析式是,求向量.答案:向量解析:將函數的圖象F按向量平移后所得到的圖象的解析式是,求向量.4.直線(t為參數)和圓x2+y2=16交于A,B兩點,則AB的中點坐標為()
A.(3,-3)
B.(-,3)
C.(,-3)
D.(3,-)答案:D5.曲線的極坐標方程ρ=4sinθ化為直角坐標方程為______.答案:將原極坐標方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.6.已知x2a2+y2b2=1(a>b>0),則a2+b2與(x+y)2的大小關系為
______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二維形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故為a2+b2≥(x+y)2.7.用數字1,2,3,4,5組成的無重復數字的四位偶數的個數為()
A.8
B.24
C.48
D.120答案:C8.以下程序輸入2,3,4運行后,輸出的結果是()
INPUT
a,b,c
a=b
b=c
c=a
a,b,c.
A.234
B.324
C.343
D.342答案:C9.已知二項分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:110.如果一個水平放置的圖形的斜二測直觀圖是一個底面為45°,腰和上底均為1的等腰梯形,那么原平面圖形的面積是()
A.2+
B.
C.
D.1+答案:A11.用反證法證明命題:“三角形三個內角至少有一個不大于60°”時,應假設______.答案:根據用反證法證明數學命題的方法和步驟,先把要證的結論進行否定,得到要證的結論的反面,而命題:“三角形三個內角至少有一個不大于60°”的否定為“三個內角都大于60°”,故為三個內角都大于60°.12.如圖,海中有一小島,周圍3.8海里內有暗礁.一軍艦從A地出發(fā)由西向東航行,望見小島B在北偏東75°,航行8海里到達C處,望見小島B在北偏東60°.若此艦不改變艦行的方向繼續(xù)前進,問此艦有沒有觸礁的危險?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,過B作AC的垂線垂足為D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴沒有危險.13.行駛中的汽車,在剎車時由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離.在某種路面上,某種型號汽車的剎車距離s(m)與汽車的車速v(km/h)滿足下列關系:s=(n為常數,且n∈N),做了兩次剎車試驗,有關試驗數據如圖所示,其中,
(1)求n的值;
(2)要使剎車距離不超過12.6m,則行駛的最大速度是多少?答案:解:(1)依題意得,解得,又n∈N,所以n=6;(2)s=,因為v≥0,所以0≤v≤60,即行駛的最大速度為60km/h。14.直線x3+y4=1與x,y軸所圍成的三角形的周長等于()A.6B.12C.24D.60答案:直線x3+y4=1與兩坐標軸交于A(3,0),B(0,4),∴AB=5,∴△AOB的周長為:OA+OB+AB=3+4+5=12,故選B.15.命題“有的三角形的三個內角成等差數列”的否定是______.答案:根據特稱命題的否定為全稱命題可知,“有的三角形的三個內角成等差數列”的否定為“任意三角形的三個內角不成等差數列”,故為:任意三角形的三個內角不成等差數列16.直線y=3x的傾斜角為______.答案:∵直線y=3x的斜率是3,∴直線的傾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故為:60°17.若E,F,G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點,證明:四邊形EFGH是平行四邊形.答案:證明:∵E,F,G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點,∴EF是△ABC的中位線,∴EF∥AC,且EF=12AC.同理可證,GH∥AC,且GH=12AC,故有
EF∥GH,且EF=GH,∴四邊形EFGH是平行四邊形.18.拋物線y=4x2的焦點坐標是______.答案:由題意可知x2=14y∴p=18∴焦點坐標為(0,116)故為(0,116)19.拋物線y2=4x上一點M與該拋物線的焦點F的距離|MF|=4,則點M的橫坐標x=______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點到焦點的距離與到準線的距離是相等的,∴|MF|=4=x+p2=4,∴x=3,故為:3.20.如圖,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個動點,求PM的最小值.答案:過C作CM⊥AB,連接PM,因為PC⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此時PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.21.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點,N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.22.設直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C23.已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為______.答案:∵a+2b+3c=6,∴根據柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化簡得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,當且僅當a:2b:3c=1:1:1時,即a=2,b=1,c=23時等號成立由此可得:當且僅當a=2,b=1,c=23時,a2+4b2+9c2的最小值為12故為:1224.已知直線3x+2y-3=0和6x+my+1=0互相平行,則它們之間的距離是()
A.
B.
C.
D.答案:B25.已知圓C:x2+y2-4y-6y+12=0,求:
(1)過點A(3,5)的圓的切線方程;
(2)在兩條坐標軸上截距相等的圓的切線方程.答案:(l)設過點A(3,5)的直線?的方程為y-5=k(x-3).因為直線?與⊙C相切,而圓心為C(2,3),則|2k-3-3k+5|k2+1=1,解得k=34所以切線方程為y-5=34(x-3),即3x-4y+11=0.由于過圓外一點A與圓相切的直線有兩條,因此另一條切線方程為x=3.(2)因為原點在圓外,所以設在兩坐標軸上截距相等的直線方程x+y=a或y=kx.由直線與圓相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切線方程為x+y=5士2或y=6±223x.26.(理科)若隨機變量ξ~N(2,22),則D(14ξ)的值為______.答案:解;∵隨機變量ξ服從正態(tài)分布ξ~N(2,22),∴可得隨機變量ξ方差是4,∴D(14ξ)的值為142D(ξ)=142×4=14.故為:14.27.設隨機變量ξ服從正態(tài)分布N(μ,σ2),且函數f(x)=x2+4x+ξ沒有零點的概率為,則μ為()
A.1
B.4
C.2
D.不能確定答案:B28.傾斜角為60°的直線的斜率為______.答案:因為直線的傾斜角為60°,所以直線的斜率k=tan60°=3.故為:3.29.已知指數函數f(x)的圖象過點(3,8),求f(6)的值.答案:設指數函數為:f(x)=ax,因為指數函數f(x)的圖象過點(3,8),所以8=a3,∴a=2,所求指數函數為f(x)=2x;所以f(6)=26=64所以f(6)的值為64.30.曲線與坐標軸的交點是(
)A.B.C.D.答案:B解析:當時,,而,即,得與軸的交點為;當時,,而,即,得與軸的交點為31.求圓Cx=3+4cosθy=-2+4sinθ(θ為參數)的圓心坐標,和圓C關于直線x-y=0對稱的圓C′的普通方程.答案:圓Cx=3+4cosθy=-2+4sinθ(θ為參數)
即
(x-3)2+(y+2)2=16,表示圓心坐標(3,-2),半徑等于4的圓.C(3,-2)關于直線x-y=0對稱的點C′(-2,3),半徑還是4,故圓C′的普通方程(x+2)2+(y-3)2=16.32.下列四個函數中,與y=x表示同一函數的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:選項A中的函數的定義域與已知函數不同,故排除選項A.選項B中的函數與已知函數具有相同的定義域、值域和對應關系,故是同一個函數,故選項B滿足條件.選項C中的函數與已知函數的值域不同,故不是同一個函數,故排除選項C.選項D中的函數與與已知函數的定義域不同,故不是同一個函數,故排除選項D,故選B.33.已知f(x)=1-(x-a)(x-b),并且m,n是方程f(x)=0的兩根,則實數a,b,m,n的大小關系可能是()
A.m<a<b<n
B.a<m<n<b
C.a<m<b<n
D.m<a<n<b答案:A34.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調遞減∵logax>loga5∴0<x<5故為:(0,5)35.已知三個數a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序為______.答案:因為a=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.36.以原點為圓心,且截直線3x+4y+15=0所得弦長為8的圓的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦長為8,所以半徑是5所求圓的方程是:x2+y2=25故選D.37.若點M,A,B,C對空間任意一點O都滿足則這四個點()
A.不共線
B.不共面
C.共線
D.共面答案:D38.從1,2,3,4,5,6,7這七個數字中任取兩個奇數和兩個偶數,組成沒有重復數字的四位數,其中奇數的個數為()
A.432
B.288
C.216
D.108答案:C39.橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為()
A.
B.
C.2
D.4答案:A40.在極坐標系中,直線l經過圓ρ=cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點的極坐標為______.答案:由ρ=cosθ可知此圓的圓心為(12,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標方程為ρcosθ=12,所以直線l與極軸的交點的極坐標為(12,0).故為:(12,0).41.已知原命題“兩個無理數的積仍是無理數”,則:
(1)逆命題是“乘積為無理數的兩數都是無理數”;
(2)否命題是“兩個不都是無理數的積也不是無理數”;
(3)逆否命題是“乘積不是無理數的兩個數都不是無理數”;
其中所有正確敘述的序號是______.答案:(1)交換原命題的條件和結論得到逆命題:“乘積為無理數的兩數都是無理數”,正確.(2)同時否定原命題的條件和結論得到否命題:“兩個不都是無理數的積也不是無理數”,正確.(3)同時否定原命題的條件和結論,然后在交換條件和結論得到逆否命題:“乘積不是無理數的兩個數不都是無理數”.所以逆否命題錯誤.故為:(1)(2).42.(本題10分)設函數的定義域為A,的定義域為B.(1)求A;
(2)若,求實數a的取值范圍答案:(1);(2)。解析:略43.若正四面體ABCD的棱長為1,M是AB的中點,則MC
?MD
=______.答案:在正四面體中,因為M是AB的中點,所以CM=12(CA+CB),DM=12(DA+DB),所以CM?DM=12(CA+CB)?12(DA+DB)=14(CA?DA+CB?DA+CA?DB+CB?DB)=14(1×1×cos60°+0+0+1×1×cos60°)=14×1=14.所以MC
?MD
=CM?DM=14.故為:
1
4
.44.設i為虛數單位,若(x+i)(1-i)=y,則實數x,y滿足()
A.x=-1,y=1
B.x=-1,y=2
C.x=1,y=2
D.x=1,y=1答案:C45.函數y=f(x)的圖象如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個不同的數x1,x2,…xn,使得f(x1)x1=f(x2)x2=…=f(xn)xn,則n的取值范圍為()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}答案:令y=f(x),y=kx,作直線y=kx,可以得出2,3,4個交點,故k=f(x)x(x>0)可分別有2,3,4個解.故n的取值范圍為2,3,4.故選B.46.已知空間兩點A(4,a,-b),B(a,a,2),則向量AB=()A.(a-4,0,2+b)B.(4-a,0,-b-2)C.(0,a-4,2+b)D.(a-4,0,-b-2)答案:∵A(4,a,-b),B(a,a,2)∴AB=(a-4,a-a,2-(-b))=(a-4,0,2+b)故選A47.如圖,在圓錐中,B為圓心,AB=8,BC=6
(1)求出這個幾何體的表面積;
(2)求出這個幾何體的體積.(保留π)答案:圓錐母線AC的長=AB2+BC2=82+62=10(1)表面積=π×62+π×6×10=96π(2)體積=13×π×62×8=96π48.關于x的方程mx2+2(m+3)x+2m+14=0有兩實根,且一個大于4,一個小于4,求m的取值范圍。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依題意得或,即或,解得。49.在對兩個變量x,y進行線性回歸分析時,有下列步驟:
①對所求出的回歸直線方程作出解釋;
②收集數據(xi,yi),i=1,2,…,n;
③求線性回歸方程;
④求相關系數;
⑤根據所搜集的數據繪制散點圖.
如果根據可形性要求能夠作出變量x,y具有線性相關結論,則在下列操作順序中正確的是()
A.①②⑤③④
B.③②④⑤①
C.②④③①⑤
D.②⑤④③①答案:D50.某籃球運動員在一個賽季的40場比賽中的得分的莖葉圖如圖所示,則這組數據的中位數是______;眾數是______.
答案:將比賽中的得分按照從小到大的順序排,中間兩個數為23,23,所以這組數據的中位數是23,所有的數據中出現次數最多的數是23故為23;23第3卷一.綜合題(共50題)1.口袋內有100個大小相同的紅球、白球和黑球,其中有45個紅球,從中摸出1個球,摸出白球的概率為0.23,則摸出黑球的概率為______.答案:∵口袋內有100個大小相同的紅球、白球和黑球從中摸出1個球,摸出白球的概率為0.23,∴口袋內白球數為32個,又∵有45個紅球,∴為32個.從中摸出1個球,摸出黑球的概率為32100=0.32故為0.322.某校為提高教學質量進行教改實驗,設有試驗班和對照班.經過兩個月的教學試驗,進行了一次檢測,試驗班與對照班成績統(tǒng)計如下的2×2列聯(lián)表所示(單位:人),則其中m=______,n=______.
80及80分以下80分以上合計試驗班321850對照班12m50合計4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.3.某重點高中高二歷史會考前,進行了五次歷史會考模擬考試,某同學在這五次考試中成績如下:90,90,93,94,93,則該同學的這五次成績的平均值和方差分別為()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B4.已知△ABC的三個頂點為A(1,-2,5),B(-1,0,1),C(3,-4,5),則邊BC上的中線長為______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中點為D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故為:2.5.求證:答案:證明見解析解析:證明:此題采用了從第三項開始拆項放縮的技巧,放縮拆項時,不一定從第一項開始,須根據具體題型分別對待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。6.
已知拋物線y2=2px(p>0)的焦點為F,過F的直線交y軸正半軸于點P,交拋物線于A,B兩點,其中點A在第一象限,若,,,則μ的取值范圍是()
A.[1,]
B.[,2]
C.[2,3]
D.[3,4]答案:B7.設點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),則OA?BC=______.答案:因為點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以OA=(1,-2,3),BC=(2,0,-6),OA?BC=(1,-2,3)?(2,0,-6)=2-18=-16.故為:-16.8.平面向量與的夾角為60°,=(2,0),||=1,則|+2|()
A.
B.2
C.4
D.12答案:B9.若lga,lgb是方程2x2-4x+1=0的兩個根,則的值等于
A.2
B.
C.4
D.答案:A10.設O為坐標原點,給定一個定點A(4,3),而點B(x,0)在x正半軸上移動,l(x)表示AB的長,則△OAB中兩邊長的比值的最大值為()
A.
B.
C.
D.答案:B11.設,求證:。答案:證明略解析:證明:因為,所以有。又,故有。…………10分于是有得證。
…………20分12.為了調查某產品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機剔除的個體數分別為()
A.3,2
B.2,3
C.2,30
D.30,2答案:A13.如果命題“曲線C上的點的坐標都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()
A.曲線C是方程f(x,y)=0的曲線
B.方程f(x,y)=0的每一組解對應的點都在曲線C上
C.不滿足方程f(x,y)=0的點(x,y)不在曲線C上
D.方程f(x,y)=0是曲線C的方程答案:C14.隋機變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C15.如圖:已知圓上的弧
AC=
BD,過C點的圓的切線與BA的延長線交于E點,證明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因為AC=BD,所以∠BCD=∠ABC.又因為EC與圓相切于點C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因為∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)16.已知:關于x的方程2x2+kx-1=0
(1)求證:方程有兩個不相等的實數根;
(2)若方程的一個根是-1,求另一個根及k值.答案:(1)證明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,無論k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有兩個不相等的實數根.(2)設2x2+kx-1=0的另一個根為x,則x-1=-k2,(-1)?x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一個根為12,k的值為1.17.下面為一個求20個數的平均數的程序,在橫線上應填充的語句為()
A.i>20
B.i<20
C.i>=20
D.i<=20
答案:A18.若命題p的否命題是q,命題q的逆命題是r,則r是p的逆命題的()A.原命題B.逆命題C.否命題D.逆否命題答案:設命題p為“若k,則s”;則其否命題q是“若¬k,則¬s”;∴命題q的逆命題r是“若¬s,則¬k”,而p的逆命題為“若s,則k”,故r是p的逆命題的否命題.故選C.19.將兩粒均勻的骰子各拋擲一次,觀察向上的點數,計算:
(1)共有多少種不同的結果?并試著列舉出來.
(2)兩粒骰子點數之和等于3的倍數的概率;
(3)兩粒骰子點數之和為4或5的概率.答案:(1)每一粒均勻的骰子拋擲一次,都有6種結果,根據分步計數原理,所有可能結果共有6×6=36種.
…(4分)(2)兩粒骰子點數之和等于3的倍數的有以下12種:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12個結果,因此,兩粒骰子點數之和等于3的倍數的概率是1236=13.
…(8分)(3)兩粒骰子點數之和為4或5的有以下7種:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,兩粒骰子點數之和為4或5的概率為736.
…(12分)20.若直線x+y=m與圓x=mcosφy=msinφ(φ為參數,m>0)相切,則m為
______.答案:圓x=mcosφy=msinφ的圓心為(0,0),半徑為m∵直線x+y=m與圓相切,∴d=r即|m|2=m,解得m=2故為:221.用冒泡法對43,34,22,23,54從小到大排序,需要(
)趟排序。
A.2
B.3
C.4
D.5答案:A22.已知函數y=f(x)是偶函數,其圖象與x軸有四個交點,則f(x)=0的所有實數根之和為______.答案:∵函數y=f(x)是偶函數∴其圖象關于y軸對稱∴其圖象與x軸有四個交點也關于y軸對稱∴方程f(x)=0的所有實根之和為0故為:023.求過點A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|
k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.24.某射擊運動員在四次射擊中分別打出了9,x,10,8環(huán)的成績,已知這組數據的平均數為9,則這組數據的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環(huán),這組數據的平均數為9,∴9+x+10+84,∴x=9,∴這組數據的方差是14(00+1+1)=12,故為:1225.一牧場有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.02.設發(fā)病的牛的頭數為ξ,則Dξ=______;.答案:∵由題意知該病的發(fā)病率為0.02,且每次實驗結果都是相互獨立的,∴ξ~B(10,0.02),∴由二項分布的方差公式得到Dξ=10×0.02×0.98=0.196.故為:0.19626.如圖,圓周上按順時針方向標有1,2,3,4,5五個點.一只青蛙按順時針方向繞圓從一個點跳到另一個點,若它停在奇數點上,則下次只能跳一個點;若停在偶數點上,則跳兩個點.該青蛙從“5”這點起跳,經2
011次跳后它停在的點對應的數字是______.答案:起始點為5,按照規(guī)則,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循環(huán)出現,而2011=3×670+1.故經2011次跳后停在的點是1.故為127.在平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,則AE=______.(用a、b表示)答案:∵平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故為:34a+14b.28.定義在R上的二次函數y=f(x)在(0,2)上單調遞減,其圖象關于直線x=2對稱,則下列式子可以成立的是()
A.
B.
C.
D.答案:D29.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三點,n=(1,1,1),則以n為方向向量的直線l與平面ABC的關系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由題意,AB=(-1,1,0),BC=(0,-1,1)∵n?AB=0,n?BC=0∴以n為方向向量的直線l與平面ABC垂直故選A.30.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運用類比方法,若三棱錐的三條側棱兩兩互相垂直且長度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長的一半,由類比推理可知若三棱錐的三條側棱兩兩互相垂直且長度分別為a,b,c,將三棱錐補成一個長方體,其外接球的半徑R為長方體對角線長的一半.故為a2+b2+c22故為:a2+b2+c2231.若施化肥量x與小麥產量y之間的回歸方程為y=250+4x(單位:kg),當施化肥量為50kg時,預計小麥產量為______kg.答案:根據回歸方程為y=250+4x,當施化肥量為50kg,即x=50kg時,y=250+4x=250+200=450kg故為:45032.(選修4-4:坐標系與參數方程)
在直角坐標系xoy中,直線l的參數方程為x=3-22ty=5+22t(t為參數),在極坐標系(與直角坐標系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.
(Ⅰ)求圓C的直角坐標方程;
(Ⅱ)設圓C與直線l交于點A、B,若點P的坐標為(3,5),求|PA|+|PB|.答案:(Ⅰ)∵圓C的方程為ρ=25sinθ.∴x2+y2-25y=0,即圓C的直角坐標方程:x2+(y-5)2=5.(Ⅱ)(3-22t)2+(22t)2=5,即t2-32t+4=0,由于△=(32)2-4×4=2>0,故可設t1,t2是上述方程的兩實根,所以t1+t2=32t1t2=4,又直線l過點P(3,5),故|PA|+|PB|=|t1|+|t2|=t1+t2=3233.某教師出了一份三道題的測試卷,每道題1分,全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,則全班學生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:234.已知某車間加工零件的個數x與所花費時間y(h)之間的線性回歸方程為=0.01x+0.5,則加工600個零件大約需要的時間為()
A.6.5h
B.5.5h
C.3.5h
D.0.3h答案:A35.已知棱長都相等的正三棱錐內接于一個球,某學生畫出四個過球心的平面截球與正三棱錐所得的圖形,如圖所示,則()A.以上四個圖形都是正確的B.只有(2)(4)是正確的C.只有(4)是錯誤的D.只有(1)(2)是正確的答案:(1)當平行于三棱錐一底面,過球心的截面如(1)圖所示;(2)過三棱錐的一條棱和圓心所得截面如(2)圖所示;(3)過三棱錐的一個頂點(不過棱)和球心所得截面如(3)圖所示;(4)棱長都相等的正三棱錐和球心不可能在同一個面上,所以(4)是錯誤的.故選C.36.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積為6,則△ABC的面積為()A.18B.54C.64D.72答案:∵ABCD為平行四邊形∴AB平行于CD∴△AEF∽△CDF∵AE:EB=1:2∴AE:CD=AE:AB=1:3∴S△CDF=32×S△AEF=9×6=54∵AF:CF=AE:CD=1:3∴S△ADF=S△CDF÷3=54÷3=18∴S△ABC=S△ACD=S△CDF+S△ADF=54+18=72故選D37.在平面直角坐標系中,橫坐標、縱坐標均為有理數的點稱為有理點.試根據這一定義,證明下列命題:若直線y=kx+b(k≠0)經過點M(2,1),則此直線不能經過兩個有理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 腸內營養(yǎng)與腸外營養(yǎng)
- 七年級傳統(tǒng)文化教案編
- 廣告業(yè)務員工作參考計劃范文2
- 電子商務產業(yè)園租賃合同
- 苗木基地租賃合同
- 停車場車位租用合同
- 六年級英語上冊Unit4Ihaveapenpal第一課時教案人教PEP版
- 2024年跨國電子產品貿易合同中英文版版B版
- 2025年生物質碳化專用爐合作協(xié)議書
- 2024年跨境電商企業(yè)承包經營合作協(xié)議集錦3篇
- 小學道德與法治課程標準解讀
- 北京市西城區(qū)2021-2022年九年級期末考試數學試卷
- 中國藥典無菌、微生物限度和細菌內毒素檢查方法學驗證內容詳解
- 《實用日本語應用文寫作》全套電子課件完整版ppt整本書電子教案最全教學教程整套課件
- 公司員工手冊-全文(完整版)
- 鍋爐習題帶答案
- 土木工程課程設計38281
- 農村宅基地地籍測繪技術方案
- 液壓爬模作業(yè)指導書
- 劇院的建筑設計規(guī)范標準
- 遺傳分析的一個基本原理是DNA的物理距離和遺傳距離方面...
評論
0/150
提交評論