磁場(2)-備戰(zhàn)2022年高考案頭必備模型(解析版)_第1頁
磁場(2)-備戰(zhàn)2022年高考案頭必備模型(解析版)_第2頁
磁場(2)-備戰(zhàn)2022年高考案頭必備模型(解析版)_第3頁
磁場(2)-備戰(zhàn)2022年高考案頭必備模型(解析版)_第4頁
磁場(2)-備戰(zhàn)2022年高考案頭必備模型(解析版)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

模型22磁場(2)-備戰(zhàn)2022年高考案頭必備模型+典例+方法+練習(xí)目錄有界磁場之矩形、三角形邊界 2兩線一半徑 2粒子源射出粒子 5同源不共速同向 5同源共速異向 9有界磁場之圓形磁場邊界外部入射 14兩線一點/點方向半徑 14同源共速—軌道半徑大于磁場半徑 17

有界磁場之矩形、三角形邊界【模型+方法】相交相切找臨界兩線一半徑【典例】一質(zhì)量為m、帶電量為q的粒子以速度v0從O點沿y軸正方向射入磁感強度為B的一圓形勻強磁場區(qū)域,磁場方向垂直于紙面,粒子飛出磁場區(qū)后,從b處穿過x軸,速度方向與x軸正向夾角為30°,如圖所示(粒子重力忽略不計)。試求:(1)圓形磁場區(qū)的最小面積;(2)粒子從O點進(jìn)入磁場區(qū)到達(dá)b點所經(jīng)歷的時間;(3)b點的坐標(biāo)?!敬鸢浮浚?)3πm2v024q2B【解析】試題分析:(1)帶電粒子在磁場中作勻速圓周運動,根據(jù)牛頓第二定律Bqv=mv2R,根據(jù)圖可知∠a磁場區(qū)域最小半徑r=Rcos磁場區(qū)域最小面積S=πr(2)粒子從O至a做勻速圓周運動的時間t1從a飛出磁場后做勻速直線運動,所以tan30°=Rabab=3所以t=t(3)因為sin'30°=RO'b,O'【練習(xí)1】如圖所示,在xOy平面第一象限內(nèi)的某區(qū)域有垂直平面的勻強磁場(沒畫出),一個質(zhì)量為m、電荷量為q的帶電粒子,由y軸上的P點開始運動,初速度為v0,方向沿x軸正方向,P到O的距離為3L,后來,粒子經(jīng)過x軸上的Q點,此時速度方向與x軸負(fù)方向的夾角為θ=60°,Q到O的距離為2L,磁場的磁感應(yīng)強度B=4A.帶電粒子在勻強磁場中做勻速圓周運動的半徑為34B.求帶電粒子從P點運動到Q點所用的時間為3πLC.若勻強磁場的區(qū)域是圓形磁場,則圓形磁場的最小面積為9πLD.若勻強磁場的區(qū)域是矩形,則矩形磁場的最小面積為33【答案】ACD【解析】根據(jù)qvB=mv2r,解得r=mvqB=34L,選項A正確;粒子運動的周期為從P點到Q點,粒子在磁場以外的部分運動的時間:t2=5L-2×rtan600v0=7L2v0,故【練習(xí)2】如圖所示,不考慮重力的影響,在xOy平面內(nèi),有帶電粒子以與y軸成θ=30°角的速度v從A點出發(fā),粒子運動一段時間后,進(jìn)入一個有著矩形邊界的勻強磁場中,經(jīng)磁場偏轉(zhuǎn)后從原點O沿x軸負(fù)方向射出磁場,已知AO間距離為L,粒子的質(zhì)量為m,所帶電荷量為+q,矩形磁場的兩條相鄰邊分別與x、y軸重合,且憾場方向與紙面垂直,求:(1)勻強磁場的磁感應(yīng)強度B的大小和方向;(2)矩形磁場的最小面積S?!敬鸢浮浚?),方向垂直紙面向外;(2)s=L2【解析】(1)畫出粒子運動的軌跡如圖設(shè)粒子運動的軌跡圓半徑為r,由幾何關(guān)系可知CO=r,AC=2r則AO=L=3r,r=L又因為洛倫茲力提供向心力qvB=mv解得方向垂直紙面向外(2)由圖可知最小的矩形磁場長EO=r+rsin即EO=L寬CD=r=L故矩形磁場的最小面積s=L粒子源射出粒子同源不共速同向【模型+方法】1、粒子特點:入射粒子速度的方向相同,速度的大小不同。粒子的軌跡圓的圓心軌跡為一條線段,利用圓規(guī)作圖,不斷改變圓心位置找到符合要求的軌跡圓。方法總結(jié):同向異速入射的粒子,放縮圓法。2、動態(tài)放縮法①適用條件a.速度方向一定,大小不同粒子源發(fā)射速度方向一定,大小不同的帶電粒子進(jìn)入勻強磁場時,這些帶電粒子在磁場中做勻速圓周運動的軌跡半徑隨速度的變化而變化.b.軌跡圓圓心共線如圖1所示(圖中只畫出粒子帶正電的情景),速度v越大,運動半徑也越大.可以發(fā)現(xiàn)這些帶電粒子射入磁場后,它們運動軌跡的圓心在垂直初速度方向的直線CO上.圖1②界定方法以入射點O為定點,圓心位于CO直線上,將半徑放縮作軌跡,從而探索出臨界條件,這種方法稱為“放縮圓法”.【典例】如圖,正方形ABCD內(nèi)有垂直于紙面的勻強磁場,三個質(zhì)量和電荷量都相同的帶電粒子a、b、c,從B點以不同的速率沿著BC方向射入磁場,粒子a從D點射出,粒子b從AD邊的中點E射出,粒子c從AB邊的中點F射出.若帶電粒子僅受磁場力的作用,下列說法正確的是A.a(chǎn)粒子的速率是b粒子速率的兩倍B.在磁場中運動的時間,c是a的兩倍C.在磁場中運動的弧長,a是c的兩倍D.若c粒子的速率稍微減小,在磁場中的運動時間不變【答案】BCD【解析】粒子在磁場中做勻速圓周運動時,由洛倫茲力提供向心力,由牛頓第二定律得:qvB=mv2r,可得:v=qBrm,令正方形的邊長為L,由圖可知a粒子的半徑ra=L,有幾何關(guān)系可得b粒子的半徑為:rb=58L,c粒子的半徑rc=L4,由此可得:vavb=rarb=85,故A錯誤;粒子的運動周期均為T=2πmqB,由圖可知a粒子的運動時間為ta=T【練習(xí)1】如圖所示,矩形區(qū)域abcd內(nèi)(包括邊界)存在磁感應(yīng)強度大小為B、方向垂直紙面向外的勻強磁場,其中ab=3L,bc=4L。a處有一正粒子源,均沿ad方向釋放出相同比荷qm、速率不同的粒子,其速率范圍為qBLm?A.粒子在磁場中運動的最長時間為πmqBB.粒子在磁場中運動的最長時間為53πm180qBC.粒子在磁場中運動的最大位移為25D.粒子以v=25qBL6m【答案】AD【解析】根據(jù)qBLm?v?5qBLm以及R=A.當(dāng)粒子從ab邊射出時,其時間最長t1故A正確。B.當(dāng)粒子的半徑為R=5L時,粒子從dc邊射出,其圓心角為53°,時間最短t53故B選項錯誤。CD.粒子從c處離開磁場時,其在磁場中的位移最大為5L,由幾何關(guān)系可得R2=(4L解得其半徑R=25解得v=25qBL故C錯誤,D正確。故選AD?!揪毩?xí)2】如圖所示,一矩形區(qū)域abcd內(nèi)充滿磁感應(yīng)強度大小為B、方向垂直紙面向里的勻強磁場,現(xiàn)從矩形區(qū)域ad邊中點O射出與Od邊夾角為30°、速度大小為v0的帶正電粒子,已知粒子質(zhì)量為m,電荷量為q,ad邊長為L,ab邊足夠長,粒子重力忽略不計,求:(1)粒子能從ab邊上射出磁場的v0的大小范圍;(2)粒子在磁場中運動的最長時間和在這種情況下粒子從磁場中射出所在邊上位置的范圍?!緛碓础渴艌黾皫щ娏W釉诖艌鲋械倪\動【答案】(1)qBL3m<v0≤qBLm(2)【解析】(1)畫出從O點射入磁場的粒子運動軌跡的動態(tài)圓,能夠從ab邊射出的粒子的臨界軌跡如圖所示,軌跡與dc邊相切時,射到ab邊上的A點,此時軌跡圓心為O1,則r1-r1sin30°=L2軌跡半徑r1=L即O1點在ab上。由qv得最大速度v1=軌跡與ab邊相切時,恰不能從ab邊射出,切點為ab邊上的B點,此時軌跡圓心為O2,則r2+r2sin30°=L2軌道半徑r2=L3,由qv2B=m所以粒子能夠從ab邊射出的速度范圍為:qBL3m(2)由T=2πmqB可知,所有粒子的運動周期相同,當(dāng)運動軌跡所對的圓心角最大時,運動時間最長。當(dāng)粒子從ad邊射出時,時間均相等,且為最長時間,因轉(zhuǎn)過的圓心角為300°tm=當(dāng)運動軌跡恰與ab邊相切時,恰能從ad邊射出,設(shè)射出點為C,則射出的范圍為OC=r2=L3。同源共速異向【模型+方法】1、粒子特點:入射粒子速度的方向不相同,速度的大小相同。這些粒子的圓心軌跡是圓,半徑和軌跡圓的半徑相等。解決方法:旋轉(zhuǎn)圓法。2、定圓旋轉(zhuǎn)法當(dāng)粒子的入射速度大小確定而方向不確定時,所有不同方向入射的粒子的軌跡圓是一樣大的,只是位置繞入射點發(fā)生了旋轉(zhuǎn),從定圓的動態(tài)旋轉(zhuǎn)(作圖)中,也容易發(fā)現(xiàn)“臨界點”.另外,要重視分析時的尺規(guī)作圖,規(guī)范而準(zhǔn)確的作圖可突出幾何關(guān)系,使抽象的物理問題更形象、直觀,如圖.①適用條件a.速度大小一定,方向不同粒子源發(fā)射速度大小一定,方向不同的帶電粒子進(jìn)入勻強磁場時,它們在磁場中做勻速圓周運動的半徑相同,若入射初速度為v0,由qv0B=eq\f(mv\o\al(

2,0),R)得圓周運動半徑為R=eq\f(mv0,qB).b.軌跡圓圓心共圓帶電粒子在磁場中做勻速圓周運動的圓心在以入射點O為圓心、半徑R=eq\f(mv0,qB)的圓(這個圓在下面的敘述中稱為“軌跡圓心圓”)上.②界定方法將一半徑為R=eq\f(mv0,qB)的圓的圓心沿著“軌跡圓心圓”平移,從而探索出臨界條件,這種方法稱為“平移圓法”.【典例1】如圖所示,OM的左側(cè)存在范圍足夠大、磁感應(yīng)強度大小為B的勻強磁場,磁場方向垂直紙面向里,ON(在紙面內(nèi))與磁場方向垂直且∠NOM=60°,ON上有一點P,OP=L、P點有一粒子源,可沿紙面內(nèi)各個方向射出質(zhì)量為m、電荷量為q的帶正電的粒子(不計重力),速率為6A.πm2qB B.πm3qB C. D.πm【答案】A【解析】粒子進(jìn)入磁場中做勻速圓周運動則有qvB=mv而將題設(shè)的v值代入得r=6粒子運動的時間t最短時,所粒子偏轉(zhuǎn)的角度θ最小,則θ所對弦最短,作PB⊥OM于B點,PB即為最短的弦,結(jié)合左手定則,以r=64L為半徑作出過P、B兩點的軌跡圓如圖所示,O根據(jù)幾何關(guān)系有O'PB=Lsin6聯(lián)立解得PB=2則粒子偏轉(zhuǎn)的角度θ=90結(jié)合周期公式T=2πmqB可知粒子在磁場中運動的最短時間為【典例2】如圖所示,以直角三角形AOC為邊界的區(qū)域內(nèi)存在著磁感應(yīng)強度大小為B。方向垂直于紙面向里的勻強磁場。已知∠C=30°,AO=L,D點為AC中點,O點處有一個粒子源,可以在紙面內(nèi)向各個方向發(fā)射大量的比荷為qm的帶負(fù)電的粒子,粒子的速度大小均為v0=qBLm。設(shè)某粒子發(fā)射的方向與OCA.當(dāng)θ=60°時,該粒子將從AB.從AC邊射出的粒子在磁場中運動的時間隨θ的減小而增加C.所有從OA邊射出的粒子在磁場中運動的時間相等D.在AC邊上僅在AD范圍內(nèi)有粒子射出【答案】AD【解析】A.由牛頓第二定律得qv解得R=L當(dāng)θ=60°時,該粒子恰從A點射出,故AB.粒子從AC邊射出時,隨著θ的減小,在磁場中的弧長先減小后增大,故粒子在磁場中運動的時間隨θ的減小先減少后增加,故B錯誤;C.從OA邊射出時,圓心角φ=2π運動的時間為t=πT一定,隨著θ的變化,粒子在磁場中運動的時間也發(fā)生變化,故C錯誤;D.當(dāng)θ=0時,粒子恰好從D點射出,故在AC邊上僅在AD范圍內(nèi)有粒子射出,故D正確。故選AD?!揪毩?xí)1】如圖所示,OA,OB為相互垂直的有界勻強磁場邊界,磁場磁感強度,方向垂直紙面向里,S為粒子源,可向磁場內(nèi)各個方向均勻發(fā)射比荷qm=1.0×104C/kg的帶正電粒子,速度v0=1.0×104m/sA.有12的粒子可以打到熒光屏上,且熒光屏發(fā)光的長度為10B.有12的粒子可以打到熒光屏上,且熒光屏發(fā)光的長度為10C.有12的粒子可以打到熒光屏上,且熒光屏發(fā)光的長度為10cmD.有14的粒子可以打到熒光屏上,且熒光屏發(fā)光的長度為10【答案】A【解析】帶電粒子在磁場中做圓周運動的向心力由洛倫茲力提供,由向心力公式qvB=m解得,帶電粒子做圓周運動的半徑R=mv由題意可知粒子在磁場中的運動半徑為10cm,所有粒子在磁場中半徑相同,

由圖可知,由O點射入水平向右的粒子恰好應(yīng)為最右端邊界;隨著粒子的速度方向偏轉(zhuǎn),粒子轉(zhuǎn)動的軌跡圓可認(rèn)為是以O(shè)點為圓心以2R為半徑轉(zhuǎn)動.如圖所示與x軸夾角0≤都可以打到屏上,所以有12的粒子可以打到熒光屏上,由幾何關(guān)系可知OM=所以,且熒光屏發(fā)光的長度為QM=故A正確,BCD錯誤;故選A。【練習(xí)2】如圖所示為一矩形磁場區(qū)域(畫出上邊界,其余三個邊界未畫出),S處有一電子源能在紙面內(nèi)向各個方向持續(xù)發(fā)射電子,已知磁場方向垂直紙面向里,磁感應(yīng)強度B=9.1×10-5T,S到磁場上邊界的距離為4cm。電子源所發(fā)射電子的速率均為v=1.6×106m/s,電子質(zhì)量m=9.×10-31kg,電荷量e=-1.6×10-19C,不計電子重力和相互間作用力。(1)如果矩形磁場區(qū)域足夠?qū)?,求磁場上邊界有電子射出的邊界長度;(2)要求電子僅能從矩形磁場的上邊界射出而不能從其他三個邊界射出,求矩形磁場的最小面積?!敬鸢浮?1)81+6cm;(2)【解析】電子在磁場中做圓周運動,有解得r=0.1m=10cm(1)能從上邊界射出的左邊界點為B,右邊界點為C,如圖所示由幾何關(guān)系知道BS=2r=20cmDOAB=BDS=S上邊界有電子射出的邊界長度x=AB+AC=81+(2)如圖所示不能從左側(cè)邊界射出的最遠(yuǎn)邊界為ME,由幾何關(guān)系知SE=2r=20cm不能從右側(cè)邊界射出的最遠(yuǎn)邊界為NF,由幾何關(guān)系知AN=AC+r=18cm不能從邊界射出的邊界線距離S的距離,由幾何關(guān)系知SG=2r=20cm所以最小面積有界磁場之圓形磁場邊界外部入射【模型+方法】當(dāng)圓形磁場的半徑與圓軌跡半徑相等時,存在兩條特殊規(guī)律;規(guī)律一:帶電粒子從圓形有界磁場邊界上某點射入磁場,如果圓形磁場的半徑與圓軌跡半徑相等,則粒子的出射速度方向與圓形磁場上入射點的切線方向平行,如甲圖所示。規(guī)律二:平行射入圓形有界磁場的相同帶電粒子,如果圓形磁場的半徑與圓軌跡半徑相等,則所有粒子都從磁場邊界上的同一點射出,并且出射點的切線與入射速度方向平行,如乙圖所示。兩線一點/點方向半徑【典例】如圖所示,分布在半徑為r的圓形區(qū)域內(nèi)的勻強磁場,磁感應(yīng)強度為B,方向垂直紙面向里。電荷量為q、質(zhì)量為m的帶正電的粒子從磁場邊緣A點沿圓的半徑AO方向射入磁場,離開磁場時速度方向偏轉(zhuǎn)了60°角。(不計粒子的重力)則()A.粒子做圓周運動的半徑為r B.粒子的入射速度為3BqrC.粒子在磁場中運動的時間為 D.粒子在磁場中運動的時間為【答案】B【解析】A.設(shè)粒子做勻速圓周運動的半徑為R,如圖所示根據(jù)幾何知識可知∠O得到圓運動的半徑R=OA錯誤;B.根據(jù)牛頓運動定律qvB=mv有R=mv粒子的入射速度v=3B正確;CD.由于粒子在磁場中的運動方向偏轉(zhuǎn)了60?角,所以粒子完成了16個圓運動,根據(jù)線速度與周期的關(guān)系v=2πRT粒子在磁場中的運動時間為t=1CD錯誤。故選B?!揪毩?xí)1】如圖,半徑為R的圓是一圓柱形勻強磁場區(qū)域的橫截面(紙面),磁感應(yīng)強度大小為B,方向垂直于紙面向外.一電荷量為q(q>0)、質(zhì)量為m的粒子沿平行于直徑ab的方向射入磁場區(qū)域,射入點與ab的距離為R2.已知粒子射出磁場與射入磁場時運動方向間的夾角為60°,則粒子的速率為(不計重力)()A. B. C. D.2qBRm解析過程:帶電粒子從距離ab為R2處射入磁場,且射出時與射入時速度方向的夾角為60°,粒子運動軌跡如圖,ce為射入速度所在直線,d為射出點,射出速度反向延長交ce于f點,磁場區(qū)域圓心為O,帶電粒子所做圓周運動圓心為O′,則O、f、O′在一條直線上,由幾何關(guān)系得帶電粒子所做圓周運動的軌跡半徑為R,由F洛=Fn得qvB=m解得v=故選B?!揪毩?xí)2】如圖所示,在以直角坐標(biāo)系xOy的坐標(biāo)原點O為圓心、半徑為r的圓形區(qū)域內(nèi),存在磁感應(yīng)強度大小為B、方向垂直xOy所在平面的勻強磁場。一質(zhì)量為m、電量為q帶電粒子由磁場邊界與x軸的交點A處,以某一速度沿x軸負(fù)方向射入磁場,粒子恰好能從磁場邊界與y軸的交點C處,沿y軸正方向飛出磁場,不計帶電粒子所受重力。(1)求粒子的速度v0;(2)若該粒子從A處以33v0的速度沿x軸負(fù)向射入磁場,求該粒子在磁場中運動的時間?!敬鸢浮?1)v0=qBr【解析】(1)由圖可知,粒子的運動半徑R=r由洛倫茲力提供向心力即qv得v0(2)粒子的運動軌跡如圖,設(shè)其半徑為R′由上問可得R'又tanθ得θ=120由T=2πRv得粒子在磁場中運動的時間為t=T同源共速—軌道半徑大于磁場半徑【典例1】如圖所示,圓形區(qū)域半徑為R,區(qū)域內(nèi)有一垂直紙面的勻強磁場,磁感應(yīng)強度的大小為B。位于磁場邊界最低點P處有一粒子源,可以釋放質(zhì)量為m、電荷量為q的帶負(fù)電粒子,粒子沿位于紙面內(nèi)的各個方向以相同的速率射入磁場區(qū)域。不計粒子的重力和空氣阻力,忽略粒子間的相互影響,粒子在磁場內(nèi)做圓周運動的軌道半徑r=2R,A、C為圓形區(qū)域水平直徑的兩個端點。下列說法中正確的是()A.粒子射入磁場的速率為v=2qBRB.粒子在磁場中運動的最長時間為t=πmC.不可能有粒子從C點射出磁場D.若粒子的速率可以變化,則不可能有粒子從A點水平射出【答案】D【解析】A.由洛侖茲力提供向心力,有qvB=mv當(dāng)r=2R時,速度為v=2qBRmAB.要使帶電粒子在圓形磁場中的時間最長,則是以磁場圓直徑為弦的軌跡時間最長,圓心為Omax,粒子的運動軌跡如圖:由幾何關(guān)系知此軌跡在磁場的偏轉(zhuǎn)角為60°,所以最長時間為t60°C.當(dāng)入射速度的方向合適時,是可以找到從C點射出圓周運動的圓心OC的,即作PC的中垂線,使OCP=OD.若粒子的速度變?yōu)閝BRm,則其運動半徑為R,若粒子從P點向上入射,則從A點水平穿出,D錯誤。故選D?!揪毩?xí)1】如圖所示,一磁感應(yīng)強度為B的圓形勻強磁場區(qū)域,圓心為O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論