2023屆江蘇省鹽城市大岡初中中考數學仿真試卷含解析_第1頁
2023屆江蘇省鹽城市大岡初中中考數學仿真試卷含解析_第2頁
2023屆江蘇省鹽城市大岡初中中考數學仿真試卷含解析_第3頁
2023屆江蘇省鹽城市大岡初中中考數學仿真試卷含解析_第4頁
2023屆江蘇省鹽城市大岡初中中考數學仿真試卷含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.弘揚社會主義核心價值觀,推動文明城市建設.根據“文明創(chuàng)建工作評分細則”,l0名評審團成員對我市2016年度文明刨建工作進行認真評分,結果如下表:人數2341分數80859095則得分的眾數和中位數分別是()A.90和87.5 B.95和85 C.90和85 D.85和87.52.如圖,點A、B、C、D、O都在方格紙的格點上,若△COD是由△AOB繞點O按逆時針方向旋轉而得,則旋轉的角度為()A.30° B.45°C.90° D.135°3.對于一組統(tǒng)計數據:1,6,2,3,3,下列說法錯誤的是()A.平均數是3 B.中位數是3 C.眾數是3 D.方差是2.54.如圖,直線AB與半徑為2的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.25.如圖,AB∥CD,FH平分∠BFG,∠EFB=58°,則下列說法錯誤的是()A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH6.如圖,甲圓柱型容器的底面積為30cm2,高為8cm,乙圓柱型容器底面積為xcm2,若將甲容器裝滿水,然后再將甲容器里的水全部倒入乙容器中(乙容器無水溢出),則乙容器水面高度y(cm)與x(cm2)之間的大致圖象是()A. B. C. D.7.如圖,E,B,F,C四點在一條直線上,EB=CF,∠A=∠D,再添一個條件仍不能證明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.一次函數與二次函數在同一平面直角坐標系中的圖像可能是()A. B. C. D.9.下列運算正確的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a3+a2=2a510.在同一坐標系中,反比例函數y=與二次函數y=kx2+k(k≠0)的圖象可能為()A. B.C. D.11.按一定規(guī)律排列的一列數依次為:﹣,1,﹣,、﹣、…,按此規(guī)律,這列數中的第100個數是()A.﹣ B. C. D.12.若二元一次方程組的解為則的值為()A.1 B.3 C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖所示是一組有規(guī)律的圖案,第l個圖案由4個基礎圖形組成,第2個圖案由7個基礎圖形組成,……,第n(n是正整數)個圖案中的基礎圖形個數為_______(用含n的式子表示).14.如圖,點A、B、C、D在⊙O上,O點在∠D的內部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=▲°.15.如圖,在平面直角坐標系中,點A是拋物線y=a(x+)2+k與y軸的交點,點B是這條拋物線上的另一點,且AB∥x軸,則以AB為邊的正方形ABCD的周長為_____.16.如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是.17.如圖,在中,,,,,,點在上,交于點,交于點,當時,________.18.如圖,在矩形ABCD中,E、F分別是AD、CD的中點,沿著BE將△ABE折疊,點A剛好落在BF上,若AB=2,則AD=________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一次函數y=k1x+b(k1≠0)與反比例函數的圖象交于點A(-1,2),B(m,-1).求一次函數與反比例函數的解析式;在x軸上是否存在點P(n,0),使△ABP為等腰三角形,請你直接寫出P點的坐標.20.(6分)某校計劃購買籃球、排球共20個.購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同.籃球和排球的單價各是多少元?若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案.21.(6分)如圖,在Rt△ABC中,,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點,則當=______時,四邊形BECD是正方形.22.(8分)如圖,△ABD是⊙O的內接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.23.(8分)學習了正多邊形之后,小馬同學發(fā)現利用對稱、旋轉等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數式表示△BDQ的面積S△BDQ.24.(10分)某網店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網店甲、乙兩種羽毛球每筒的售價各是多少元?根據健民體育活動中心消費者的需求量,活動中心決定用不超過2550元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?25.(10分)我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F,G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F,G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)26.(12分)如圖,關于x的二次函數y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數的表達式;(2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標;(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.27.(12分)“揚州漆器”名揚天下,某網店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數關系,如圖所示.求與之間的函數關系式;如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?該網店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數;眾數是一組數據中出現次數最多的數據,可得答案.解:在這一組數據中90是出現次數最多的,故眾數是90;排序后處于中間位置的那個數,那么由中位數的定義可知,這組數據的中位數是87.5;故選:A.“點睛”本題考查了眾數、中位數的知識,掌握各知識點的概念是解答本題的關鍵.注意中位數:將一組數據按照從小到大(或從大到?。┑捻樞蚺帕校绻麛祿膫€數是奇數,則處于中間位置的數就是這組數據的中位數.如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.2、C【解析】

根據勾股定理求解.【詳解】設小方格的邊長為1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故選C.【點睛】考點:勾股定理逆定理.3、D【解析】

根據平均數、中位數、眾數和方差的定義逐一求解可得.【詳解】解:A、平均數為1+6+2+3+35B、重新排列為1、2、3、3、6,則中位數為3,正確;C、眾數為3,正確;D、方差為15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故選:D.【點睛】本題考查了眾數、平均數、中位數、方差.平均數平均數表示一組數據的平均程度.中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(或最中間兩個數的平均數);方差是用來衡量一組數據波動大小的量.4、B【解析】本題考查的圓與直線的位置關系中的相切.連接OC,EC所以∠EOC=2∠D=60°,所以△ECO為等邊三角形.又因為弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.5、D【解析】

根據平行線的性質以及角平分線的定義,即可得到正確的結論.【詳解】解:,故A選項正確;又故B選項正確;平分,,故C選項正確;,故選項錯誤;故選.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,同位角相等;兩直線平行,內錯角相等.6、C【解析】

根據題意可以寫出y關于x的函數關系式,然后令x=40求出相應的y值,即可解答本題.【詳解】解:由題意可得,y==,當x=40時,y=6,故選C.【點睛】本題考查了反比例函數的圖象,根據題意列出函數解析式是解決此題的關鍵.7、A【解析】

由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB與原條件滿足SSA,不能證明△ABC≌△DEF,故A選項正確.B、添加DF∥AC,可得∠DFE=∠ACB,根據AAS能證明△ABC≌△DEF,故B選項錯誤.C、添加∠E=∠ABC,根據AAS能證明△ABC≌△DEF,故C選項錯誤.D、添加AB∥DE,可得∠E=∠ABC,根據AAS能證明△ABC≌△DEF,故D選項錯誤,故選A.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.8、D【解析】

本題可先由一次函數y=ax+c圖象得到字母系數的正負,再與二次函數y=ax2+bx+c的圖象相比較看是否一致.【詳解】A、一次函數y=ax+c與y軸交點應為(0,c),二次函數y=ax2+bx+c與y軸交點也應為(0,c),圖象不符合,故本選項錯誤;B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項錯誤;C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項錯誤;D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點相同,故本選項正確.故選D.【點睛】本題考查拋物線和直線的性質,用假設法來搞定這種數形結合題是一種很好的方法.9、B【解析】

根據去括號法則,積的乘方的性質,完全平方公式,合并同類項法則,對各選項分析判斷后利用排除法求解.【詳解】解:A、因為﹣(a﹣1)=﹣a+1,故本選項錯誤;B、(﹣2a3)2=4a6,正確;C、因為(a﹣b)2=a2﹣2ab+b2,故本選項錯誤;D、因為a3與a2不是同類項,而且是加法,不能運算,故本選項錯誤.故選B.【點睛】本題考查了合并同類項,積的乘方,完全平方公式,理清指數的變化是解題的關鍵.10、D【解析】

根據k>0,k<0,結合兩個函數的圖象及其性質分類討論.【詳解】分兩種情況討論:①當k<0時,反比例函數y=,在二、四象限,而二次函數y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當k>0時,反比例函數y=,在一、三象限,而二次函數y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標系中的圖象大致是D.故選D.【點睛】本題主要考查二次函數、反比例函數的圖象特點.11、C【解析】

根據按一定規(guī)律排列的一列數依次為:,1,,,,…,可知符號規(guī)律為奇數項為負,偶數項為正;分母為3、7、9、……,型;分子為型,可得第100個數為.【詳解】按一定規(guī)律排列的一列數依次為:,1,,,,…,按此規(guī)律,奇數項為負,偶數項為正,分母為3、7、9、……,型;分子為型,可得第n個數為,∴當時,這個數為,故選:C.【點睛】本題屬于規(guī)律題,準確找出題目的規(guī)律并將特殊規(guī)律轉化為一般規(guī)律是解決本題的關鍵.12、D【解析】

先解方程組求出,再將代入式中,可得解.【詳解】解:,得,所以,因為所以.故選D.【點睛】本題考查二元一次方程組的解,解題的關鍵是觀察兩方程的系數,從而求出a-b的值,本題屬于基礎題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3n+1【解析】試題分析:由圖可知每個圖案一次增加3個基本圖形,第一個圖案有4個基本圖形,則第n個圖案的基礎圖形有4+3(n-1)=3n+1個考點:規(guī)律型14、1.【解析】試題分析:∵四邊形OABC為平行四邊形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四邊形ABCD是圓的內接四邊形,∴∠D+∠B=180°.又∠D=∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案為1°.考點:①平行四邊形的性質;②圓內接四邊形的性質.15、1【解析】

根據題意和二次函數的性質可以求得線段AB的長度,從而可以求得正方形ABCD的周長.【詳解】∵在平面直角坐標系中,點A是拋物線y=a(x+)2+k與y軸的交點,∴點A的橫坐標是0,該拋物線的對稱軸為直線x=﹣,∵點B是這條拋物線上的另一點,且AB∥x軸,∴點B的橫坐標是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周長為:3×4=1,故答案為:1.【點睛】本題考查了二次函數圖象上點的坐標特征、正方形的性質,解題的關鍵是找出所求問題需要的條件.16、①③⑤【解析】

①利用同角的余角相等,易得∠EAB=∠PAD,再結合已知條件利用SAS可證兩三角形全等;

②過B作BF⊥AE,交AE的延長線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;

③利用①中的全等,可得∠APD=∠AEB,結合三角形的外角的性質,易得∠BEP=90°,即可證;

④連接BD,求出△ABD的面積,然后減去△BDP的面積即可;

⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面積.【詳解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,

∴∠EAB=∠PAD,

又∵AE=AP,AB=AD,

∵在△APD和△AEB中,

∴△APD≌△AEB(SAS);

故此選項成立;

③∵△APD≌△AEB,

∴∠APD=∠AEB,

∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,

∴∠BEP=∠PAE=90°,

∴EB⊥ED;

故此選項成立;

②過B作BF⊥AE,交AE的延長線于F,

∵AE=AP,∠EAP=90°,

∴∠AEP=∠APE=45°,

又∵③中EB⊥ED,BF⊥AF,

∴∠FEB=∠FBE=45°,

又∵BE=

=

=

,

∴BF=EF=

,

故此選項不正確;

④如圖,連接BD,在Rt△AEP中,

∵AE=AP=1,

∴EP=

,

又∵PB=

∴BE=

∵△APD≌△AEB,

∴PD=BE=

,

∴S

△ABP+S

△ADP=S

△ABD-S

△BDP=

S

正方形ABCD-

×DP×BE=

×(4+

)-

×

×

=

+

故此選項不正確.

⑤∵EF=BF=

,AE=1,

∴在Rt△ABF中,AB

2=(AE+EF)

2+BF

2=4+

,

∴S

正方形ABCD=AB

2=4+

,

故此選項正確.

故答案為①③⑤.【點睛】本題考查了全等三角形的判定和性質的運用、正方形的性質的運用、正方形和三角形的面積公式的運用、勾股定理的運用等知識.17、1【解析】

如圖作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,設PQ=4x,則AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解決問題.【詳解】如圖,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四邊形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,設PQ=4x,則AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.故答案為:1.【點睛】本題考查了相似三角形的判定和性質、勾股定理、矩形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,屬于中考??碱}型.18、【解析】如圖,連接EF,∵點E、點F是AD、DC的中點,∴AE=ED,CF=DF=CD=AB=1,由折疊的性質可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.點睛:本題考查了翻折變換的知識,解答本題的關鍵是連接EF,證明Rt△EA′F≌Rt△EDF,得出BF的長,再利用勾股定理解答即可.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)反比例函數的解析式為;一次函數的解析式為y=-x+1;(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】

(1)將A點代入求出k2,從而求出反比例函數方程,再聯立將B點代入即可求出一次函數方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根據坐標距離公式計算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數的解析式為.∵B(m,-1)在上,∴m=2,由題意,解得:,∴一次函數的解析式為y=-x+1.(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【點睛】本題考查一次函數圖像與性質和反比例函數的圖像和性質,解題的關鍵是待定系數法,分三種情況討論.20、(1)籃球每個50元,排球每個30元.(2)滿足題意的方案有三種:①購買籃球8個,排球12個;②購買籃球9,排球11個;③購買籃球2個,排球2個;方案①最省錢【解析】試題分析:(1)設籃球每個x元,排球每個y元,根據費用可得等量關系為:購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同,列方程求解即可;(2)不等關系為:購買足球和籃球的總費用不超過1元,列式求得解集后得到相應整數解,從而求解.試題解析:解:(1)設籃球每個x元,排球每個y元,依題意,得:解得.答:籃球每個50元,排球每個30元.(2)設購買籃球m個,則購買排球(20-m)個,依題意,得:50m+30(20-m)≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵籃球的個數必須為整數,∴只能取8、9、2.∴滿足題意的方案有三種:①購買籃球8個,排球12個,費用為760元;②購買籃球9,排球11個,費用為780元;③購買籃球2個,排球2個,費用為1元.以上三個方案中,方案①最省錢.點睛:本題主要考查了二元一次方程組及一元一次不等式的應用;得到相應總費用的關系式是解答本題的關鍵.21、(1)詳見解析;(2)菱形;(3)當∠A=45°,四邊形BECD是正方形.【解析】

(1)先求出四邊形ADEC是平行四邊形,根據平行四邊形的性質推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據菱形的判定推出即可;(3)求出∠CDB=90°,再根據正方形的判定推出即可.【詳解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四邊形ADEC為平行四邊形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D為AB中點,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四邊形,∵∠ACB=90°,D是AB中點,∴BD=CD,(斜邊中線等于斜邊一半)∴四邊形BECD是菱形;(3)若D為AB中點,則當∠A=45°時,四邊形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四邊形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四邊形BECD是菱形,∴四邊形BECD是正方形,故答案為45°.【點睛】本題考查了平行四邊形的判定與性質,菱形的判定、正方形的判定,直角三角形斜邊中線的性質等,綜合性較強,熟練掌握和靈活運用相關知識是解題的關鍵.22、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點睛:本題主要考查圓中的計算問題,解題的關鍵在于清楚角度的轉換方式和弦長的計算方法.23、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】

(1)根據要求利用全等三角形的判定和性質畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因為l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因為OM=ON,根據垂線段最短可知,當OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點的線段可分割成3個全等三角形,如圖3,連接各邊的中點可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據垂線段最短可知,當OM與OE重合時,OM定值最小,此時定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=?BQ?DE=×(2+x)×=x+.【點睛】本題主要考查多邊形的綜合題,主要涉及的知識點:全等三角形的判定和性質、多邊形內角和、角平分線的性質、等量代換、三角形的面積等,牢記并熟練運用這些知識點是解此類綜合題的關鍵。24、(1)該網店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)最多可以購進1筒甲種羽毛球.【解析】

(1)設該網店甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,根據“甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,購買了2筒甲種羽毛球和3筒乙種羽毛球共花費255元”,即可得出關于x,y的二元一次方程組,解之即可得出結論;(2)設購進甲種羽毛球m筒,則購進乙種羽毛球(50﹣m)筒,根據總價=單價×數量結合總費用不超過2550元,即可得出關于m的一元一次不等式,解之取其最大值即可得出結論.【詳解】(1)設該網店甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,依題意,得:,解得:.答:該網店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元.(2)設購進甲種羽毛球m筒,則購進乙種羽毛球(50﹣m)筒,依題意,得:60m+45(50﹣m)≤2550,解得:m≤1.答:最多可以購進1筒甲種羽毛球.【點睛】本題考查了二元一次方程組的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據各數量之間的關系,正確列出一元一次不等式.25、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】

(1)如圖1中,連接BD,根據三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據平行線的性質即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點E,H分別為邊AB,DA的中點,∴EH∥BD,EH=BD,∵點F,G分別為邊BC,CD的中點,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中點四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點E,F,G分別為邊AB,BC,CD的中點,∴EF=AC,FG=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設AC與BD交于點O.AC與PD交于點M,AC與EH交于點N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點:平行四邊形的判定與性質;中點四邊形.26、(1)二次函數的表達式為:y=x2﹣4x+3;(2)點P的坐標為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當點M出發(fā)1秒到達D點時,△M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論