數(shù)字控制 第4章_第1頁(yè)
數(shù)字控制 第4章_第2頁(yè)
數(shù)字控制 第4章_第3頁(yè)
數(shù)字控制 第4章_第4頁(yè)
數(shù)字控制 第4章_第5頁(yè)
已閱讀5頁(yè),還剩62頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第4章數(shù)字控制系統(tǒng)建模與分析本章主要闡述如下幾個(gè)問題:

建立數(shù)控系統(tǒng)的離散化數(shù)學(xué)模型,即帶零階保持器的連續(xù)對(duì)象離散化;改進(jìn)的Z變換及其應(yīng)用,建立具有遲后特性的連續(xù)對(duì)象的離散化模型及求取系統(tǒng)采樣點(diǎn)之間的響應(yīng);系統(tǒng)性能分析,包括時(shí)、頻、Z域幾方面的動(dòng)、靜態(tài)特性分析;擾動(dòng)對(duì)系統(tǒng)的影響。

4.1引言數(shù)字控制器D(z)保持器Gh0(s)連續(xù)對(duì)象G(s)r(t)y(t)Gd(z)數(shù)字控制系統(tǒng)離散化4.2改進(jìn)的Z變換(廣義Z變換或擴(kuò)展Z變換)4.2.1定義——在信號(hào)f(t)超前或滯后不是T的整數(shù)倍情況下的Z變換。與普通Z變換并無本質(zhì)區(qū)別。例4-2-1tf(t)4.2.2求系統(tǒng)采樣點(diǎn)之間的響應(yīng)

問題:已知G(z,Δ),若給出輸入信號(hào)u(t),求系統(tǒng)輸出y(t)采樣點(diǎn)之間的響應(yīng)。步驟:1求Y(z,Δ)=G(z,Δ)U(z);2求y(kT+ΔT)=Z-1[Y(z,Δ)],當(dāng)ΔT從0→T時(shí),可求得系統(tǒng)輸出在采樣點(diǎn)之間任意時(shí)刻的值。4.3帶零階保持器的連續(xù)對(duì)象的

Z傳遞函數(shù)為了用Z傳函描述離散系統(tǒng),需要首先將系統(tǒng)的連續(xù)部分離散化。本節(jié)研究帶零階保持器的連續(xù)對(duì)象的Z傳遞函數(shù),分解析法和試驗(yàn)法兩種。4.3.1解析法由于保持器與對(duì)象之間無采樣開關(guān),所以可視為串聯(lián)在一起的一個(gè)連續(xù)對(duì)象。求其Z傳遞函數(shù):幾點(diǎn)說明:4.3.2試驗(yàn)法—階躍響應(yīng)法試驗(yàn)法,即依據(jù)對(duì)象的輸入輸出數(shù)據(jù)建模,這是系統(tǒng)辨識(shí)問題。由3.3脈沖響應(yīng)與卷積和可知:所以可采用階躍響應(yīng)試驗(yàn)法為離散系統(tǒng)建模。h(4)h(3)h(2)h(1)0T2T3T4Tty(t)辨識(shí)步驟:1.在帶零保的對(duì)象前施加1*(t),得到階躍響應(yīng)y(t);2.取y(t)在采樣點(diǎn)上的值y(k);3.由離散卷積和定理求h(k)=y(k)-y(k-1);4.得到帶零保的對(duì)象的Z傳遞函數(shù):5.將上式無窮級(jí)數(shù)表示的形式轉(zhuǎn)變?yōu)榉肿臃帜付囗?xiàng)式表示,這一過程為近似過程4.4數(shù)字控制系統(tǒng)閉環(huán)Z傳遞函數(shù)G1(s)G2(s)G3(s)G1

G2

G3(z)G1(s)G2(s)G1(z)G2(z)4.4.1串并聯(lián)連續(xù)環(huán)節(jié)的Z傳遞函數(shù)G1(s)G2(s)G3(s)G1(z)G2(z)G3(z)4.4.2閉環(huán)Z傳遞函數(shù)(單位反饋)數(shù)字控制器D(z)保持器Gh0(s)連續(xù)對(duì)象G(s)r(t)y(t)Gd(z)幾種閉環(huán)系統(tǒng)的Z傳遞函數(shù):例4-4-1求系統(tǒng)H(z)及單位階躍響應(yīng),T=1s,K=1。ZOH4.5連續(xù)狀態(tài)方程的離散化——此過程實(shí)際上就是將表征連續(xù)對(duì)象內(nèi)部狀態(tài)的一階微分方程組轉(zhuǎn)換為一階差分方程組的過程。ZOHZOH4.6零極點(diǎn)分布與系統(tǒng)的動(dòng)態(tài)響應(yīng)4.6.1S平面到Z平面的映射

S平面上的多點(diǎn)對(duì)應(yīng)Z平面上的一點(diǎn),S平面主頻段內(nèi)的點(diǎn),即,可與Z平面上的點(diǎn)一一對(duì)應(yīng)。+1σjωS平面Z平面ReImIm+1σjωS平面Z平面ReIm注意:S平面上的多點(diǎn)對(duì)應(yīng)Z平面上的一點(diǎn)。S平面主頻段內(nèi)的點(diǎn),,可與Z平面上的點(diǎn)一一對(duì)應(yīng)。4.6.2零極點(diǎn)分布與系統(tǒng)的動(dòng)態(tài)響應(yīng)1一階系統(tǒng)(first-ordersystem)一階連續(xù)系統(tǒng)離散化一階離散環(huán)節(jié)越小,收斂越快。r號(hào)衰減的收斂序列。是交替變)(rh(k)0,16<<-的收斂序列;是單調(diào)衰減)(khr)(,015>>的等幅序列;是交替變號(hào))(khr)(,14-=是等幅序列;)(khr)(,13=的發(fā)散序列;是交替變號(hào))(khr)(,12-<是發(fā)散序列;)(khr)(,11>圖4-6-2一階系統(tǒng)脈沖響應(yīng)Z平面2二階系統(tǒng)(second-ordersystem)研究其單位階躍響應(yīng)的暫態(tài)過程應(yīng)無振蕩。等的兩實(shí)極點(diǎn),暫態(tài)響時(shí),過阻尼狀態(tài),不相)(16>振蕩;重實(shí)極點(diǎn),暫態(tài)響應(yīng)無時(shí),臨界阻尼狀態(tài),兩)(15=極點(diǎn),衰減的周期響應(yīng);欠阻尼狀態(tài),一對(duì)共軛)(,014>>純虛數(shù)極點(diǎn),周期響應(yīng);時(shí),無阻尼狀態(tài),一對(duì))(03=時(shí),暫態(tài)響應(yīng)振蕩發(fā)散;)(012<<-,因?yàn)闃O點(diǎn)實(shí)部大于時(shí),暫態(tài)響應(yīng)單調(diào)發(fā)散)(0;11-<ty(t)10t二階系統(tǒng)的S、Z傳遞函數(shù)可有多種形式,這里只討論一種進(jìn)行離散化。的動(dòng)態(tài)響應(yīng):分析離散脈沖響應(yīng)qkrkhkcos)(

=4.7穩(wěn)態(tài)誤差分析(steady-stateerror)在連續(xù)或離散控制系統(tǒng)中,都采用典型信號(hào)(階躍、速度、加速度等)作用下,系統(tǒng)響應(yīng)的穩(wěn)態(tài)誤差作為其控制精度的評(píng)價(jià)。4.7.1穩(wěn)態(tài)誤差表達(dá)式分析例:I型系統(tǒng)分析給定輸入階躍輸入速度輸入t加速度R(s)R(z)穩(wěn)態(tài)誤差連續(xù)系統(tǒng)離散系統(tǒng)連續(xù)系統(tǒng)離散系統(tǒng)連續(xù)系統(tǒng)離散系統(tǒng)0型∞∞Ⅰ型0∞Ⅱ型00r(t)y(t)e*(t)ZOH4.8系統(tǒng)頻率響應(yīng)特性系統(tǒng)輸入正弦信號(hào)r(t)=sinωt,系統(tǒng)對(duì)r*(t)之穩(wěn)態(tài)響應(yīng)定義為頻率響應(yīng)。當(dāng)頻率在某一頻域變化時(shí),其穩(wěn)態(tài)響應(yīng)即為系統(tǒng)頻率響應(yīng)特性,如低通特性。4.8.1頻率響應(yīng)4.8.2歸一化處理4.8.3頻率特性的幾何解釋4.8.4頻率特性的性質(zhì)4.9穩(wěn)定性(stability)分析控制系統(tǒng)必須具有穩(wěn)定性,也即表征其自身特性的自由運(yùn)動(dòng)是收斂的。本節(jié)介紹幾種穩(wěn)定性判據(jù)(criterion)。4.9.1Z域分析1勞斯穩(wěn)定判據(jù)為了簡(jiǎn)化運(yùn)算,各行乘以一個(gè)正系數(shù)不改變結(jié)論。1.第一列所有系數(shù)均不為零時(shí),有正實(shí)部根的數(shù)目等于第一列系數(shù)符號(hào)改變的次數(shù)。系統(tǒng)極點(diǎn)全部穩(wěn)定的充要條件是特征方程的各項(xiàng)系數(shù)全部為正,且勞斯表的第一列都具有正號(hào)。2.某行第一列的系數(shù)為零,其余項(xiàng)中有不為零的項(xiàng)以代替零,判斷第一列符號(hào)變化。3.某行所有各項(xiàng)系數(shù)均為零,說明有大小相等符號(hào)相反的實(shí)極點(diǎn)和(或)共軛虛數(shù)極點(diǎn)(可由輔助方程求得)。以輔助方程(上一不為零的行)求導(dǎo)的各項(xiàng)系數(shù)代替零行系數(shù),再判斷第一列符號(hào)變化。例分析系統(tǒng)穩(wěn)定性T=1s。r(t)y(t)e*(t)ZOH2舒爾-科恩Schour-Cohn判據(jù)與判別連續(xù)系統(tǒng)的勞斯-霍爾維茨判據(jù)類似,通過計(jì)算系統(tǒng)特征方程的系數(shù)行列式,判斷是否有根位于Z平面單位圓外。4.9.2頻域分析-Nyquist判據(jù)圖4-9-5乃氏軌跡4.9.3時(shí)域分析4.10二階系統(tǒng)分析例閉環(huán)Z傳遞函數(shù)求??;穩(wěn)定性分析;T對(duì)系統(tǒng)動(dòng)態(tài)穩(wěn)定性影響;K對(duì)系統(tǒng)動(dòng)態(tài)特性影響;穩(wěn)態(tài)誤差分析;狀態(tài)空間法分析。4.11

擾動(dòng)對(duì)系統(tǒng)的影響作用于系統(tǒng)的擾動(dòng)可分為負(fù)載擾動(dòng)、參數(shù)變化和量測(cè)誤差。閉環(huán)反饋控制是抑制擾動(dòng)的主要且有效的手段,此外前饋、局部反饋、預(yù)報(bào)等方法也可以減少擾動(dòng)對(duì)系統(tǒng)的影響。系統(tǒng)部件的溫度特性或老化等原因,均可能引起系統(tǒng)參數(shù)的相應(yīng)變化。4.11.1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論