2023屆北京海淀區(qū)重點名校中考數學考前最后一卷含解析_第1頁
2023屆北京海淀區(qū)重點名校中考數學考前最后一卷含解析_第2頁
2023屆北京海淀區(qū)重點名校中考數學考前最后一卷含解析_第3頁
2023屆北京海淀區(qū)重點名校中考數學考前最后一卷含解析_第4頁
2023屆北京海淀區(qū)重點名校中考數學考前最后一卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠12.=()A.±4 B.4 C.±2 D.23.下列四個數表示在數軸上,它們對應的點中,離原點最遠的是()A.﹣2 B.﹣1 C.0 D.14.已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數是()A.30° B.60° C.30°或150° D.60°或120°5.不等式組的解集在數軸上表示為()A. B. C. D.6.在1-7月份,某種水果的每斤進價與出售價的信息如圖所示,則出售該種水果每斤利潤最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份7.下列各數:1.414,,﹣,0,其中是無理數的為()A.1.414 B. C.﹣ D.08.如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.9.如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°10.二次函數y=﹣(x+2)2﹣1的圖象的對稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=2 D.直線x=﹣2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,有一個橫截面邊緣為拋物線的水泥門洞,門洞內的地面寬度為,兩側離地面高處各有一盞燈,兩燈間的水平距離為,則這個門洞的高度為_______.(精確到)12.甲乙兩人進行飛鏢比賽,每人各投5次,所得平均環(huán)數相等,其中甲所得環(huán)數的方差為15,乙所得環(huán)數如下:0,1,5,9,10,那么成績較穩(wěn)定的是_____(填“甲”或“乙”).13.將兩塊全等的含30°角的三角尺如圖1擺放在一起,設較短直角邊為1,如圖2,將Rt△BCD沿射線BD方向平移,在平移的過程中,當點B的移動距離為時,四邊ABC1D1為矩形;當點B的移動距離為時,四邊形ABC1D1為菱形.14.已知邊長為2的正六邊形ABCDEF在平面直角坐標系中的位置如圖所示,點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,經過2018次翻轉之后,點B的坐標是______.15.若點A(3,﹣4)、B(﹣2,m)在同一個反比例函數的圖象上,則m的值為.16.如圖,四邊形ABCD與四邊形EFGH位似,位似中心點是點O,,則=_____.17.2018年5月18日,益陽新建西流灣大橋竣工通車,如圖,從沅江A地到資陽B地有兩條路線可走,從資陽B地到益陽火車站可經會龍山大橋或西流灣大橋或龍洲大橋到達,現讓你隨機選擇一條從沅江A地出發(fā)經過資陽B地到達益陽火車站的行走路線,那么恰好選到經過西流灣大橋的路線的概率是_____.三、解答題(共7小題,滿分69分)18.(10分)解方程:19.(5分)如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2)畫出△ABC關于點B成中心對稱的圖形△A1BC1;以原點O為位似中心,位似比為1:2,在y軸的左側畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2的坐標.20.(8分)如圖,∠A=∠B=30°(1)尺規(guī)作圖:過點C作CD⊥AC交AB于點D;(只要求作出圖形,保留痕跡,不要求寫作法)(2)在(1)的條件下,求證:BC2=BD?AB.21.(10分)規(guī)定:不相交的兩個函數圖象在豎直方向上的最短距離為這兩個函數的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.22.(10分)解不等式組并寫出它的整數解.23.(12分)隨著移動計算技術和無線網絡的快速發(fā)展,移動學習方式越來越引起人們的關注,某校計劃將這種學習方式應用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設備的情況進行調查,并繪制出如下的統(tǒng)計圖①和圖②,根據相關信息,解答下列問題:本次接受隨機抽樣調查的學生人數為,圖①中m的值為;求本次調查獲取的樣本數據的眾數、中位數和平均數;根據樣本數據,估計該校1500名學生家庭中擁有3臺移動設備的學生人數.24.(14分)定義:任意兩個數a,b,按規(guī)則c=b2+ab﹣a+7擴充得到一個新數c,稱所得的新數c為“如意數”.若a=2,b=﹣1,直接寫出a,b的“如意數”c;如果a=3+m,b=m﹣2,試說明“如意數”c為非負數.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

先根據AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結論.【詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【點睛】本題考查的是平行線的判定,用到的知識點為:兩直線平行,內錯角相等,同旁內角互補.2、B【解析】

表示16的算術平方根,為正數,再根據二次根式的性質化簡.【詳解】解:,故選B.【點睛】本題考查了算術平方根,本題難點是平方根與算術平方根的區(qū)別與聯系,一個正數算術平方根有一個,而平方根有兩個.3、A【解析】

由于要求四個數的點中距離原點最遠的點,所以求這四個點對應的實數絕對值即可求解.【詳解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四個數表示在數軸上,它們對應的點中,離原點最遠的是-1.故選A.【點睛】本題考查了實數與數軸的對應關系,以及估算無理數大小的能力,也利用了數形結合的思想.4、D【解析】【分析】由圖可知,OA=10,OD=1.根據特殊角的三角函數值求出∠AOB的度數,再根據圓周定理求出∠C的度數,再根據圓內接四邊形的性質求出∠E的度數即可.【詳解】由圖可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所對的圓周角的度數是60°或120°,故選D.【點睛】本題考查了圓周角定理、圓內接四邊形的對角互補、解直角三角形的應用等,正確畫出圖形,熟練應用相關知識是解題的關鍵.5、A【解析】

分別求得不等式組中兩個不等式的解集,再確定不等式組的解集,表示在數軸上即可.【詳解】解不等式①得,x>1;解不等式②得,x>2;∴不等式組的解集為:x≥2,在數軸上表示為:故選A.【點睛】本題考查了一元一次不等式組的解法,正確求得不等式組中每個不等式的解集是解決問題的關鍵.6、B【解析】

解:各月每斤利潤:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利潤最大,故選B.7、B【解析】試題分析:根據無理數的定義可得是無理數.故答案選B.考點:無理數的定義.8、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點睛:本題考查了菱形的性質,先求出四邊形OCED是平行四邊形,再根據菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據菱形的性質得出AC=AB,再根據勾股定理得出AE的長度即可.9、A【解析】

由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內角和定理列方程求解.【詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【點睛】本題考查了等腰三角形的性質.關鍵是利用等腰三角形的底角相等,外角的性質,內角和定理,列方程求解.10、D【解析】

根據二次函數頂點式的性質解答即可.【詳解】∵y=﹣(x+2)2﹣1是頂點式,∴對稱軸是:x=-2,故選D.【點睛】本題考查二次函數頂點式y(tǒng)=a(x-h)2+k的性質,對稱軸為x=h,頂點坐標為(h,k)熟練掌握頂點式的性質是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、9.1【解析】

建立直角坐標系,得到二次函數,門洞高度即為二次函數的頂點的縱坐標【詳解】如圖,以地面為x軸,門洞中點為O點,畫出y軸,建立直角坐標系由題意可知各點坐標為A(-4,0)B(4,0)D(-3,4)設拋物線解析式為y=ax2+c(a≠0)把B、D兩點帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點睛】本題考查二次函數的簡單應用,能夠建立直角坐標系解出二次函數解析式是本題關鍵12、甲.【解析】乙所得環(huán)數的平均數為:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲較穩(wěn)定.故答案為甲.點睛:要比較成績穩(wěn)定即比方差大小,方差越大,越不穩(wěn)定;方差越小,越穩(wěn)定.13、,.【解析】試題分析:當點B的移動距離為時,∠C1BB1=60°,則∠ABC1=90°,根據有一直角的平行四邊形是矩形,可判定四邊形ABC1D1為矩形;當點B的移動距離為時,D、B1兩點重合,根據對角線互相垂直平分的四邊形是菱形,可判定四邊形ABC1D1為菱形.試題解析:如圖:當四邊形ABC1D是矩形時,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=,當點B的移動距離為時,四邊形ABC1D1為矩形;當四邊形ABC1D是菱形時,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=,當點B的移動距離為時,四邊形ABC1D1為菱形.考點:1.菱形的判定;2.矩形的判定;3.平移的性質.14、(4033,)【解析】

根據正六邊形的特點,每6次翻轉為一個循環(huán)組循環(huán),用2018除以6,根據商和余數的情況確定出點B的位置,經過第2017次翻轉之后,點B的位置不變,仍在x軸上,由A(﹣2,0),可得AB=2,即可求得點B離原點的距離為4032,所以經過2017次翻轉之后,點B的坐標是(4032,0),經過2018次翻轉之后,點B在B′位置(如圖所示),則△BB′C為等邊三角形,可求得BN=NC=1,B′N=,由此即可求得經過2018次翻轉之后點B的坐標.然后求出翻轉前進的距離,過點C作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后寫出點C的坐標即可.【詳解】設2018次翻轉之后,在B′點位置,∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,∴每6次翻轉為一個循環(huán)組,∵2018÷6=336余2,∴經過2016次翻轉為第336個循環(huán),點B在初始狀態(tài)時的位置,而第2017次翻轉之后,點B的位置不變,仍在x軸上,∵A(﹣2,0),∴AB=2,∴點B離原點的距離=2×2016=4032,∴經過2017次翻轉之后,點B的坐標是(4032,0),經過2018次翻轉之后,點B在B′位置,則△BB′C為等邊三角形,此時BN=NC=1,B′N=,故經過2018次翻轉之后,點B的坐標是:(4033,).故答案為(4033,).【點睛】本題考查的是正多邊形和圓,涉及到坐標與圖形變化-旋轉,正六邊形的性質,確定出最后點B所在的位置是解題的關鍵.15、1【解析】

設反比例函數解析式為y=,根據反比例函數圖象上點的坐標特征得到k=3×(﹣4)=﹣2m,然后解關于m的方程即可.【詳解】解:設反比例函數解析式為y=,根據題意得k=3×(﹣4)=﹣2m,解得m=1.故答案為1.考點:反比例函數圖象上點的坐標特征.16、【解析】試題分析:∵四邊形ABCD與四邊形EFGH位似,位似中心點是點O,∴==,則===.故答案為.點睛:本題考查的是位似變換的性質,掌握位似圖形與相似圖形的關系、相似多邊形的性質是解題的關鍵.17、.【解析】

由題意可知一共有6種可能,經過西流灣大橋的路線有2種可能,根據概率公式計算即可.【詳解】解:由題意可知一共有6種可能,經過西流灣大橋的路線有2種可能,所以恰好選到經過西流灣大橋的路線的概率=.故答案為.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.注意列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數與總情況數之比.三、解答題(共7小題,滿分69分)18、x=-4是方程的解【解析】

分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.【詳解】∴x=-4,當x=-4時,∴x=-4是方程的解【點睛】本題考查了分式方程的解法,(1)解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解.(2)解分式方程一定注意要驗根.19、(1)畫圖見解析;(2)畫圖見解析,C2的坐標為(﹣6,4).【解析】試題分析:利用關于點對稱的性質得出的坐標進而得出答案;

利用關于原點位似圖形的性質得出對應點位置進而得出答案.試題解析:(1)△A1BC1如圖所示.(2)△A2B2C2如圖所示,點C2的坐標為(-6,4).20、見解析【解析】

(1)利用過直線上一點作直線的垂線確定D點即可得;

(2)根據圓周角定理,由∠ACD=90°,根據三角形的內角和和等腰三角形的性質得到∠DCB=∠A=30°,推出△CDB∽△ACB,根據相似三角形的性質即可得到結論.【詳解】(1)如圖所示,CD即為所求;(2)∵CD⊥AC,∴∠ACD=90°∵∠A=∠B=30°,∴∠ACB=120°∴∠DCB=∠A=30°,∵∠B=∠B,∴△CDB∽△ACB,∴,∴BC2=BD?AB.【點睛】考查了等腰三角形的性質和相似三角形的判定和性質和作圖:在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.21、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】

(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據題意解決問題;(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數的性質得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進行判斷;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當t=時,PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點向x軸作垂線與直線相交,拋物線頂點與交點之間的距離為2,∴不同意他的看法;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當t=時,MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【點睛】本題是二次函數的綜合題,考查了二次函數圖象上點的坐標特征和二次函數的性質,正確理解新定義是解題的關鍵.22、不等式組的解集是5<x≤1,整數解是6,1【解析】

先分別求出兩個不等式的解,求出解集,再根據整數的定義得到答案.【詳解】∵解①得:x>5,解不等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論