2023年揚州市職業(yè)大學高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年揚州市職業(yè)大學高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年揚州市職業(yè)大學高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年揚州市職業(yè)大學高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年揚州市職業(yè)大學高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年揚州市職業(yè)大學高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知函數(shù)f(x)=2x,數(shù)列{an}滿足a1=f(0),且f(an+1)=(n∈N*),

(1)證明數(shù)列{an}是等差數(shù)列,并求a2010的值;

(2)分別求出滿足下列三個不等式:,

的k的取值范圍,并求出同時滿足三個不等式的k的最大值;

(3)若不等式對一切n∈N*都成立,猜想k的最大值,并予以證明。答案:解:(1)由,得,即,∴是等差數(shù)列,∴,∴。(2)由,得;,得;,得,,∴當k同時滿足三個不等式時,。(3)由,得恒成立,令,則,,∴,∵F(n)是關于n的單調(diào)增函數(shù),∴,∴。2.雙曲線x2-4y2=4的兩個焦點F1、F2,P是雙曲線上的一點,滿足·=0,則△F1PF2的面積為()

A.1

B.

C.2

D.答案:A3.設二項式(33x+1x)n的展開式的各項系數(shù)的和為P,所有二項式系數(shù)的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據(jù)題意,對于二項式(33x+1x)n的展開式的所有二項式系數(shù)的和為S,則S=2n,令x=1,可得其展開式的各項系數(shù)的和,即P=4n,結(jié)合題意,有4n+2n=272,解可得,n=4,故選A.4.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()

A.9

B.18

C.27

D.36答案:B5.命題“有的三角形的三個內(nèi)角成等差數(shù)列”的否定是______.答案:根據(jù)特稱命題的否定為全稱命題可知,“有的三角形的三個內(nèi)角成等差數(shù)列”的否定為“任意三角形的三個內(nèi)角不成等差數(shù)列”,故為:任意三角形的三個內(nèi)角不成等差數(shù)列6.化簡:AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.7.兩平行直線x+3y-4=0與2x+6y-9=0的距離是

______.答案:由直線x+3y-4=0取一點A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:10208.已知隨機變量ξ服從正態(tài)分布N(2,0.2),P(ξ≤4)=0.84,則P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵隨機變量ξ服從正態(tài)分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故選A.9.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.10.對于平面幾何中的命題:“夾在兩條平行線之間的平行線段相等”,在立體幾何中,類比上述命題,可以得到命題:“______”.答案:在由平面圖形的性質(zhì)向空間物體的性質(zhì)進行類比時,我們常用由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),故由平面幾何中的命題:“夾在兩條平行線這間的平行線段相等”,我們可以推斷在立體幾何中:“夾在兩個平行平面間的平行線段相等”這個命題是一個真命題.故為:“夾在兩個平行平面間的平行線段相等”.11.下列命題中,錯誤的是()

A.平行于同一條直線的兩個平面平行

B.平行于同一個平面的兩個平面平行

C.一個平面與兩個平行平面相交,交線平行

D.一條直線與兩個平行平面中的一個相交,則必與另一個相交答案:A12.設P點在x軸上,Q點在y軸上,PQ的中點是M(-1,2),則|PQ|等于______.答案:設P(a,0),Q(0,b),∵PQ的中點是M(-1,2),∴由中點坐標公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故為:2513.某工廠生產(chǎn)A,B,C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A型號產(chǎn)品有16件,則此樣本的容量為()

A.40

B.80

C.160

D.320答案:B14.已知向量=(1,1,-2),=(2,1,),若≥0,則實數(shù)x的取值范圍為()

A.(0,)

B.(0,]

C.(-∞,0)∪[,+∞)

D.(-∞,0]∪[,+∞)答案:C15.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|等于______.答案:解;∵a,b均為單位向量,∴|a|=1,|b|=1又∵兩向量的夾角為60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故為1316.若f(x)=exx≤0lnxx>0,則f(f(12))=______.答案:∵f(x)=ex,x≤0lnx,x>0,∴f(f(12))=f(ln12)=eln12=12.故為:12.17.用反證法證明命題“如果a>b,那么a3>b3“時,下列假設正確的是()

A.a(chǎn)3<b3

B.a(chǎn)3<b3或a3=b3

C.a(chǎn)3<b3且a3=b3

D.a(chǎn)3>b3答案:B18.已知平行四邊形的三個頂點A(-2,1),B(-1,3),C(3,4),求第四個頂點D的坐標.答案:若構(gòu)成的平行四邊形為ABCD1,即AC為一條對角線,設D1(x,y),則由AC中點也是BD1中點,可得

-2+32=x-121+42=y+32,解得

x=2y=2,∴D1(2,2).同理可得,若構(gòu)成以AB為對角線的平行四邊形ACBD2,則D2(-6,0);以BC為對角線的平行四邊形ACD3B,則D3(4,6),∴第四個頂點D的坐標為:(2,2),或(-6,0),或(4,6).19.已知函數(shù)y=ax2+bx+c,如果a>b>c,且a+b+c=0,則它的圖象是(

)

A.

B.

C.

D.

答案:D20.某科目考試有30道題每小題有三個選項,每題2分,另有20道題,每題有四個選項每題3分,每題只有一個答案,某人隨機去選答案,則平均能得______分.答案:由題意,30道題每小題有三個選項,每題2分,每題只有一個,某人隨機去選,則可得2×30×13=20分;20道題,每題有四個選項每題3分,每題只有一個,某人隨機去選,則可得3×20×14=15分故平均能得35分故為:35分.21.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長______.答案:設另一弦長xcm;由于另一弦被分為3:8的兩段,故兩段的長分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm22.圓心在x軸上,且過兩點A(1,4),B(3,2)的圓的方程為______.答案:設圓心坐標為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經(jīng)過兩點A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=2023.已知復數(shù)z=2+i,則z2對應的點在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,則z2=(2+i)2=22+4i+i2=3+4i.所以,復數(shù)z2的實部等于3,虛部等于4.所以z2對應的點在第Ⅰ象限.故選A.24.已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且

則滿足條件的函數(shù)f(x)有()

A.6個

B.10個

C.12個

D.16個答案:C25.將一個總體分為A、B、C三層,其個體數(shù)之比為5:3:2,若用分層抽樣的方法抽取容量為180的樣本,則應從C中抽取樣本的個數(shù)為______個.答案:由分層抽樣的定義可得應從B中抽取的個體數(shù)為180×25+3+2=36,故為:36.26.過點(1,0)且與直線x-2y-2=0平行的直線方程是()

A.x-2y-1=0

B.x-2y+1=0

C.2x+y-2=0

D.x+2y-1=0答案:A27.設a=log

132,b=log123,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:c=(12)0.3>0,a=log

132<0,b=log123

<0并且log

132>log133,log

133>log123所以c>a>b故選D.28.對任意實數(shù)x,y,定義運算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運算是通常的加法和乘法運算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實數(shù)x,都有x*m=x,則m的值是(

A.4

B.-4

C.-5

D.6答案:A29.以下程序輸入2,3,4運行后,輸出的結(jié)果是()

INPUT

a,b,c

a=b

b=c

c=a

PRINT

a,b,c.

A.234

B.324

C.343

D.342答案:C30.若直線l過拋物線y=ax2(a>0)的焦點,并且與y軸垂直,若l被拋物線截得的線段長為4,則a=______.答案:拋物線方程整理得x2=1ay,焦點(0,14a)l被拋物線截得的線段長即為通徑長1a,故1a=4,a=14;故為14.31.在極坐標系中與圓ρ=4sinθ相切的一條直線的方程為()

A.ρcosθ=2

B.ρsinθ=2

C.ρ=4sin(θ+)

D.ρ=4sin(θ-)答案:A32.平面ABCD中,點A坐標為(0,1,1),點B坐標為(1,2,1),點C坐標為(-1,0,-1).若向量a=(-2,y,z),且a為平面ABC的法向量,則yz=()A.2B.0C.1D.-1答案:AB=(1,1,0),AC=(-1,-1,-2),與平面ABC垂直的向量應與上面的向量的數(shù)量積為零,向量a=(-2,y,z),且a為平面ABC的法向量,則a⊥AB且a⊥AC,即a?AB=0,且a?AC=0,即-2+y+0=0且2-y-2z=0,即y=2z=0,∴則yz=20=1,故選C.33.已知A(3,0),B(0,3),O為坐標原點,點C在第一象限內(nèi),且∠AOC=60°,設OC=OA+λOB

(λ∈R),則λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=

3tan60°=33又∵|OB|=3∴λ=3故選D.34.下列選項中元素的全體可以組成集合的是()A.2013年1月風度中學高一級高個子學生B.校園中長的高大的樹木C.2013年1月風度中學高一級在校學生D.學校籃球水平較高的學生答案:因為集合中元素具有:確定性、互異性、無序性.所以A、B、D都不是集合,元素不確定;故選C.35.已知O是△ABC所在平面內(nèi)一點,D為BC邊中點,且,那么(

A.

B.

C.

D.2

答案:A36.在下面的圖示中,結(jié)構(gòu)圖是()

A.

B.

C.

D.

答案:B37.已知矩形ABCD,R、P分別在邊CD、BC上,E、F分別為AP、PR的中點,當P在BC上由B向C運動時,點R在CD上固定不變,設BP=x,EF=y,那么下列結(jié)論中正確的是()A.y是x的增函數(shù)B.y是x的減函數(shù)C.y隨x先增大后減小D.無論x怎樣變化,y是常數(shù)答案:連接AR,如圖所示:由于點R在CD上固定不變,故AR的長為定值又∵E、F分別為AP、PR的中點,∴EF為△APR的中位線,則EF=12AR為定值故無論x怎樣變化,y是常數(shù)故選D38.已知平行直線l1:x-y+1=0與l2:x-y+3=0,求l1與l2間的距離.答案:∵已知平行直線l1:x-y+1=0與l2:x-y+3=0,則l1與l2間的距離d=|3-1|2=2.39.過點M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設所求直線與已知直線l1,l2分別交于A、B兩點.∵點B在直線l2:2x+y-8=0上,故可設B(t,8-2t).又M(0,1)是AB的中點,由中點坐標公式得A(-t,2t-6).∵A點在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.40.命題“若b≠3,則b2≠9”的逆命題是______.答案:根據(jù)“若p則q”的逆命題是“若q則p”,可得命題“若b≠3,則b2≠9”的逆命題是若b2≠9,則b≠3.故為:若b2≠9,則b≠3.41.已知命題p:“△ABC是等腰三角形”,命題q:“△ABC是直角三角形”,則命題“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不對答案:因為“△ABC是等腰直角三角形”即為“△ABC是等腰且直角三角形”,所以命題“△ABC是等腰直角三角形”的形式是p且q,故選B.42.(理)下列以t為參數(shù)的參數(shù)方程中表示焦點在y軸上的橢圓的是()

A.

B.(a>b>0)

C.

D.

答案:C43.已知斜二測畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長度變?yōu)樵瓉淼?倍,得到OA,由此得到原三角形的圖形ABC.44.復數(shù)z=sin1+icos2在復平面內(nèi)對應的點位于第______象限.答案:z對應的點為(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故為:四45.

若向量,滿足||=||=2,與的夾角為60°,則|+|=()

A.

B.2

C.4

D.12答案:B46.(1)若三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,則k的值為?

(2)若α∈N,又三點A(α,0),B(0,α+4),C(1,3)共線,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直線2x+3y+8=0和x-y-1=0的交點為(-1,-2).∵三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,∴(-1,-2)在直線x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三點共線,說明直線AB與直線AC的斜率相等∴a+4-00-a=3-01-a,解得:a=247.已知M(x0,y0)是圓x2+y2=r2(r>0)內(nèi)異于圓心的一點,則直線x0x+y0y=r2與此圓有何種位置關系?答案:圓心O(0,0)到直線x0x+y0y=r2的距離為d=r2x20+y20.∵P(x0,y0)在圓內(nèi),∴x20+y20<r.則有d>r,故直線和圓相離.48.求證:若圓內(nèi)接五邊形的每個角都相等,則它為正五邊形.答案:證明:設圓內(nèi)接五邊形為ABCDE,圓心是O.連接OA,OB,OCOD,OE,可得五個三角形∵OA=OB=OC=OD=OE=半徑,∴有五個等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中則∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因為所有內(nèi)角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理證明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB則△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA

(SAS邊角邊定律)∴AB=BC=CD=DE=EA∴五邊形ABCDE為正五邊形49.已知一直線斜率為3,且過A(3,4),B(x,7)兩點,則x的值為()

A.4

B.12

C.-6

D.3答案:A50.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標等于_____第2卷一.綜合題(共50題)1.(《幾何證明選講》選做題)如圖,在Rt△ABC中,∠C=90°,⊙O分別切AC、BC于M、N,圓心O在AB上,⊙O的半徑為4,OA=5,則OB的長為______.答案:連接OM,ON,則∵⊙O分別切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN為正方形∵⊙O的半徑為4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故為:2032.拋物線C:y=x2上兩點M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設M(x1,x12),N(x2,x22),則MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因為MN=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,聯(lián)立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故為10.3.集合M={(x,y)|xy≤0,x,y∈R}的意義是()A.第二象限內(nèi)的點集B.第四象限內(nèi)的點集C.第二、四象限內(nèi)的點集D.不在第一、三象限內(nèi)的點的集合答案:∵xy≤0,∴xy<0或xy=0當xy<0時,則有x<0y>0或x>0y<0,點(x,y)在二、四象限,當xy=0時,則有x=0或y=0,點(x,y)在坐標軸上,故選D.4.設兩個正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A5.已知命題p:所有有理數(shù)都是實數(shù),命題q:正數(shù)的對數(shù)都是負數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.6.直線y=kx+1與橢圓x29+y24=1的位置關系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過定點(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內(nèi)部,∴直線y=kx+1與橢圓x29+y24=1必相交,

因此可排除B、C、D;

故選A.7.若關于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實數(shù)a的取值范圍是

A.[-1,1]

B.[-1,3]

C.(-1,1)

D.(-1,3)答案:D8.某種燈泡的耐用時間超過1000小時的概率為0.2,有3個相互獨立的燈泡在使用1000小時以后,最多只有1個損壞的概率是()

A.0.008

B.0.488

C.0.096

D.0.104答案:D9.對于直線l的傾斜角α與斜率k,下列說法錯誤的是()

A.α的取值范圍是[0°,180°)

B.k的取值范圍是R

C.k=tanα

D.當α∈(90°,180°)時,α越大k越大答案:C10.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既不充分也不必要條件答案:若a>2且b>2,則必有a+b>4且ab>4成立,故充分性易證若a+b>4且ab>4,如a=8,b=1,此時a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上證明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要條件,故選A11.下列4個命題

㏒1/2x>㏒1/3x

其中的真命題是()

、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當x∈(0,)時,()x<1,而>1.p4正確12.已知△ABC的頂點坐標分別為A(2,3),B(-1,0),C(2,0),則△ABC的周長是()

A.2

B.6+

C.3+2

D.6+3答案:D13.考慮坐標平面上以O(0,0),A(3,0),B(0,4)為頂點的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請問下列哪些選項是正確的?

(1)C1的半徑為2

(2)C1的圓心在直線y=x上

(3)C1的圓心在直線4x+3y=12上

(4)C2的圓心在直線y=x上

(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項錯誤;又C1的圓心為線段AB的中點(32,2),此點在直線4x+3y=12上,所以選項(2)錯誤,選項(3)正確;如圖,P為△OAB的內(nèi)切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標為(1,1),此點在y=x上.所以選項(4)正確,選項(5)錯誤,綜上,正確的選項有(3)、(4).14.用數(shù)學歸納法證明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:證明:①n=1時,左邊=2,右邊=2,等式成立;②假設n=k時,結(jié)論成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2則n=k+1時,等式左邊=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1時,等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立15.設z是復數(shù),a(z)表示zn=1的最小正整數(shù)n,則對虛數(shù)單位i,a(i)=()A.8B.6C.4D.2答案:a(i)=in=1,則最小正整數(shù)n為4.故選C.16.下列說法不正確的是()A.圓柱側(cè)面展開圖是一個矩形B.圓錐的過軸的截面是等腰三角形C.直角三角形繞它的一條邊旋轉(zhuǎn)一周形成的曲面圍成的幾何體是圓錐D.圓臺平行于底面的截面是圓面答案:圓柱的側(cè)面展開圖是一個矩形,A正確,因為母線長相等,得到圓錐的軸截面是一個等腰三角形,B正確,圓臺平行于底面的截面是圓面,D正確,故選C.17.已知點A(1-t,1-t,t),B(2,t,t),則A、B兩點距離的最小值為()

A.

B.

C.

D.2答案:A18.若施化肥量x與小麥產(chǎn)量y之間的回歸方程為y=250+4x(單位:kg),當施化肥量為50kg時,預計小麥產(chǎn)量為______kg.答案:根據(jù)回歸方程為y=250+4x,當施化肥量為50kg,即x=50kg時,y=250+4x=250+200=450kg故為:45019.在復平面內(nèi),復數(shù)z=sin2+icos2對應的點位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2對應的點在第四象限,故選D.20.某校有學生1

200人,為了調(diào)查某種情況打算抽取一個樣本容量為50的樣本,問此樣本若采用簡單隨便機抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學生都編上號0001,0002,0003…用抽簽法做1200個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取50次,就得到一個容量為50的樣本.21.若點M是△ABC的重心,則下列向量中與AB共線的是______.(填寫序號)

(1)AB+BC+AC

(2)AM+MB+BC

(3)AM+BM+CM

(4)3AM+AC.答案:對于(1)AB+BC+AC=2AC不與AB共線對于(2)AM+MB+BC=AB+BC=AC不與AB對于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0與AB對于(4)3AM+AC=AB+AC+AC不與AB故為:(3)22.己知集合A={sinα,cosα},則α的取值范圍是______.答案:由元素的互異性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范圍是{α|α≠kπ+π4,k∈z},故為{α|α≠kπ+π4,k∈z}.23.直線y=33x繞原點逆時針方向旋轉(zhuǎn)30°后,所得直線與圓(x-2)2+y2=3的交點個數(shù)是______.答案:∵直線y=33x的斜率為33,∴此直線的傾斜角為30°,∴此直線繞原點逆時針方向旋轉(zhuǎn)30°后傾斜角為60°,∴此直線旋轉(zhuǎn)后的方程為y=3x,由圓(x-2)2+y2=3,得到圓心坐標為(2,0),半徑r=3,∵圓心到直線y=3x的距離d=232=3=r,∴該直線與圓相切,則直線與圓(x-2)2+y2=3的交點個數(shù)是1.故為:124.直線x+ky=0,2x+3y+8=0和x-y-1=0交于一點,則k的值是()

A.

B.-

C.2

D.-2答案:B25.一個長方體的長、寬、高之比為2:1:3,全面積為88cm2,則它的體積為

______cm3.答案:由長方體的長、寬、高之比為2:1:3,不妨設長、寬、高分別為2x,x,3x;則長方體的全面積為:2(2x?x+2x?3x+x?3x)=2×11x2=88,∴x=±2,這里取x=2;所以,長方體的體積為:V=2x?x?3x=4×2×6=48.故為:4826.直線x=-2+ty=1-t(t為參數(shù))被圓x=2+2cosθy=-1+2sinθ(θ為參數(shù))所截得的弦長為______.答案:∵圓x=2+2cosθy=-1+2sinθ(θ為參數(shù)),消去θ可得,(x-2)2+(y+1)2=4,∵直線x=-2+ty=1-t(t為參數(shù)),∴x+y=-1,圓心為(2,-1),設圓心到直線的距離為d=|2-1+1|2=2,圓的半徑為2∴截得的弦長為222-(2)2=22,故為22.27.若圖中的直線l1,l2,l3的斜率分別為k1,k2,k3,則()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:D28.若方程Ax+By+C=0表示與兩條坐標軸都相交的直線,則()

A.A≠0B≠0C≠0

B.A≠0B≠0

C.B≠0C≠0

D.A≠0C≠0答案:B29.平面α的一個法向量為v1=(1,2,1),平面β的一個法向量為為v2=(-2,-4,10),則平面α與平面β()A.平行B.垂直C.相交D.不確定答案:∵平面α的一個法向量為v1=(1,2,1),平面β的一個法向量為v2=(-2,-4,10),∵v1?v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故選B30.以下程序輸入2,3,4運行后,輸出的結(jié)果是()

INPUT

a,b,c

a=b

b=c

c=a

PRINT

a,b,c.

A.234

B.324

C.343

D.342答案:C31.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標等于_____32.若矩陣A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011屆學生高二上學期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分數(shù).若經(jīng)過一定量的努力,各科能前進的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分數(shù),那么他應把努力方向主要放在哪一門學科上()

A.語文

B.數(shù)學

C.外語

D.都一樣答案:B33.在莖葉圖中,樣本的中位數(shù)為______,眾數(shù)為______.答案:由莖葉圖可知樣本數(shù)據(jù)共有6,出現(xiàn)在中間兩位位的數(shù)據(jù)是20,24,所以樣本的中位數(shù)是(20+24)÷2=22由莖葉圖可知樣本數(shù)據(jù)中出現(xiàn)最多的是12,樣本的眾數(shù)是12為:22,1234.如果關于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數(shù)b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數(shù)軸上的點到4的距離與到-5的距離的差,差的最大值為9,如果關于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數(shù)b的取值范圍為b>9;故為:b>9.35.O、A、B、C為空間四個點,又為空間的一個基底,則()

A.O、A、B、C四點共線

B.O、A、B、C四點共面,但不共線

C.O、A、B、C四點中任意三點不共線

D.O、A、B、C四點不共面答案:D36.橢圓上有一點P,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點,△F1PF2為直角三角形,則這樣的點P有()

A.3個

B.4個

C.6個

D.8個答案:C37.用“斜二測畫法”作正三角形ABC的水平放置的直觀圖△A′B′C′,則△A′B′C′與△ABC的面積之比為______.答案:設正三角形的標出為:1,正三角形的高為:32,所以正三角形的面積為:34;按照“斜二測畫法”畫法,△A′B′C′的面積是:12×1×34×sin45°=616;所以△A′B′C′與△ABC的面積之比為:61634=24,故為:2438.

以下四組向量中,互相平行的有()組.

A.一

B.二

C.三

D.四答案:D39.如圖是一個空間幾何體的三視圖,試用斜二測畫法畫出它的直觀圖.(尺寸不作嚴格要求,但是凡是未用鉛筆作圖不得分,隨手畫圖也不得分)答案:由題可知題目所述幾何體是正六棱臺,畫法如下:畫法:(1)、畫軸畫x軸、y軸、z軸,使∠x′O′y′=45°,∠x′O′z′=90°

(圖1)(2)、畫底面以O′為中心,在XOY坐標系內(nèi)畫正六棱臺下底面正方形的直觀圖ABCDEF.在z′軸上取線段O′O1等于正六棱臺的高;過O1

畫O1M、O1N分別平行O’x′、O′y′,再以O1為中心,畫正六棱臺上底面正方形的直觀圖A′B′C′E′F′(3)、成圖連接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱臺的直觀圖

(如圖2).40.在線性回歸模型y=bx+a+e中,下列說法正確的是()A.y=bx+a+e是一次函數(shù)B.因變量y是由自變量x唯一確定的C.隨機誤差e是由于計算不準確造成的,可以通過精確計算避免隨機誤差e的產(chǎn)生D.因變量y除了受自變量x的影響外,可能還受到其它因素的影響,這些因素會導致隨機誤差e的產(chǎn)生答案:線性回歸是利用數(shù)理統(tǒng)計中的回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關系的一種統(tǒng)計分析方法之一,分析按照自變量和因變量之間的關系類型,可分為線性回歸分析和非線性回歸分析.A不正確,根據(jù)線性回歸方程做出的y的值是一個預報值,不是由x唯一確定,故B不正確,隨機誤差不是由于計算不準造成的,故C不正確,y除了受自變量x的影響之外還受其他因素的影響,故D正確,故選D.41.某校為提高教學質(zhì)量進行教改實驗,設有試驗班和對照班.經(jīng)過兩個月的教學試驗,進行了一次檢測,試驗班與對照班成績統(tǒng)計如下的2×2列聯(lián)表所示(單位:人),則其中m=______,n=______.

80及80分以下80分以上合計試驗班321850對照班12m50合計4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.42.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點,則f(0)與f(1)()

A.均為正值

B.均為負值

C.一正一負

D.至少有一個等于0答案:D43.(1)用紅、黃、藍、白四種不同顏色的鮮花布置如圖一所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域用不同顏色鮮花,問共有多少種不同的擺放方案?

(2)用紅、黃、藍、白、橙五種不同顏色的鮮花布置如圖二所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域使用不同顏色鮮花.

①求恰有兩個區(qū)域用紅色鮮花的概率;

②記花圃中紅色鮮花區(qū)域的塊數(shù)為S,求它的分布列及其數(shù)學期望E(S).

答案:(1)根據(jù)分步計數(shù)原理,擺放鮮花的不同方案有:4×3×2×2=48種(2)①設M表示事件“恰有兩個區(qū)域用紅色鮮花”,如圖二,當區(qū)域A、D同色時,共有5×4×3×1×3=180種;當區(qū)域A、D不同色時,共有5×4×3×2×2=240種;因此,所有基本事件總數(shù)為:180+240=420種.(由于只有A、D,B、E可能同色,故可按選用3色、4色、5色分類計算,求出基本事件總數(shù)為A53+2A51+A55=420種)它們是等可能的.又因為A、D為紅色時,共有4×3×3=36種;B、E為紅色時,共有4×3×3=36種;因此,事件M包含的基本事件有:36+36=72種.所以,P(M)=72420=635②隨機變量ξ的分布列為:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=144.求原點至3x+4y+1=0的距離?答案:由原點坐標為(0,0),得到原點到已知直線的距離d=|3?0+4?0+1|32+42=15.45.用數(shù)學歸納法證明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,當n=1時,左端為______.答案:在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,當n=1時,3n+1=4,而等式左邊起始為1×4的連續(xù)的正整數(shù)積的和,故n=1時,等式左端=1×4=4故為:4.46.已知命題p:?x∈R,x2-x+1>0,則命題¬p

是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.47.已知向量a=(3,4),b=(8,6),c=(2,k),其中k為常數(shù),如果<a,c>=<b,c>,則k=______.答案:由題意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k

2=16+6k104+k

2.解得k=2,故為2.48.用數(shù)學歸納法證明:1n+1+1n+2+1n+3+…+1n+n>1124

(n∈N,n≥1)答案:證明:(1)當n=1時,左邊=12>1124,∴n=1時成立(2分)(2)假設當n=k(k≥1)時成立,即1k+1+1k+2+1k+3+…+1k+k>1124那么當n=k+1時,左邊=1k+2+1k+3+…+1k+k

+1K+1+k+1k+1+k+1=1k+1+1k+2+1k+3+…+1k+k+1k+k+1

+1k+1+k+1-1k+1>1124+12k+1-12k+2>1124.∴n=k+1時也成立(7分)根據(jù)(1)(2)可得不等式對所有的n≥1都成立(8分)49.若f(x)=exx≤0lnxx>0,則f(f(12))=______.答案:∵f(x)=ex,x≤0lnx,x>0,∴f(f(12))=f(ln12)=eln12=12.故為:12.50.在空間中,有如下命題:

①互相平行的兩條直線在同一個平面內(nèi)的射影必然是互相平行的兩條直線;

②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;

③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.

其中正確命題的個數(shù)為()個.

A.0

B.1

C.2

D.3答案:B第3卷一.綜合題(共50題)1.過點P(3,0)作一直線,它夾在兩條直線l1:2x-y-3=0,l2:x+y+3=0之間的線段恰被點P平分,該直線的方程是()

A.4x-y-6=0

B.3x+2y-7=0

C.5x-y-15=0

D.5x+y-15=0答案:C2.如圖,O為直線A0A2013外一點,若A0,A1,A2,A3,A4,A5,…,A2013中任意相鄰兩點的距離相等,設OA0=a,OA2013=b,用a,b表示OA0+OA1+OA2+…+OA2013,其結(jié)果為______.答案:設A0A2013的中點為A,則A也是A1A2012,…A1006A1007的中點,由向量的中點公式可得OA0+OA2013=2OA=a+b,同理可得OA1+OA2012=OA2+OA2011=…=OA1006+OA1007,故OA0+OA1+OA2+…+OA2013=1007×2OA=1007(a+b)故為:1007(a+b)3.若下列算法的程序運行的結(jié)果為S=132,那么判斷框中應填入的關于k的判斷條件是

______.答案:本題考查根據(jù)程序框圖的運算,寫出控制條件按照程序框圖執(zhí)行如下:s=1

k=12s=12

k=11s=12×11=132

k=10因為輸出132故此時判斷條件應為:K≤10或K<11故為:K≤10或K<114.一個口袋中有紅球3個,白球4個.

(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求恰好第2次中獎的概率;

(Ⅱ)從中有放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數(shù)X的數(shù)學期望E(X).答案:(I)“恰好第2次中獎“即為“第一次摸到的2個白球,第二次至少有1個紅球”,其概率為C24C27×C23+C13C12C25=935;(II)摸一次中獎的概率為p=C23+C13C14C27=57,由條件知X~B(4,p),∴EX=np=4×57=207.5.已知a,b,c是正實數(shù),且a+b+c=1,則的最小值為(

)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識。將1代入中,得,當且僅當,又,故時不等式取,選C。6.平面向量a與b的夾角為60°,a=(2,0),|b|=1

則|a+2b|=______.答案:∵平面向量a與b的夾角為60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故為:23.7.如圖所示,正四面體V—ABC的高VD的中點為O,VC的中點為M.

(1)求證:AO、BO、CO兩兩垂直;

(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)

設=a,=b,=c,正四面體的棱長為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)

=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.8.從甲、乙兩人手工制作的圓形產(chǎn)品中,各自隨機抽取6件,測得其直徑如下(單位:cm):

甲:9.00,9.20,9.00,8.50,9.10,9.20

乙:8.90,9.60,9.50,8.54,8.60,8.90

據(jù)以上數(shù)據(jù)估計兩人的技術穩(wěn)定性,結(jié)論是()

A.甲優(yōu)于乙

B.乙優(yōu)于甲

C.兩人沒區(qū)別

D.無法判斷答案:A9.已知空間兩點A(4,a,-b),B(a,a,2),則向量AB=()A.(a-4,0,2+b)B.(4-a,0,-b-2)C.(0,a-4,2+b)D.(a-4,0,-b-2)答案:∵A(4,a,-b),B(a,a,2)∴AB=(a-4,a-a,2-(-b))=(a-4,0,2+b)故選A10.在曲線(t為參數(shù))上的點是()

A.(1,-1)

B.(4,21)

C.(7,89)

D.答案:A11.如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且

DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長為.答案:設AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7212.已知向量,滿足:||=3,||=5,且=λ,則實數(shù)λ=()

A.

B.

C.±

D.±答案:C13.根據(jù)給出的空間幾何體的三視圖,用斜二側(cè)畫法畫出它的直觀圖.答案:畫法:(1)畫軸如下圖,畫x軸、y軸、z軸,三軸相交于點O,使∠xOy=45°,∠xOz=90°.(2)畫圓臺的兩底面畫出底面⊙O假設交x軸于A、B兩點,在z軸上截取O′,使OO′等于三視圖中相應高度,過O′作Ox的平行線O′x′,Oy的平行線O′y′利用O′x′與O′y′畫出底面⊙O′,設⊙O′交x′軸于A′、B′兩點.(3)成圖連接A′A、B′B,去掉輔助線,將被遮擋的部分要改為虛線,即得到給出三視圖所表示的直觀圖.14.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.15.已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的一個焦點是F2(2,0),且b=3a.

(1)求雙曲線C的方程;

(2)設經(jīng)過焦點F2的直線l的一個法向量為(m,1),當直線l與雙曲線C的右支相交于A,B不同的兩點時,求實數(shù)m的取值范圍;并證明AB中點M在曲線3(x-1)2-y2=3上.

(3)設(2)中直線l與雙曲線C的右支相交于A,B兩點,問是否存在實數(shù)m,使得∠AOB為銳角?若存在,請求出m的范圍;若不存在,請說明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴雙曲線為x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1?x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)設A(x1,y1),B(x2,y2),則x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中點M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3?m4+6m2+9-12m2(m2-3)2=3∴M在曲線3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),設存在實數(shù)m,使∠AOB為銳角,則OA?OB>0∴x1x2+y1y2>0因為y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,與m2>3矛盾∴不存在16.計算機的程序設計語言很多,但各種程序語言都包含下列基本的算法語句:______,______,______,______,______.答案:計算機的程序設計語言很多,但各種程序語言都包含下列基本的算法語句:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.故為:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.17.某廠一批產(chǎn)品的合格率是98%,檢驗單位從中有放回地隨機抽取10件,則計算抽出的10件產(chǎn)品中正品數(shù)的方差是______.答案:用X表示抽得的正品數(shù),由于是有放回地隨機抽取,所以X服從二項分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故為:0.196.18.經(jīng)過點P(4,-2)的拋物線的標準方程為()

A.y2=-8x

B.x2=-8y

C.y2=x或x2=-8y

D.y2=x或y2=8x答案:C19.(坐標系與參數(shù)方程選做題)在平面直角坐標系xOy中,曲線C1與C2的參數(shù)方程分別為x=ty=t(t為參數(shù))和x=2cosθy=2sinθ(θ為參數(shù)),則曲線C1與C2的交點坐標為______.答案:在平面直角坐標系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2

+y2=2

可得x=1y=1,故曲線C1與C2的交點坐標為(1,1),故為(1,1).20.點P(x0,y0)在圓x2+y2=r2內(nèi),則直線x0x+y0y=r2和已知圓的公共點的個數(shù)為(

A.0

B.1

C.2

D.不能確定答案:A21.下列各組向量中不平行的是()A.a(chǎn)=(1,2,-2),b=(-2,-4,4)B.c=(1,0,0),d=(-3,0,0)C.e=(2,3,0),f=(0,0,0)D.g=(-2,3,5),h=(16,24,40)答案:選項A中,b=-2a?a∥b;選項B中有:d=-3c?d∥c,選項C中零向量與任意向量平行,選項D,事實上不存在任何一個實數(shù)λ,使得g=λh,即:(16,24,40)=λ(16,24,40).故應選:D22.從5名男學生、3名女學生中選3人參加某項知識對抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個分類計數(shù)問題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當包括兩女一男時,有C32C51=15種結(jié)果,當包括兩男一女時,有C31C52=30種結(jié)果,∴根據(jù)分類加法得到共有15+30=45故選A.23.在極坐標系中,若等邊三角形ABC(頂點A,B,C按順時針方向排列)的頂點A,B的極坐標分別為(2,π6),(2,7π6),則頂點C的極坐標為______.答案:如圖所示:由于A,B的極坐標(2,π6),(2,7π6),故極點O為線段AB的中點.故等邊三角形ABC的邊長為4,AB邊上的高(即點C到AB的距離)OC等于23.設點C的極坐標為(23,π6+π2),即(23,2π3),故為(23,2π3).24.用0,1,2,3組成沒有重復數(shù)字的四位數(shù),其中奇數(shù)有()

A.8個

B.10個

C.18個

D.24個答案:A25.4位學生與2位教師并坐合影留念,針對下列各種坐法,試問:各有多少種不同的坐法?(用數(shù)字作答)

(1)教師必須坐在中間;

(2)教師不能坐在兩端,但要坐在一起;

(3)教師不能坐在兩端,且不能相鄰.答案:(1)先排4位學生,有A44種坐法,2位教師坐在中間,可以交換位置,有A22種坐法,則共有A22A44=48種坐法;(2)先排4位學生,有A44種坐法,2位教師坐在一起,將其看成一個整體,可以交換位置,有2種坐法,將這個“整體”插在4個學生的空位中,又由教師不能坐在兩端,則有3個空位可選,則共有2A44A31=144種坐法;(3)先排4位學生,有A44種坐法,教師不能相鄰,將其依次插在4個學生的空位中,又由教師不能坐在兩端,則有3個空位可選,有A32種坐法,則共有A44A32=144種坐法..26.若關于的不等式的解集是,則的值為_______答案:-2解析:原不等式,結(jié)合題意畫出圖可知.27.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標準方程是

______,過這個圓外一點P(2,3)的該圓的切線方程是

______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標準方程是(x-1)2+(y-1)2=1;∵這個圓外一點P(2,3)的該圓的切線,當切線斜率不存在時,顯然x=2符合題意;當切線斜率存在時,設切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=

1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.28.設F1,F(xiàn)2是雙曲線的兩個焦點,點P在雙曲線上,且·=0,則|PF1|·|PF2|值等于()

A.2

B.2

C.4

D.8答案:A29.如圖所示,圖中線條構(gòu)成的所有矩形中(由6個小的正方形組成),其中為正方形的概率為

______.答案:它的長有10種取法,由長與寬的對稱性,得到它的寬也有10種取法;因為,長與寬相互獨立,所以得到長X寬的個數(shù)有:10X10=100個即總的矩形的個數(shù)有:100個長=寬的個數(shù)為:(1X1的正方形的個數(shù))+(2X2的正方形個數(shù))+(3X3的正方形個數(shù))+(4X4的正方形個數(shù))=16+9+4+1=30個即正方形的個數(shù)有:30個所以為正方形的概率是30100=0.3故為0.330.已知直線過點A(2,0),且平行于y軸,方程:|x|=2,則(

A.l是方程|x|=2的曲線

B.|x|=2是l的方程

C.l上每一點的坐標都是方程|x|=2的解

D.以方程|x|=2的解(x,y)為坐標的點都在l上答案:C31.(x+2y)4展開式中各項的系數(shù)和為______.答案:令x=y=1,可得(1+2)4=81故為:81.32.如圖:已知圓上的弧

AC=

BD,過C點的圓的切線與BA的延長線交于E點,證明:

(Ⅰ)∠ACE=∠BCD.

(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因為AC=BD,所以∠BCD=∠ABC.又因為EC與圓相切于點C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因為∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)33.在直角三角形ABC中,∠ACB=90°,CD、CE分別為斜邊AB上的高和中線,且∠BCD與∠ACD之比為3:1,求證CD=DE.

答案:證明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜邊AB上的中線∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC為等腰直角三角形∴CE=DE.34.若a,b∈{2,3,4,5,7},則可以構(gòu)成不同的橢圓的個數(shù)為()

A.10

B.20

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論