2023屆江蘇省無錫市江陰市南閘實驗校中考聯(lián)考數(shù)學試卷含解析_第1頁
2023屆江蘇省無錫市江陰市南閘實驗校中考聯(lián)考數(shù)學試卷含解析_第2頁
2023屆江蘇省無錫市江陰市南閘實驗校中考聯(lián)考數(shù)學試卷含解析_第3頁
2023屆江蘇省無錫市江陰市南閘實驗校中考聯(lián)考數(shù)學試卷含解析_第4頁
2023屆江蘇省無錫市江陰市南閘實驗校中考聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知:二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,下列結(jié)論中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1兩根分別為-3,1;⑤4a+2b+c>1.其中正確的項有()A.2個 B.3個 C.4個 D.5個2.如圖,AB與⊙O相切于點B,OA=2,∠OAB=30°,弦BC∥OA,則劣弧的長是()A. B. C. D.3.如圖,在△ABC中,BC=8,AB的中垂線交BC于D,AC的中垂線交BC于E,則△ADE的周長等于()A.8 B.4 C.12 D.164.為了鍛煉學生身體素質(zhì),訓練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖1所示,點E為矩形ABCD邊AD的中點,在矩形ABCD的四個頂點處都有定位儀,可監(jiān)測運動員的越野進程,其中一位運動員P從點B出發(fā),沿著B﹣E﹣D的路線勻速行進,到達點D.設(shè)運動員P的運動時間為t,到監(jiān)測點的距離為y.現(xiàn)有y與t的函數(shù)關(guān)系的圖象大致如圖2所示,則這一信息的來源是()A.監(jiān)測點A B.監(jiān)測點B C.監(jiān)測點C D.監(jiān)測點D5.一個圓錐的側(cè)面積是12π,它的底面半徑是3,則它的母線長等于()A.2B.3C.4D.66.某藥品經(jīng)過兩次降價,每瓶零售價由168元降為108元,已知兩次降價的百分率相同,設(shè)每次降價的百分率為x,根據(jù)題意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1087.下列計算結(jié)果正確的是()A. B.C. D.8.對于反比例函數(shù)y=(k≠0),下列所給的四個結(jié)論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對稱9.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+10.如圖是測量一物體體積的過程:步驟一:將180mL的水裝進一個容量為300mL的杯子中;步驟二:將三個相同的玻璃球放入水中,結(jié)果水沒有滿;步驟三:再將一個同樣的玻璃球放入水中,結(jié)果水滿溢出.根據(jù)以上過程,推測一個玻璃球的體積在下列哪一范圍內(nèi)?(1mL=1cm3)().A.10cm3以上,20cm3以下 B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下 D.40cm3以上,50cm3以下11.如圖,函數(shù)y=的圖象記為c1,它與x軸交于點O和點A1;將c1繞點A1旋轉(zhuǎn)180°得c2,交x軸于點A2;將c2繞點A2旋轉(zhuǎn)180°得c3,交x軸于點A3…如此進行下去,若點P(103,m)在圖象上,那么m的值是()A.﹣2 B.2 C.﹣3 D.412.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知一個圓錐體的底面半徑為2,母線長為4,則它的側(cè)面展開圖面積是___.(結(jié)果保留π)14.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三點都在y=的圖象上,則yl,y2,y3的大小關(guān)系是_____.(用“<”號填空)15.觀察以下一列數(shù):3,,,,,…則第20個數(shù)是_____.16.如圖,已知∠A+∠C=180°,∠APM=118°,則∠CQN=_____°.17.如圖,小明在A時測得某樹的影長為3米,B時又測得該樹的影長為12米,若兩次日照的光線互相垂直,則樹的高度為_________米.18.反比例函數(shù)y=與正比例函數(shù)y=k2x的圖象的一個交點為(2,m),則=____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關(guān)于BC所在直線的對稱圖形得到△A'BC,連結(jié)AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.20.(6分)某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是80元時,銷售量是200件,而銷售單價每降低1元,就可多售出20件.寫出銷售量y件與銷售單價x元之間的函數(shù)關(guān)系式;寫出銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數(shù)關(guān)系式;若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,則商場銷售該品牌童裝獲得的最大利潤是多少?21.(6分)對x,y定義一種新運算T,規(guī)定T(x,y)=(其中a,b是非零常數(shù),且x+y≠0),這里等式右邊是通常的四則運算.如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=(用含a,b的代數(shù)式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a與b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.22.(8分)如圖,已知,.求證.23.(8分)為了弘揚學生愛國主義精神,充分展現(xiàn)新時期青少年良好的思想道德素質(zhì)和精神風貌,豐富學生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經(jīng)典詩文誦讀比賽.九(1)班通過內(nèi)部初選,選出了麗麗和張強兩位同學,但學校規(guī)定每班只有1個名額,經(jīng)過老師與同學們商量,用所學的概率知識設(shè)計摸球游戲決定誰去,設(shè)計的游戲規(guī)則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復以上動作,直到分出勝負為止.根據(jù)以上規(guī)則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.24.(10分)如圖,AB為⊙O的直徑,點C在⊙O上,AD⊥CD于點D,且AC平分∠DAB,求證:(1)直線DC是⊙O的切線;(2)AC2=2AD?AO.25.(10分)校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載.某中學數(shù)學活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側(cè)取點A、B,使∠CAD=30,∠CBD=60.求AB的長(精確到0.1米,參考數(shù)據(jù):);已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.26.(12分)如圖,某數(shù)學興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)27.(12分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結(jié)CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)判斷即可.【詳解】①由拋物線開口向上知:a>1;拋物線與y軸的負半軸相交知c<1;對稱軸在y軸的右側(cè)知:b>1;所以:abc<1,故①錯誤;②對稱軸為直線x=-1,,即b=2a,所以b-2a=1.故②錯誤;③由拋物線的性質(zhì)可知,當x=-1時,y有最小值,即a-b+c<(),即a﹣b<m(am+b)(m≠﹣1),故③正確;④因為拋物線的對稱軸為x=1,且與x軸的一個交點的橫坐標為1,所以另一個交點的橫坐標為-3.因此方程ax+bx+c=1的兩根分別是1,-3.故④正確;⑤由圖像可得,當x=2時,y>1,即:4a+2b+c>1,故⑤正確.故正確選項有③④⑤,故選B.【點睛】本題二次函數(shù)的圖象與性質(zhì),牢記公式和數(shù)形結(jié)合是解題的關(guān)鍵.2、B【解析】解:連接OB,OC.∵AB為圓O的切線,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧BC的弧長為=π.故選B.點睛:此題考查了切線的性質(zhì),含30度直角三角形的性質(zhì),以及弧長公式,熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.3、A【解析】

∵AB的中垂線交BC于D,AC的中垂線交BC于E,∴DA=DB,EA=EC,則△ADE的周長=AD+DE+AE=BD+DE+EC=BC=8,故選A.4、C【解析】試題解析:、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大先減少再增大.故選項錯誤;、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大而增大,故選項錯誤;、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大先減小再增大,然后再減小,選項正確;、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大而減小,選項錯誤.故選.5、C【解析】設(shè)母線長為R,底面半徑是3cm,則底面周長=6π,側(cè)面積=3πR=12π,

∴R=4cm.故選C.6、A【解析】

設(shè)每次降價的百分率為x,根據(jù)降價后的價格=降價前的價格(1-降價的百分率),則第一次降價后的價格是168(1-x),第二次后的價格是168(1-x)2,據(jù)此即可列方程求解.【詳解】設(shè)每次降價的百分率為x,根據(jù)題意得:168(1-x)2=1.故選A.【點睛】此題主要考查了一元二次方程的應用,關(guān)鍵是根據(jù)題意找到等式兩邊的平衡條件,這種價格問題主要解決價格變化前后的平衡關(guān)系,列出方程即可.7、C【解析】

利用冪的乘方、同底數(shù)冪的乘法、合并同類項及零指數(shù)冪的定義分別計算后即可確定正確的選項.【詳解】A、原式,故錯誤;B、原式,故錯誤;C、利用合并同類項的知識可知該選項正確;D、,,所以原式無意義,錯誤,故選C.【點睛】本題考查了冪的運算性質(zhì)及特殊角的三角函數(shù)值的知識,解題的關(guān)鍵是能夠利用有關(guān)法則進行正確的運算,難度不大.8、D【解析】分析:根據(jù)反比例函數(shù)的性質(zhì)一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當k>0時,y隨x的增大而減小,錯誤,應該是當k>0時,在每個象限,y隨x的增大而減小;故本選項不符合題意;C.錯誤,應該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì),靈活運用所學知識解決問題,屬于中考??碱}型.9、C【解析】

過點C作CM⊥AB,垂足為M,根據(jù)勾股定理求出BC的長,再根據(jù)DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數(shù)值計算即可.【詳解】過點C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點睛】本題考查了勾股定理,解題的關(guān)鍵是熟練的掌握勾股定理的運算.10、C【解析】分析:本題可設(shè)玻璃球的體積為x,再根據(jù)題意列出不等式組求得解集得出答案即可.詳解:設(shè)玻璃球的體積為x,則有解得30<x<1.故一顆玻璃球的體積在30cm3以上,1cm3以下.故選C.點睛:此題考查一元一次不等式組的運用,解此類題目常常要根據(jù)題意列出不等式組,再化簡計算得出x的取值范圍.11、C【解析】

求出與x軸的交點坐標,觀察圖形可知第奇數(shù)號拋物線都在x軸上方,然后求出到拋物線平移的距離,再根據(jù)向右平移橫坐標加表示出拋物線的解析式,然后把點P的坐標代入計算即可得解.【詳解】令,則=0,解得,,由圖可知,拋物線在x軸下方,相當于拋物線向右平移4×(26?1)=100個單位得到得到,再將繞點旋轉(zhuǎn)180°得,此時的解析式為y=(x?100)(x?100?4)=(x?100)(x?104),在第26段拋物線上,m=(103?100)(103?104)=?3.故答案是:C.【點睛】本題考查的知識點是二次函數(shù)圖象與幾何變換,解題關(guān)鍵是根據(jù)題意得到p點所在函數(shù)表達式.12、D【解析】

先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、8π【解析】

根據(jù)圓錐的側(cè)面積=底面周長×母線長÷2公式即可求出.【詳解】∵圓錐體的底面半徑為2,∴底面周長為2πr=4π,∴圓錐的側(cè)面積=4π×4÷2=8π.故答案為:8π.【點睛】靈活運用圓的周長公式和扇形面積公式.14、y3<y1<y1【解析】

根據(jù)反比例函數(shù)的性質(zhì)k<0時,在每個象限,y隨x的增大而增大,進行比較即可.【詳解】解:k=-1<0,∴在每個象限,y隨x的增大而增大,∵-3<-1<0,∴0<y1<y1.又∵1>0∴y3<0∴y3<y1<y1故答案為:y3<y1<y1【點睛】本題考查的是反比例函數(shù)的性質(zhì),理解性質(zhì):當k>0時,在每個象限,y隨x的增大而減小,k<0時,在每個象限,y隨x的增大而增大是解題的關(guān)鍵.15、【解析】

觀察已知數(shù)列得到一般性規(guī)律,寫出第20個數(shù)即可.【詳解】解:觀察數(shù)列得:第n個數(shù)為,則第20個數(shù)是.故答案為.【點睛】本題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解答本題的關(guān)鍵.16、1【解析】

先根據(jù)同旁內(nèi)角互補兩直線平行知AB∥CD,據(jù)此依據(jù)平行線性質(zhì)知∠APM=∠CQM=118°,由鄰補角定義可得答案.【詳解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案為:1.【點睛】本題主要考查平行線的判定與性質(zhì),解題的關(guān)鍵是掌握平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系.平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系.17、1【解析】

根據(jù)題意,畫出示意圖,易得:Rt△EDC∽Rt△FDC,進而可得;即DC2=ED?FD,代入數(shù)據(jù)可得答案.【詳解】根據(jù)題意,作△EFC,樹高為CD,且∠ECF=90°,ED=3,F(xiàn)D=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入數(shù)據(jù)可得DC2=31,DC=1,故答案為1.18、4【解析】

利用交點(2,m)同時滿足在正比例函數(shù)和反比例函數(shù)上,分別得出m和、的關(guān)系.【詳解】把點(2,m)代入反比例函數(shù)和正比例函數(shù)中得,,,則.【點睛】本題主要考查了函數(shù)的交點問題和待定系數(shù)法,熟練掌握待定系數(shù)法是本題的解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】

(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據(jù)30°所對的直角邊等于斜邊的一半可得:根據(jù)“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設(shè)則根據(jù)勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關(guān)于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點B是的重心,∴設(shè)則由勾股定理得∴(3)①當時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,∴∠DCF=45°,設(shè)∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到,∴是等腰直角三角形,∴②當時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點C按順時針方向旋轉(zhuǎn)45°,得到時,點A'在直線l1上,∴∥l1,即直線與l1無交點,綜上所述,CD的值為【點睛】屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質(zhì)等,掌握等底高三角形的性質(zhì)是解題的關(guān)鍵.20、(1);(2);(3)最多獲利4480元.【解析】

(1)銷售量y為200件加增加的件數(shù)(80﹣x)×20;(2)利潤w等于單件利潤×銷售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函數(shù)的性質(zhì)得到w=﹣20x2+3000x﹣108000的對稱軸為x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根據(jù)二次函數(shù)的性質(zhì)得到當76≤x≤78時,W隨x的增大而減小,把x=76代入計算即可得到商場銷售該品牌童裝獲得的最大利潤.【詳解】(1)根據(jù)題意得,y=200+(80﹣x)×20=﹣20x+1800,所以銷售量y件與銷售單價x元之間的函數(shù)關(guān)系式為y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數(shù)關(guān)系式為:W=﹣20x2+3000x﹣108000;(3)根據(jù)題意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,對稱軸為x=﹣=75,∵a=﹣20<0,∴拋物線開口向下,∴當76≤x≤78時,W隨x的增大而減小,∴x=76時,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商場銷售該品牌童裝獲得的最大利潤是4480元.【點睛】二次函數(shù)的應用.21、(1);(2)①a=1,b=-1,②m=2.【解析】

(1)根據(jù)題目中的新運算法則計算即可;(2)①根據(jù)題意列出方程組即可求出a,b的值;②先分別算出T(3m﹣3,m)與T(m,3m﹣3)的值,再根據(jù)求出的值列出等式即可得出結(jié)論.【詳解】解:(1)T(4,﹣1)==;故答案為;(2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,∴解得②解法一:∵a=1,b=﹣1,且x+y≠0,∴T(x,y)===x﹣y.∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,T(m,3m﹣3)=m﹣3m+3=﹣2m+3.∵T(3m﹣3,m)=T(m,3m﹣3),∴2m﹣3=﹣2m+3,解得,m=2.解法二:由解法①可得T(x,y)=x﹣y,當T(x,y)=T(y,x)時,x﹣y=y﹣x,∴x=y.∵T(3m﹣3,m)=T(m,3m﹣3),∴3m﹣3=m,∴m=2.【點睛】本題關(guān)鍵是能夠把新運算轉(zhuǎn)化為我們學過的知識,并應用一元一次方程或二元一次方程進行解題..22、見解析【解析】

根據(jù)∠ABD=∠DCA,∠ACB=∠DBC,求證∠ABC=∠DCB,然后利用AAS可證明△ABC≌△DCB,即可證明結(jié)論.【詳解】證明:∵∠ABD=∠DCA,∠DBC=∠ACB

∴∠ABD+∠DBC=∠DCA+∠ACB

即∠ABC=∠DCB

在△ABC和△DCB中

∴△ABC≌△DCB(ASA)

∴AB=DC【點睛】本題主要考查學生對全等三角形的判定與性質(zhì)的理解和掌握,證明此題的關(guān)鍵是求證△ABC≌△DCB.難度不大,屬于基礎(chǔ)題.23、(1);(2)不公平,理由見解析.【解析】

(1)畫樹狀圖列出所有等可能結(jié)果數(shù),找到摸出一個黃球和一個白球的結(jié)果數(shù),根據(jù)概率公式可得答案;(2)結(jié)合(1)種樹狀圖根據(jù)概率公式計算出兩人獲勝的概率,比較大小即可判斷.【詳解】(1)畫樹狀圖如下:由樹狀圖可知共有20種等可能結(jié)果,其中一次性摸出一個黃球和一個白球的有11種結(jié)果,∴一次性摸出一個黃球和一個白球的概率為;(2)不公平,由(1)種樹狀圖可知,麗麗去的概率為,張強去的概率為=,∵,∴該游戲不公平.【點睛】本題考查了列表法與樹狀圖法,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.24、(1)證明見解析.(2)證明見解析.【解析】分析:(1)連接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,據(jù)此知OC∥AD,根據(jù)AD⊥DC即可得證;(2)連接BC,證△DAC∽△CAB即可得.詳解:(1)如圖,連接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切線;(2)連接BC,∵AB為⊙O的直徑,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴,即AC2=AB?AD,∵AB=2AO,∴AC2=2AD?AO.點睛:本題主要考查圓的切線,解題的關(guān)鍵是掌握切線的判定、圓周角定理及相似三角形的判定與性質(zhì).25、(1)24.2米(2)超速,理由見解析【解析】

(1)分別在Rt△ADC與Rt△BDC中,利用正切函數(shù),即可求得AD與BD的長,從而求得AB的長.(2)由從A到B用時2秒,即可求得這輛校車的速度,比較與40千米/小時的大小,即可確定這輛校車是否超速.【詳解】解:(1)由題意得,在Rt△ADC中,,在Rt△BDC中,,∴AB=AD-BD=(米).(2)∵汽車從A到B用時2秒,∴速度為24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小時,∴該車速度為43.56千米/小時.∵43.56千米/小時大于40千米/小時,∴此校車在AB路段超速.26、這棵樹CD的高度為8.7米【解析】試題分析:首先利用三角形的外角的性質(zhì)求得∠ACB的度數(shù),得到BC的長度,然

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論