2023年福建生物工程職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年福建生物工程職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年福建生物工程職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年福建生物工程職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年福建生物工程職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩38頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年福建生物工程職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(0,2)在圓x2+y2=4上,∴過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是0x+2y=4,即y=2.故為:y=2.2.一個袋子里裝有大小相同的3個紅球和2個黃球,從中同時取出2個球,則其中含紅球個數(shù)的數(shù)學期望是

______.答案:設含紅球個數(shù)為ξ,ξ的可能取值是0、1、2,當ξ=0時,表示從中取出2個球,其中不含紅球,當ξ=1時,表示從中取出2個球,其中1個紅球,1個黃球,當ξ=2時,表示從中取出2個球,其中2個紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.3.點P(x0,y0)在圓x2+y2=r2內,則直線x0x+y0y=r2和已知圓的公共點的個數(shù)為(

A.0

B.1

C.2

D.不能確定答案:A4.已知A(1,0).B(7,8),若點A和點B到直線l的距離都為5,且滿足上述條件的直線l共有n條,則n的值是()A.1B.2C.3D.4答案:與直線AB平行且到直線l的距離都為5的直線共有兩條,分別位于直線AB的兩側,由線段AB的長度等于10,還有一條直線是線段AB的中垂線,故滿足上述條件的直線l共有3條,故選C.5.設a=log132,b=log1213,c=(12)0.3,則()A.a<b<cB.a<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故選B.6.甲、乙兩人進行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝.根據(jù)經驗,每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(

A.0.216

B.0.36

C.0.432

D.0.648答案:D7.兩條互相平行的直線分別過點A(6,2)和B(-3,-1),并且各自繞著A,B旋轉,如果兩條平行直線間的距離為d.

求:

(1)d的變化范圍;

(2)當d取最大值時兩條直線的方程.答案:(1)方法一:①當兩條直線的斜率不存在時,即兩直線分別為x=6和x=-3,則它們之間的距離為9.…(2分)②當兩條直線的斜率存在時,設這兩條直線方程為l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)綜合①②可知,所求d的變化范圍為(0,310].方法二:如圖所示,顯然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的變化范圍為(0,310].(2)由圖可知,當d取最大值時,兩直線垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直線的斜率為-3.故所求的直線方程分別為y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)8.一個凸多面體的各個面都是四邊形,它的頂點數(shù)是16,則它的面數(shù)為()

A.14

B.7

C.15

D.不能確定答案:A9.兩平行直線x+3y-5=0與x+3y-10=0的距離是______.答案:根據(jù)題意,得兩平行直線x+3y-5=0與x+3y-10=0的距離為d=|-5+10|12+32=102故為:10210.用反證法證明命題:“三角形的內角中至少有一個不大于60度”時,假設正確的是()

A.假設三內角都不大于60度

B.假設三內角都大于60度

C.假設三內角至多有一個大于60度

D.假設三內角至多有兩個大于60度答案:B11.已知命題p:?x∈R,x2-x+1>0,則命題¬p

是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.12.有一個正四棱臺形狀的油槽,可以裝油190L,假如它的兩底面邊長分別等于60cm和40cm,求它的深度.答案:由于臺體的體積V=13(S+SS′+S′)h,則h=3VS+SS′+S′=3×1900003600+2400+1600=75cm.故它的深度為75cm.13.設雙曲線C:x2a2-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B.

(I)求雙曲線C的離心率e的取值范圍:

(II)設直線l與y軸的交點為P,且PA=512PB.求a的值.答案:(I)由C與l相交于兩個不同的點,故知方程組x2a2-y2=1x+y=1.有兩個不同的實數(shù)解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①所以1-a2≠0.4a4+8a2(1-a2)>0.解得0<a<2且a≠1.雙曲線的離心率e=1+a2a=1a2+1.∵0<a<2且a≠1,∴e>62且e≠2即離心率e的取值范圍為(62,2)∪(2,+∞).(II)設A(x1,y1),B(x2,y2),P(0,1)∵PA=512PB,∴(x1,y1-1)=512(x2,y2-1).由此得x1=512x2.由于x1和x2都是方程①的根,且1-a2≠0,所以1712x2=-2a21-a2.x1?x2=512x22=-2a21-a2.消去x2,得-2a21-a2=28960由a>0,所以a=1713.14.已知直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為三邊長的三角形()

A.是銳角三角形

B.是鈍角三角形

C.是直角三角形

D.不存在答案:C15.已知橢圓(a>b>0)的焦點分別為F1,F(xiàn)2,b=4,離心率e=過F1的直線交橢圓于A,B兩點,則△ABF2的周長為()

A.10

B.12

C.16

D.20答案:D16.若{、、}為空間的一組基底,則下列各項中,能構成基底的一組向量是[

]A.,+,﹣

B.,+,﹣

C.,+,﹣

D.+,﹣,+2答案:C17.如圖在長方形ABCD中,AB=,BC=1,E為線段DC上一動點,現(xiàn)將△AED沿AE折起,使點D在面ABC上的射影K在直線AE上,當E從D運動到C,則K所形成軌跡的長度為()

A.

B.

C.

D.答案:B18.已知F1=i+2j+3k,F(xiàn)2=2i+3j-k,F(xiàn)3=3i-4j+5k,若F1,F(xiàn)2,F(xiàn)3共同作用于一物體上,使物體從點M(1,-2,1)移動到N(3,1,2),則合力所作的功是______.答案:由題意可得F1=(1,2,3)F2=(2,3,-1),F(xiàn)3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F?S=6×2+1×3+7×1=22故為:2219.不等式log32x-log3x2-3>0的解集為()

A.(,27)

B.(-∞,-1)∪(27,+∞)

C.(-∞,)∪(27,+∞)

D.(0,)∪(27,+∞)答案:D20.構成多面體的面最少是()

A.三個

B.四個

C.五個

D.六個答案:B21.已知函數(shù)f(x)=

-x+1,x<0x-1,x≥0,則不等式x+(x+1)f(x+1)≤1的解集是()

A.[-1,

2-1]B.(-∞,1]C.(-∞,

2-1]D.[-

2-1,

2-1]答案:C解析:由題意x+(x+1)f(x+1)=22.設圓O1和圓O2是兩個定圓,動圓P與這兩個定圓都相切,則圓P的圓心軌跡不可能是()

A.

B.

C.

D.

答案:A23.已知直線經過點A(0,4)和點B(1,2),則直線AB的斜率為______.答案:因為A(0,4)和點B(1,2),所以直線AB的斜率k=2-41-0=-2故為:-224.用WHILE語句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While

i<=63s=s+2^ii=i+1WendPrint

send25.已知適合不等式|x2-4x+p|+|x-3|≤5的x的最大值為3,求p的值.答案:因為x的最大值為3,故x-3<0,原不等式等價于|x2-4x+p|-x+3≤5,(3分)即-x-2≤x2-4x+p≤x+2,則x2-5x+p-2≤0x2-3x+p+2≥0

解的最大值為3,(6分)設x2-5x+p-2=0

的根分別為x1和x2,x1<x2,x2-3x+p+2=0的根分別為x3和

x4,x3<x4.則x2=3,或x4=3.若x2=3,則9-15+p-2=0,p=8,若x4=3,則9-9+p+2=0,p=-2.當p=-2時,原不等式無解,檢驗得:p=8

符合題意,故p=8.(12分)26.已知鐳經過100年,質量便比原來減少4.24%,設質量為1的鐳經過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由題意可得,對于函數(shù),當x=100時,y=95.76%=0.9576,結合選項檢驗選項A:x=100,y=0.0424,故排除A選項B:x=100,y=0.9576,故B正確故選:B解析:已知鐳經過100年,質量便比原來減少4.24%,設質量為1的鐳經過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x27.極坐標方程ρcos2θ=0表示的曲線為()

A.極點

B.極軸

C.一條直線

D.兩條相交直線答案:D28.隋機變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C29.平面向量a與b的夾角為60°,a=(2,0),|b|=1

則|a+2b|=______.答案:∵平面向量a與b的夾角為60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故為:23.30.設雙曲線的焦點在x軸上,兩條漸近線為y=±12x,則雙曲線的離心率e=______.答案:依題意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故為52.31.己知△ABC的外心、重心、垂心分別為O,G,H,若,則λ=()

A.3

B.2

C.

D.答案:A32.

圓ρ=(cosθ+sinθ)的圓心的極坐標是()

A.(1,)

B.(,)

C.(,)

D.(2,)

答案:A33.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因為直線的斜率k和傾斜角θ的關系是:k=tanθ∴傾斜角為30°時,對應的斜率k=tan30°=33故選:C.34.設求證答案:證明略解析:左邊-右邊===

=

∴原不等式成立。證法二:左邊>0,右邊>0?!嘣坏仁匠闪?。35.如果執(zhí)行程序框圖,那么輸出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故選C36.已知某離散型隨機變量ξ的數(shù)學期望Eξ=76,ξ的分布列如下,則a=______.

答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故為:1337.給出20個數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.38.當太陽光線與水平面的傾斜角為60°時,要使一根長為2m的細桿的影子最長,則細桿與水平地面所成的角為()

A.15°

B.30°

C.45°

D.60°答案:B39.已知F1(-2,0),F(xiàn)2(2,0)兩點,曲線C上的動點P滿足|PF1|+|PF2|

=32|F1F2|.

(Ⅰ)求曲線C的方程;

(Ⅱ)若直線l經過點M(0,3),交曲線C于A,B兩點,且MA=12MB,求直線l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|

=32|F1F2|

=6>|F1F2|=4,故曲線C是以F1,F(xiàn)2為焦點,長軸長為6的橢圓,其方程為x29+y25=1.(Ⅱ)方法一:設A(x1,y1),B(x2,y2),由條件可知A為MB的中點,則有x129+y125=1,

(1)x229+y225=1,(2)2x1=x2,

(3)2y1=y2+3.

(4)將(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理為4x129+4y125-125y1+45=0.將(1)代入上式得y1=2,再代入橢圓方程解得x1=±35,故所求的直線方程為y=±53x+3.方法二:依題意,直線l的斜率存在,設其方程為y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.設A(x1,y1),B(x2,y2),則x1+x2=-54k5+9k2,①x1x2=365+9k2.②因為MA=12MB,所以A為MB的中點,從而x2=2x1.將x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直線l的方程為y=±53x+3.40.若直線3x+4y+m=0與曲線x=1+cosθy=-2+sinθ(θ為參數(shù))沒有公共點,則實數(shù)m的取值范圍是

______.答案:∵曲線x=1+cosθy=-2+sinθ(θ為參數(shù))的普通方程是(x-1)2+(y+2)2=1則圓心(1,-2)到直線3x+4y+m=0的距離d=|3?1+4(-2)+m|32+42=|m-5|5,令|m-5|5>1,得m>10或m<0.故為:m>10或m<0.41.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()

A.

B.

C.

D.答案:B42.若以(y+2)2=4(x-1)上任一點P為圓心作與y軸相切的圓,那么這些圓必定過平面內的點()

A.(1,-2)

B.(3,-2)

C.(2,-2)

D.不存在這樣的點答案:C43.求證:若圓內接四邊形的兩條對角線互相垂直,則從對角線交點到一邊中點的線段長等于圓心到該邊對邊的距離.答案:以兩條對角線的交點為原點O、對角線所在直線為坐標軸建立直角坐標系,(如圖所示)

設A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點E(c2,d2),AB的中點H(-a2,-b2).又圓心G到四個頂點的距離相等,故圓心G的橫坐標等于AC中點的橫坐標,等于c-a2,圓心G的縱坐標等于BD中點的縱坐標,等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結論成立.44.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC邊上任取一點M,則∠AMB≥90°的概率為______.答案:過A點做BC的垂線,垂足為M',當M點落在線段BM'(含M'點不含B點)上時∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,則∠AMB≥90°的概率p=122=14.故為:1445.如圖所示,設P為△ABC所在平面內的一點,并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點共線,∴AP=λAD+μAC且λ+μ=1設AB=kAD,結合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C46.設隨機變量X的分布列為P(X=k)=,k=1,2,3,4,5,則P()等于()

A.

B.

C.

D.答案:C47.已知圓的極坐標方程為:ρ2-42ρcos(θ-π4)+6=0.

(1)將極坐標方程化為普通方程;

(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.48.已知命題p:“有的實數(shù)沒有平方根.”,則非p是______.答案:∵命題p:“有的實數(shù)沒有平方根.”,是一個特稱命題,非P是它的否定,應為全稱命題“所有實數(shù)都有平方根”故為:所有實數(shù)都有平方根.49.已知復數(shù)z的模為1,且復數(shù)z的實部為13,則復數(shù)z的虛部為______.答案:設復數(shù)的虛部是b,∵復數(shù)z的模為1,且復數(shù)z的實部為13,∴(13)2+b2=1,∴b2=89,∴b=±223故為:±22350.對于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…in)

(n是不小于2的正整數(shù)),對于任意p,q∈1,2,3,…,n,當p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,4,3,1)中的逆序數(shù)等于______.答案:由題意知當p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,在數(shù)組(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4對逆序數(shù)對,故為:4.第2卷一.綜合題(共50題)1.已知a>0,b>0且a+b>2,求證:1+ba,1+ab中至少有一個小于2.答案:證明:假設1+ba,1+ab都不小于2,則1+ba≥2,1+ab≥2(6分)因為a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,這與已知a+b>2相矛盾,故假設不成立(12分)綜上1+ba,1+ab中至少有一個小于2.(14分)2.判斷下列各組中的兩個函數(shù)是同一函數(shù)的為()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定義域:{x|x≠0},g(x)的定義域為R,故A錯誤;B、f(x)=x0=1,g(x)=1,定義域都為{x|x≠1},故B正確;C、∵f(x)=x2=|x|,g(x)=x,解析式不一樣,故C錯誤;D、∵f(x)=|x|,g(x)=x,f(x)的定義域為R,g(x)的定義域為:{x|x≥0},故D錯誤;故選B.3.如圖所示,已知P是平行四邊形ABCD所在平面外一點,連結PA、PB、PC、PD,點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,求證:E、F、G、H四點共面答案:證明:分別延長P、PF、PG、PH交對邊于M、N、Q、R.∵E、F、G、H分別是所在三角形的重心,∴M、N、Q、R為所在邊的中點,順次連結MNQR所得四邊形為平行四邊形,且有∵MNQR為平行四邊形,∴由共面向量定理得E、F、G、H四點共面.4.(文科做)

f(x)=1x

(x<0)(13)x(x≥0),則不等式f(x)≥13的解集是______.答案:x<0時,f(x)=1x≥13,解得x∈?;x≥0時,f(x)=(13)x≥13,解得x≤1,故0≤x≤1.綜上所述,不等式f(x)≥13的解集為{x|0≤x≤1}.故為:{x|0≤x≤1}.5.三棱錐P-ABC中,M為BC的中點,以為基底,則可表示為()

A.

B.

C.

D.答案:D6.如圖程序框圖表達式中N=______.答案:該程序按如下步驟運行①N=1×2,此時i變成3,滿足i≤5,進入下一步循環(huán);②N=1×2×3,此時i變成4,滿足i≤5,進入下一步循環(huán);③N=1×2×3×4,此時i變成5,滿足i≤5,進入下一步循環(huán);④N=1×2×3×4×5,此時i變成6,不滿足i≤5,結束循環(huán)體并輸出N的值因此,最終輸出的N等于1×2×3×4×5=120故為:1207.命題“零向量與任意向量共線”的否定為______.答案:命題“零向量與任意向量共線”即“任意向量與零向量共線”,是全稱命題,其否定為特稱命題:“有的向量與零向量不共線”.故為:“有的向量與零向量不共線”.8.拋擲甲、乙兩骰子,記事件A:“甲骰子的點數(shù)為奇數(shù)”;事件B:“乙骰子的點數(shù)為偶數(shù)”,則P(B|A)的值等于()

A.

B.

C.

D.答案:B9.不等式log2(x+1)<1的解集為()

A.{x|0<x<1}

B.{x|-1<x≤0}

C.{x|-1<x<1}

D.{x|x>-1}答案:C10.離心率e=23,短軸長為85的橢圓標準方程為______.答案:離心率e=23,短軸長為85,所以ca=23;b=45又a2=b2+c2解得a2=144,b2=80所以橢圓標準方程為x2144+y280=1或y2144+x280=1故為x2144+y280=1或y2144+x280=111.設α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根,當m為何值時,α2+β2有最小值?并求出這個最小值.答案:若α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根則△=16m2-16(m+2)≥0,即m≤-1,或m≥2則α+β=m,α×β=m+24,則α2+β2=(α+β)2-2αβ=m2-2×m+24=m2-12m-1=(m-14)2-1716∴當m=-1時,α2+β2有最小值,最小值是12.12.已知直線方程l1:2x-4y+7=0,l2:x-2y+5=0,則l1與l2的關系()

A.平行

B.重合

C.相交

D.以上答案都不對答案:A13.若數(shù)據(jù)x1,x2,x3…xn的平均數(shù).x=5,方差σ2=2,則數(shù)據(jù)3x1+1,3x2+1,3x3+1…,3xn+1的方差為______.答案:∵x1,x2,x3,…,xn的方差為2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故為:18.14.過點(-1,3)且平行于直線x-2y+3=0的直線方程為()

A.x-2y+7=0

B.2x+y-1=0

C.x-2y-5=0

D.2x+y-5=0答案:A15.某學校高一、高二、高三共有學生3500人,其中高三學生數(shù)是高一學生數(shù)的兩倍,高二學生數(shù)比高一學生數(shù)多300人,現(xiàn)在按的抽樣比用分層抽樣的方法抽取樣本,則應抽取高一學生數(shù)為()

A.8

B.11

C.16

D.10答案:A16.在平行四邊形ABCD中,等于()

A.

B.

C.

D.答案:C17.在某項測量中,測量結果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內取值的概率為0.6,則ξ在(0,1)內取值的概率為()

A.0.1

B.0.2

C.0.3

D.0.4答案:C18.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說:“是乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了.”丁說:“是乙獲獎.”四位歌手的話只有兩句是對的,則獲獎的歌手是()A.甲B.乙C.丙D.丁答案:若甲是獲獎的歌手,則都說假話,不合題意.若乙是獲獎的歌手,則甲、乙、丁都說真話,丙說假話,不符合題意.若丁是獲獎的歌手,則甲、丁、丙都說假話,乙說真話,不符合題意.故獲獎的歌手是丙故先C19.在空間有三個向量AB、BC、CD,則AB+BC+CD=()A.ACB.ADC.BDD.0答案:如圖:AB+BC+CD=AC+CD=AD.故選B.20.用反證法證明命題:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個負數(shù)”時的假設為()

A.a,b,c,d中至少有一個正數(shù)

B.a,b,c,d全為正數(shù)

C.a,b,c,d全都大于等于0

D.a,b,c,d中至多有一個負數(shù)答案:C21.圓心在x軸上,且過兩點A(1,4),B(3,2)的圓的方程為______.答案:設圓心坐標為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經過兩點A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=2022.已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.

7分(2)A=2130的特征多項式為f(λ)=.λ-2-1-3λ.=

-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時,α1=11,λ2=-1時,α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.23.設A、B、C表示△ABC的三個內角的弧度數(shù),a,b,c表示其對邊,求證:aA+bB+cCa+b+c≥π3.答案:證明:法一、不妨設A>B>C,則有a>b>c由排序原理:順序和≥亂序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨設A>B>C,則有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+b+c3,即aA+bB+cC≥π3(a+b+c),∴aA+bB+cCa+b+c≥π3.24.根據(jù)學過的知識,試把“推理與證明”這一章的知識結構圖畫出來.答案:根據(jù)“推理與證明”這一章的知識可得結構圖,如圖所示.25.設函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=______.答案:因為函數(shù)f(x)是定義在[a,b]上的奇函數(shù),所以定義域關于原點對稱,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.26.下列輸入語句正確的是()

A.INPUT

x,y,z

B.INPUT“x=”;x,“y=”;y

C.INPUT

2,3,4

D.INPUT

x=2答案:A27.已知圓的方程是(x-2)2+(y-3)2=4,則點P(3,2)滿足()

A.是圓心

B.在圓上

C.在圓內

D.在圓外答案:C28.關于直線a,b,c以及平面M,N,給出下面命題:

①若a∥M,b∥M,則a∥b

②若a∥M,b⊥M,則b⊥a

③若a∥M,b⊥M,且c⊥a,c⊥b,則c⊥M

④若a⊥M,a∥N,則M⊥N,

其中正確命題的個數(shù)為()

A.0個

B.1個

C.2個

D.3個答案:C29.如圖,在正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點.用AB、AD、AA1表示向量MN,則MN=______.答案:∵MN=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故為12AB+12AD+12AA1.30.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()

A.∠AED=∠B

B.

C.

D.DE∥BC

答案:C31.給出20個數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.32.已知|a|<1,|b|<1,求證:<1.答案:證明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0

(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.33.已知圖形F上的點A按向量平移前后的坐標分別是和,若B()是圖形F上的又一點,則在F按向量平移后得到的圖形F,上B,的坐標是(

)A.B.C.D.答案:選D解析:設向量,則平移公式為依題意有∴平移公式為將B點坐標代入可得B,點的坐標為.所以選D.34.如圖:一個力F作用于小車G,使小車G發(fā)生了40米的位移,F(xiàn)的大小為50牛,且與小車的位移方向的夾角為60°,則F在小車位移方向上的正射影的數(shù)量為______,力F做的功為______牛米.答案:如圖,∵|F|=50,且F與小車的位移方向的夾角為60°,∴F在小車位移方向上的正射影的數(shù)量為:|F|cos60°=50×12=25(牛).∵力F作用于小車G,使小車G發(fā)生了40米的位移,∴力F做的功w=25×40=1000(牛米).故為:25牛,1000.35.圓x2+y2=1和圓x2+y2-6y+5=0的位置關系是()

A.外切

B.內切

C.外離

D.內含答案:A36.三個數(shù)a=0.32,b=log20.3,c=20.3之間的大小關系是()A.a<c<bB.a<b<cC.b<a<cD.b<c<a答案:由對數(shù)函數(shù)的性質可知:b=log20.3<0,由指數(shù)函數(shù)的性質可知:0<a<1,c>1∴b<a<c故選C37.設曲線C的方程是,將C沿x軸,y軸正向分別平移單位長度后,得到曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關于點A(,)對稱.答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線C1的方程是(2)在曲線C上任取一點,設是關于點A的對稱點,則有,,代入曲線C的方程,得關于的方程,即可知點在曲線C1上.反過來,同樣可以證明,在曲線C1上的點關于點A的對稱點在曲線C上,因此,曲線C與C1關于點A對稱.38.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因為集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.39.有3名同學要爭奪2個比賽項目的冠軍,冠軍獲得者共有______種可能.答案:第一個項目的冠軍有3種情況,第二個項目的冠軍也有3種情況,根據(jù)分步計數(shù)原理,冠軍獲得者共有3×3=9種可能,故為9.40.若集合M={a,b,c}中的元素是△ABC的三邊長,則△ABC一定不是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.等腰三角形答案:D41.已知直線的參數(shù)方程為x=1+ty=3+2t.(t為參數(shù)),圓的極坐標方程為ρ=2cosθ+4sinθ.

(I)求直線的普通方程和圓的直角坐標方程;

(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)42.直線3x+4y-7=0與直線6x+8y+3=0之間的距離是()

A.

B.2

C.

D.答案:C43.設向量不共面,則下列集合可作為空間的一個基底的是(

A.{}

B.{}

C.{}

D.{}

答案:C44.已知復數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),則實數(shù)m=______.答案:當m2-5m+6=0m2-3m≠0時,即m=2或m=3m≠0且m≠3?m=2時復數(shù)z為純虛數(shù).故為:2.45.設P點在x軸上,Q點在y軸上,PQ的中點是M(-1,2),則|PQ|等于______.答案:設P(a,0),Q(0,b),∵PQ的中點是M(-1,2),∴由中點坐標公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故為:2546.拋物線y2=4px(p>0)的準線與x軸交于M點,過點M作直線l交拋物線于A、B兩點.

(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;

(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點依次為N1,N2,N3,…,當0<p<1時,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點坐標為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時,AB中垂線與x軸交點依次為N1,N2,N3,(0<p<1).∴點Nn的坐標為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).47.將兩個數(shù)a=8,b=17交換,使a=17,b=8,下面語句正確一組是()

A.

B.

C.

D.

答案:B48.△ABC中,,若,則m+n=()

A.

B.

C.

D.1答案:B49.參數(shù)方程為t為參數(shù))表示的曲線是()

A.一條直線

B.兩條直線

C.一條射線

D.兩條射線答案:D50.某公司招聘員工,經過筆試確定面試對象人數(shù),面試對象人數(shù)按擬錄用人數(shù)分段計算,計算公式為y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表擬錄用人數(shù),y代表面試對象人數(shù).若應聘的面試對象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.25D.130答案:由題意知:當10<x≤100時,y=2x+10∈(30,210],又因為60∈(30,210],∴2x+10=60,∴x=25.故:該公司擬錄用人數(shù)為25人.故選C.第3卷一.綜合題(共50題)1.設a>0,f(x)=ax2+bx+c,曲線y=f(x)在點P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對稱軸距離的取值范圍為()

A.[0,]

B.[0,]

C.[0,||]

D.[0,||]答案:B2.如圖,梯形ABCD內接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數(shù)是

______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故為:60°3.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點到直線x=2+45ty=c-35t(t為參數(shù))的距離的最大值為______.答案:∵直線x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設直線3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點到直線的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.4.下列語句是命題的是______.

①求證3是無理數(shù);

②x2+4x+4≥0;

③你是高一的學生嗎?

④一個正數(shù)不是素數(shù)就是合數(shù);

⑤若x∈R,則x2+4x+7>0.答案:①是祈使句,所以①不是命題.②是命題,能夠判斷真假,因為x2+4x+4=(x+2)2≥0,所以②是命題.③是疑問句,所以③不是命題.④能夠判斷真假,所以④是命題.⑤能夠判斷真假,因為x2+4x+7=(x+2)2+3>0,所以⑤是命題.故為:②④⑤.5.設d1與d2都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關于d1與d2的敘述正確的是()A.d1=d2B.d1與d2同向C.d1∥d2D.d1與d2有相同的位置向量答案:根據(jù)直線的方向向量定義,把直線上的非零向量以及與之共線的非零向量叫做直線的方向向量.因此,線Ax+By+C=0(AB≠0)的方向向量都應該是共線的故選C.6.在直角三角形ABC中,∠ACB=90°,CD、CE分別為斜邊AB上的高和中線,且∠BCD與∠ACD之比為3:1,求證CD=DE.

答案:證明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜邊AB上的中線∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC為等腰直角三角形∴CE=DE.7.命題:“方程x2-1=0的解是x=±1”,其使用邏輯聯(lián)結詞的情況是()A.使用了邏輯聯(lián)結詞“且”B.使用了邏輯聯(lián)結詞“或”C.使用了邏輯聯(lián)結詞“非”D.沒有使用邏輯聯(lián)結詞答案:“x=±1”可以寫成“x=1或x=-1”,故選B.8.已知點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因為點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個平行四邊形的起點為A的對角線上,又平行四邊形對角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.9.已知O、A、M、B為平面上四點,且,則()

A.點M在線段AB上

B.點B在線段AM上

C.點A在線段BM上

D.O、A、M、B四點一定共線答案:B10.已知橢圓(a>b>0)的焦點分別為F1,F(xiàn)2,b=4,離心率e=過F1的直線交橢圓于A,B兩點,則△ABF2的周長為()

A.10

B.12

C.16

D.20答案:D11.如果執(zhí)行程序框圖,那么輸出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故選C12.點P(1,2,2)到原點的距離是()

A.9

B.3

C.1

D.5答案:B13.復數(shù)32i+11-i的虛部是______.答案:復數(shù)32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴復數(shù)的虛部是2,故為:214.(選做題)某制藥企業(yè)為了對某種藥用液體進行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分數(shù)法進行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數(shù)為(

)。答案:715.直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(2,3),則經過A(a1,b1),B(a2,b2)兩點的直線方程為______.答案:∵直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(2,3),∴2a1+3b1+1=0,2a2+3b2+2=0.∴A(a1,b1),B(a2,b2)兩點都在直線2x+3y+1=0上,由于兩點確定一條直線,因此經過A(a1,b1),B(a2,b2)兩點的直線方程即為2x+3y+1=0.故為:2x+3y+1=0.16.函數(shù)y=5x,x∈N+的值域是()A.RB.N+C.ND.{5,52,53,54,…}答案:解析:因為函數(shù)y=5x,x∈N+的定義域為正整數(shù)集N+,所以當自變量x取1,2,3,4,…時,其相應的函數(shù)值y依次是5,52,53,54,….因此,函數(shù)y=5x,x∈N+的值域是{5,52,53,54,…}.故選D.17.在邊長為1的正方形中,有一個封閉曲線圍成的陰影區(qū)域,在正方形中隨機的撒入100粒豆子,恰有60粒落在陰影區(qū)域內,那么陰影區(qū)域的面積為______.

答案:設陰影部分的面積為x,由概率的幾何概型知,則60100=x1,解得x=35.故為:35.18.從1,2,3,4,5中不放回地依次取2個數(shù),事件A=“第一次取到的是奇數(shù)”,B=“第二次取到的是奇數(shù)”,則P(B|A)=()

A.

B.

C.

D.答案:D19.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()

A.

B.

C.

D.

答案:A20.拋物線y2=4x上一點M與該拋物線的焦點F的距離|MF|=4,則點M的橫坐標x=______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點到焦點的距離與到準線的距離是相等的,∴|MF|=4=x+p2=4,∴x=3,故為:3.21.已知P(B|A)=,P(A)=,則P(AB)等于()

A.

B.

C.

D.答案:C22.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為(

A.

B.

C.3

D.2答案:C23.已知平面向量.a,b的夾角為60°,.a=(3,1),|b|=1,則|.a+2b|=______.答案:∵平面向量.a,b的夾角為60°,.a=(3,1),∴|.a|=2.b2

再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故為23.24.如圖是從甲、乙兩個班級各隨機選出9名同學進行測驗成績的莖葉圖,從圖中看,平均成績較高的是______班.答案:∵莖葉圖的數(shù)據(jù)得到甲同學成績:46,58,61,64,71,74,75,84,87;莖葉圖的數(shù)據(jù)得到乙同學成績:57,62,65,75,79,81,84,87,89.∴甲平均成績?yōu)?9;乙平均成績?yōu)?5;故為:乙.25.設A1,A2,A3,A4是平面直角坐標系中兩兩不同的四點,若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,則稱A3,A4調和分割A1,A2,已知點C(c,0),D(d,O)(c,d∈R)調和分割點A(0,0),B(1,0),則下面說法正確的是()A.C可能是線段AB的中點B.D可能是線段AB的中點C.C,D可能同時在線段AB上D.C,D不可能同時在線段AB的延長線上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是線段AB的中點,則c=12,代入(1)d不存在,故C不可能是線段AB的中,A錯誤;同理B錯誤;若C,D同時在線段AB上,則0≤c≤1,0≤d≤1,代入(1)得c=d=1,此時C和D點重合,與條件矛盾,故C錯誤.故選D26.已知A(4,1,3),B(2,-5,1),C是線段AB上一點,且,則C點的坐標為()

A.

B.

C.

D.答案:C27.如圖,已知⊙O是△ABC的外接圓,AB為直徑,若PA⊥AB,PO過AC的中點M,求證:PC是⊙O的切線.答案:證明:連接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO過AC的中點M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO與△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切線.(7分)28.命題:“如果ab=0,那么a、b中至少有一個等于0.”的逆否命題為______

______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:如果a、b都不為等于0.那么ab≠029.某校欲在一塊長、短半軸長分別為10米與8米的橢圓形土地中規(guī)劃一個矩形區(qū)域搞綠化,則在此橢圓形土地中可綠化的最大面積為()平方米.

A.80

B.160

C.320

D.160答案:B30.(本題10分)設函數(shù)的定義域為A,的定義域為B.(1)求A;

(2)若,求實數(shù)a的取值范圍答案:(1);(2)。解析:略31.利用計算機隨機模擬方法計算y=x2與y=4所圍成的區(qū)域Ω的面積時,可以先運行以下算法步驟:

第一步:利用計算機產生兩個在[0,1]區(qū)間內的均勻隨機數(shù)a,b;

第二步:對隨機數(shù)a,b實施變換:答案:根據(jù)題意可得,點落在y=x2與y=4所圍成的區(qū)域Ω的點的概率是100-34100=66100,矩形的面積為4×4=16,陰影部分的面積為S,則有S16=66100,∴S=10.56.故為:10.56.32.曲線(t為參數(shù))上的點與A(-2,3)的距離為,則該點坐標是()

A.(-4,5)

B.(-3,4)或(-1,2)

C.(-3,4)

D.(-4,5)或(0,1)答案:B33.對于空間四點A、B、C、D,命題p:AB=xAC+yAD,且x+y=1;命題q:A、B、C、D四點共面,則命題p是命題q的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件答案:根據(jù)命題p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,從而可得命題q:A、B、C、D四點共面成立,故命題p是命題q的充分條件.根據(jù)命題q:A、B、C、D四點共面,可得A、B、C、D四點有可能在同一條直線上,若AB=xAC+yAD,則x+y不一定等于1,故命題p不是命題q的必要條件.綜上,可得命題p是命題q的充分不必要條件.故選:A.34.“a=2”是“直線ax+2y=0平行于直線x+y=1”的()

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件答案:C35.若f(x)=exx≤0lnxx>0,則f(f(12))=______.答案:∵f(x)=ex,x≤0lnx,x>0,∴f(f(12))=f(ln12)=eln12=12.故為:12.36.圓心在x軸上,且過兩點A(1,4),B(3,2)的圓的方程為______.答案:設圓心坐標為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經過兩點A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=2037.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______

種(以數(shù)字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論