版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù),,的部分圖象如圖所示,則函數(shù)表達式為()A. B.C. D.2.雙曲線的左右焦點為,一條漸近線方程為,過點且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.23.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.4.在滿足,的實數(shù)對中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.95.已知是過拋物線焦點的弦,是原點,則()A.-2 B.-4 C.3 D.-36.函數(shù)的圖象為C,以下結(jié)論中正確的是()①圖象C關(guān)于直線對稱;②圖象C關(guān)于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③7.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.89.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點,已知過與的平面與圓錐側(cè)面的交線是以為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點的距離等于()A. B.1 C. D.10.若復數(shù)是純虛數(shù),則實數(shù)的值為()A.或 B. C. D.或11.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.12.三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于空間兩條不同直線m、n,兩個不同平面、,有下列四個命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號為______.14.“今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈.”其白話意譯為:“現(xiàn)有一善織布的女子,從第2天開始,每天比前一天多織相同數(shù)量的布,第一天織了5尺布,現(xiàn)在一個月(按30天計算)共織布390尺.”則每天增加的數(shù)量為____尺,設(shè)該女子一個月中第n天所織布的尺數(shù)為,則______.15.集合,,則_____.16.,則f(f(2))的值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)我們稱n()元有序?qū)崝?shù)組(,,…,)為n維向量,為該向量的范數(shù).已知n維向量,其中,,2,…,n.記范數(shù)為奇數(shù)的n維向量的個數(shù)為,這個向量的范數(shù)之和為.(1)求和的值;(2)當n為偶數(shù)時,求,(用n表示).18.(12分)高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動了我國經(jīng)濟的巨大發(fā)展.據(jù)統(tǒng)計,在2018年這一年內(nèi)從市到市乘坐高鐵或飛機出行的成年人約為萬人次.為了解乘客出行的滿意度,現(xiàn)從中隨機抽取人次作為樣本,得到下表(單位:人次):滿意度老年人中年人青年人乘坐高鐵乘坐飛機乘坐高鐵乘坐飛機乘坐高鐵乘坐飛機10分(滿意)1212022015分(一般)2362490分(不滿意)106344(1)在樣本中任取個,求這個出行人恰好不是青年人的概率;(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數(shù)學期望;(3)如果甲將要從市出發(fā)到市,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機?并說明理由.19.(12分)如圖,在四棱錐中,底面是菱形,∠,是邊長為2的正三角形,,為線段的中點.(1)求證:平面平面;(2)若為線段上一點,當二面角的余弦值為時,求三棱錐的體積.20.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當平面平面時,求的值;(2)當時,求二面角的余弦值.21.(12分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個還款月應還4900元,最后一個還款月應還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經(jīng)濟利益的角度來考慮,小張應選擇哪種還款方式.參考數(shù)據(jù):.22.(10分)如圖,在長方體中,,為的中點,為的中點,為線段上一點,且滿足,為的中點.(1)求證:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導公式,屬于基礎(chǔ)題.2、A【解析】
設(shè),直線的方程為,聯(lián)立方程得到,,根據(jù)向量關(guān)系化簡到,得到離心率.【詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因為,所以為線段的中點,所以,,整理得,故該雙曲線的離心率.故選:.【點睛】本題考查了雙曲線的離心率,意在考查學生的計算能力和轉(zhuǎn)化能力.3、C【解析】
求出導函數(shù),由有不等的兩實根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.4、A【解析】
由題可知:,且可得,構(gòu)造函數(shù)求導,通過導函數(shù)求出的單調(diào)性,結(jié)合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設(shè),則,令,則,令,則,故在上單調(diào)遞增,在上單調(diào)遞減,則,因為,,由題可知:時,則,所以,所以,當無限接近時,滿足條件,所以,所以要使得故當時,可有,故,即,所以:最大值為5.故選:A.【點睛】本題主要考查利用導數(shù)求函數(shù)單調(diào)性、極值和最值,以及運用構(gòu)造函數(shù)法和放縮法,同時考查轉(zhuǎn)化思想和解題能力.5、D【解析】
設(shè),,設(shè):,聯(lián)立方程得到,計算得到答案.【詳解】設(shè),,故.易知直線斜率不為,設(shè):,聯(lián)立方程,得到,故,故.故選:.【點睛】本題考查了拋物線中的向量的數(shù)量積,設(shè)直線為可以簡化運算,是解題的關(guān)鍵.6、B【解析】
根據(jù)三角函數(shù)的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結(jié)論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數(shù)的對稱軸、對稱中心,考查三角函數(shù)圖象變換,屬于基礎(chǔ)題.7、D【解析】
根據(jù)面面平行的判定及性質(zhì)求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題.8、C【解析】
解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎(chǔ)題.9、D【解析】
建立平面直角坐標系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點到圓錐頂點的距離.【詳解】將拋物線放入坐標系,如圖所示,∵,,,∴,設(shè)拋物線,代入點,可得∴焦點為,即焦點為中點,設(shè)焦點為,,,∴.故選:D【點睛】本小題考查圓錐曲線的概念,拋物線的性質(zhì),兩點間的距離等基礎(chǔ)知識;考查運算求解能力,空間想象能力,推理論證能力,應用意識.10、C【解析】試題分析:因為復數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數(shù)11、D【解析】
,,得解.【詳解】,,,所以,故選D【點睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.12、A【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點睛:應用幾何概型求概率的方法建立相應的幾何概型,將試驗構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個連續(xù)變量可建立與長度有關(guān)的幾何概型,只需把這個變量放在數(shù)軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序?qū)崝?shù)對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關(guān)的幾何概型;(3)若一個隨機事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標系即可建立與體積有關(guān)的幾何概型.二、填空題:本題共4小題,每小題5分,共20分。13、③④【解析】
由直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關(guān)系是平行、相交或異面,①錯;②若且,則或者,②錯;③若,設(shè)過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【點睛】本題考查直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關(guān)系,掌握空間線線、線面、面面位置關(guān)系是解題基礎(chǔ).14、52【解析】
設(shè)從第2天開始,每天比前一天多織尺布,由等差數(shù)列前項和公式求出,由此利用等差數(shù)列通項公式能求出.【詳解】設(shè)從第2天開始,每天比前一天多織d尺布,
則,
解得,即每天增加的數(shù)量為,
,故答案為,52.【點睛】本題主要考查等差數(shù)列的通項公式、等差數(shù)列的求和公式,意在考查利用所學知識解決問題的能力,屬于中檔題.15、【解析】
分析出集合A為奇數(shù)構(gòu)成的集合,即可求得交集.【詳解】因為表示為奇數(shù),故.故答案為:【點睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.16、1【解析】
先求f(1),再根據(jù)f(1)值所在區(qū)間求f(f(1)).【詳解】由題意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案為:1.【點睛】本題考查分段函數(shù)求值,考查對應性以及基本求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),.(2),【解析】
(1)利用枚舉法將范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對都寫出來,再做和;(2)用組合數(shù)表示和,再由公式或?qū)⒔M合數(shù)進行化簡,得出最終結(jié)果.【詳解】解:(1)范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對有:,,,,它們的范數(shù)依次為1,1,1,1,故,.(2)當n為偶數(shù)時,在向量的n個坐標中,要使得范數(shù)為奇數(shù),則0的個數(shù)一定是奇數(shù),所以可按照含0個數(shù)為:1,3,…,進行討論:的n個坐標中含1個0,其余坐標為1或,共有個,每個的范數(shù)為;的n個坐標中含3個0,其余坐標為1或,共有個,每個的范數(shù)為;的n個坐標中含個0,其余坐標為1或,共有個,每個的范數(shù)為1;所以,.因為,①,②得,,所以.解法1:因為,所以..解法2:得,.又因為,所以.【點睛】本題考查了數(shù)列和組合,是一道較難的綜合題.18、(1)(2)分布列見解析,數(shù)學期望(3)建議甲乘坐高鐵從市到市.見解析【解析】
(1)根據(jù)分層抽樣的特征可以得知,樣本中出行的老年人、中年人、青年人人次分別為,,,即可按照古典概型的概率計算公式計算得出;(2)依題意可知服從二項分布,先計算出隨機選取人次,此人為老年人概率是,所以,即,即可求出的分布列和數(shù)學期望;(3)可以計算滿意度均值來比較乘坐高鐵還是飛機.【詳解】(1)設(shè)事件:“在樣本中任取個,這個出行人恰好不是青年人”為,由表可得:樣本中出行的老年人、中年人、青年人人次分別為,,,所以在樣本中任取個,這個出行人恰好不是青年人的概率.(2)由題意,的所有可能取值為:因為在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,此人為老年人概率是,所以,,,所以隨機變量的分布列為:故.(3)答案不唯一,言之有理即可.如可以從滿意度的均值來分析問題,
參考答案如下:由表可知,乘坐高鐵的人滿意度均值為:乘坐飛機的人滿意度均值為:因為,所以建議甲乘坐高鐵從市到市.【點睛】本題主要考查了分層抽樣的應用、古典概型的概率計算、以及離散型隨機變量的分布列和期望的計算,解題關(guān)鍵是對題意的理解,概率類型的判斷,屬于中檔題.19、(1)見解析;(2).【解析】
(1)先證明,可證平面,再由可證平面,即得證;(2)以為坐標原點,建立如圖所示空間直角坐標系,設(shè),求解面的法向量,面的法向量,利用二面角的余弦值為,可求解,轉(zhuǎn)化即得解.【詳解】(1)證明:因為是正三角形,為線段的中點,所以.因為是菱形,所以.因為,所以是正三角形,所以,所以平面.又,所以平面.因為平面,所以平面平面.(2)由(1)知平面,所以,.而,所以,.又,所以平面.以為坐標原點,建立如圖所示空間直角坐標系.則.于是,,.設(shè)面的一個法向量,由得令,則,即.設(shè),易得,.設(shè)面的一個法向量,由得令,則,,即.依題意,即,令,則,即,即.所以.【點睛】本題考查了空間向量和立體幾何綜合,考查了面面垂直的判斷,二面角的向量求解,三棱錐的體積等知識點,考查了學生空間想象,邏輯推理,數(shù)學運算的能力,屬于中檔題.20、(1);(2).【解析】
(1)平面平面,建立坐標系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點,在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標系,則,設(shè)為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當平面的一個法向量為,綜上,二面角的余弦值為.【點睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.21、(1)289200元;(2)能夠獲批;(3)應選擇等額本金還款方式【解析】
(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個等差數(shù)列,即可由等差數(shù)列的前n項和公式求得其還款總額,減去本金即為還款的利息;(2)根據(jù)題意,采取等額本息的還款方式,每月還款額為一等比數(shù)列,設(shè)小張每月還款額為元,由等比數(shù)列求和公式及參考數(shù)據(jù),即可求得其還款額
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆山東臨沂市第十九中學物理高二上期中統(tǒng)考模擬試題含解析
- 2025屆吉林省白城市白城市第十四中學高二物理第一學期期末調(diào)研試題含解析
- 長治市重點中學2025屆高二物理第一學期期中學業(yè)質(zhì)量監(jiān)測試題含解析
- 2025屆北京市順義區(qū)第一中學物理高一第一學期期末統(tǒng)考試題含解析
- 2025屆新疆昌吉市瑪納斯縣第一中學高二物理第一學期期末調(diào)研試題含解析
- 2025屆河南省鶴壁市一中物理高三第一學期期中聯(lián)考模擬試題含解析
- 山東省淄博市部分學校2025屆物理高一第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 2025屆安徽省蚌埠市重點中學物理高一第一學期期末綜合測試模擬試題含解析
- 教學課件歷史部編版(2024版)七年級初一上冊第12課大一統(tǒng)王朝的鞏固課件01
- 急性腎衰竭的緊急處理與透析護理
- 老年期的睡眠障礙-老年期睡眠障礙的治療
- 2022年中國鐵路招聘考試試題及答案
- 2024年喀什地區(qū)直機關(guān)事業(yè)單位綜合公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 安全標準化建設(shè)事件事故管理事故事件統(tǒng)計分析臺賬
- 中國風書法練字字帖
- GB/T 43802-2024綠色產(chǎn)品評價物流周轉(zhuǎn)箱
- 扣好人生第一粒扣子爭做新時代好少年班會課件
- 企業(yè)人才測評在線測評題庫及答案
- 2024瀘州老窖集團校園招聘筆試參考題庫附帶答案詳解
- 學生牛奶、糕點配送服務承諾及售后服務
- 急性上呼吸道感染講解
評論
0/150
提交評論