




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題:點動型動態(tài)探究專題漁洋關(guān)鎮(zhèn)中學(xué)羅克平
點動型動態(tài)探究題的主要特點是以某種幾何圖形為載體,點在這種幾何圖形上按某種規(guī)律運動的過程中引起了某種幾何圖形的變化,且這種變化具有一定的規(guī)律性,這類試題信息量大,對同學(xué)們獲取信息和處理信息的能力要求較高,是近年來中考數(shù)學(xué)的熱點題型。解題時要用運動和變化的眼光去觀察和研究問題,把握運動、變化和全過程,并特別關(guān)注運動與變化中的不變量、不變關(guān)系或特殊關(guān)系,動中取靜,靜中求動.例1.如圖,在等腰梯形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,點P從點A出發(fā),以3個單位/s的速度沿AD→DC向終點C運動,同時點Q從點出發(fā),以1個單位/s的速度沿BA向終點A運動.在運動期間,當(dāng)四邊形PQBC為平行四邊形時,運動時間為()A.3sB.4sC.5sD.6sPQ312-3tt例2.如圖所示,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的—個動點,點P不與點O、點A重合.連結(jié)CP,過點P作PD交AB于點D.若△OCP為等腰三角形,點P的坐標(biāo)為()A.(4,0)B.(5,0)C.(0,4)D.(0,5)OABCP如圖,在RtAABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBl∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發(fā)沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF上AC交射線BB1于F,G是EF中點,連結(jié)DG.設(shè)點D運動的時間為t秒.(1)當(dāng)t為何值時,AD=AB,并求出此時DE的長度;(2)當(dāng)△DEG與△ACB相似時,求t的值;如圖,在RtAABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBl∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發(fā)沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF上AC交射線BB1于F,G是EF中點,連結(jié)DG.設(shè)點D運動的時間為t秒.(1)當(dāng)t為何值時,AD=AB,并求出此時DE的長度;(2)當(dāng)△DEG與△ACB相似時,求t的值;如圖,在RtAABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBl∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發(fā)沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF上AC交射線BB1于F,G是EF中點,連結(jié)DG.設(shè)點D運動的時間為t秒.(1)當(dāng)t為何值時,AD=AB,并求出此時DE的長度;(2)當(dāng)△DEG與△ACB相似時,求t的值;ACDEHBFG如圖,在RtAABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBl∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發(fā)沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF上AC交射線BB1于F,G是EF中點,連結(jié)DG.設(shè)點D運動的時間為t秒.(1)當(dāng)t為何值時,AD=AB,并求出此時DE的長度;(2)當(dāng)△DEG與△ACB相似時,求t的值;四邊形OABC是等腰梯形,OA∥BC。在建立如圖的平面直角坐標(biāo)系中,A(4,0),B(3,2),點M從O點以每秒2個單位的速度向終點A運動;同時點N從B點出發(fā)以每秒1個單位的速度向終點C運動,過點N作NP垂直于x軸于P點連結(jié)AC交NP于Q,連結(jié)MQ。(1)寫出C點的坐標(biāo);EF【解】(1)C(1,2)典例分四邊形OABC是等腰梯形,OA∥BC。在建立如圖的平面直角坐標(biāo)系中,A(4,0),B(3,2),點M從O點以每秒2個單位的速度向終點A運動;同時點N從B點出發(fā)以每秒1個單位的速度向終點C運動,過點N作NP垂直于x軸于P點連結(jié)AC交NP于Q,連結(jié)MQ。(2)若動點N運動t秒,求Q點的坐標(biāo)(用含t的式子表示)EF(2)過C作CE⊥x軸于E,則CE=2當(dāng)動點N運動t秒時,NB=t∴點Q的橫坐標(biāo)為3-t設(shè)Q點的縱坐標(biāo)為yQ由PQ∥CE得∴∴點Q()典例分四邊形OABC是等腰梯形,OA∥BC。在建立如圖的平面直角坐標(biāo)系中,A(4,0),B(3,2),點M從O點以每秒2個單位的速度向終點A運動;同時點N從B點出發(fā)以每秒1個單位的速度向終點C運動,過點N作NP垂直于x軸于P點連結(jié)AC交NP于Q,連結(jié)MQ。(3)其△AMQ的面積S與時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍。(3)點M以每秒2個單位運動,∴OM=2t,AM=4—2tS△AMQ=
==當(dāng)t=2時,M運動到A點,△
AMQ不存在,∴t≠2∴t的取值范圍是0≤t<2典例分3、如圖,在Rt⊿ABC中,∠C=90°,AC=12,BC=16,動點P從點A出發(fā)沿AC邊向點C以每秒3個單位長的速度運動,動點Q從點C出發(fā)沿CB邊向點B以每秒4個單位長的速度運動。P,Q分別從點A、C同時出發(fā),當(dāng)其中一點到達(dá)端點時,另一點也隨之停止運動。在運動過程中,△PCQ關(guān)于直線PQ對稱的圖形是△PDQ。設(shè)運動時間為t秒)。(1)設(shè)四邊形PCQD的面積為y,求y與t函數(shù)關(guān)系式;解:(1)由題意得知CQ=4t,PC=12-3t,∵△PCQ關(guān)于直線PQ對稱的圖形是△PDG?!鄖=2S△PCQ∴四邊形PCQD的面積y=2×0.5PC·CQ=(12-3t)·4t=-12t2+48t(0≤t<4)34作業(yè)指如圖,在Rt⊿ABC中,∠C=90°,AC=12,BC=16,動點P從點A出發(fā)沿AC邊向點C以每秒3個單位長的速度運動,動點Q從點C出發(fā)沿CB邊向點B以每秒4個單位長的速度運動。P,Q分別從點A、C同時出發(fā),當(dāng)其中一點到達(dá)端點時,另一點也隨之停止運動。在運動過程中,△PCQ關(guān)于直線PQ對稱的圖形是△PDQ。設(shè)運動時間為t秒)。(2)t何值時,四邊形PQBA是梯形?解:(2)34ABCPQ作業(yè)指4、直線與坐標(biāo)軸分別交于A、B兩點,動點P、Q同時從O點出發(fā),同時到達(dá)A點,運動停止.點Q沿線段OA運動,速度為每秒1個單位長度,點P沿路線O→B→A運動.(1)直接寫出A、B兩點的坐標(biāo);(2)設(shè)點Q的運動時間為t秒,△OPQ的面積為S,求出S與t之間的函數(shù)關(guān)系式;1(8,0)(0,6)第一步:先準(zhǔn)確分析點P的運動速度作業(yè)指導(dǎo)直線與坐標(biāo)軸分別交于A、B兩點,動點P、Q同時從O點出發(fā),同時到達(dá)A點,運動停止.點Q沿線段OA運動,速度為每秒1個單位長度,點P沿路線O→B→A運動.(1)直接寫出A、B兩點的坐標(biāo);(2)設(shè)點Q的運動時間為t秒,△OPQ的面積為S,求出S與t之間的函數(shù)關(guān)系式;1(8,0)(0,6)第二步:分情況討論(1)2作業(yè)指導(dǎo)直線與坐標(biāo)軸分別交于A、B兩點,動點P、Q同時從O點出發(fā),同時到達(dá)A點,運動停止.點Q沿線段OA運動,速度為每秒1個單位長度,點P沿路線O→B→A運動.(1)直接寫出A、B兩點的坐標(biāo);(2)設(shè)點Q的運動時間為t秒,△OPQ的面積為S,求出S與t之間的函數(shù)關(guān)系式;第二步:分情況討論(2)(0,6)(8,0)12PD作業(yè)指導(dǎo)5、如圖,在平面直角坐標(biāo)系xoy中,拋物線與x軸的交點為點A,與y軸的交點為點B。過點B作x軸的平行線BC,交拋物線于點C,連結(jié)AC?,F(xiàn)有兩動點P、Q分別從A、C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動,線段OC、PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F。設(shè)動點P、Q移動的時間為t(單位:秒)(1)求A、B、C三點的坐標(biāo)作業(yè)指導(dǎo)如圖,在平面直角坐標(biāo)系xoy中,拋物線與x軸的交點為點A,與y軸的交點為點B。過點B作x軸的平行線BC,交拋物線于點C,連結(jié)AC?,F(xiàn)有兩動點P、Q分別從A、C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動,線段OC、PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F。設(shè)動點P、Q移動的時間為t(單位:秒)(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程41作業(yè)指導(dǎo)如圖,在平面直角坐標(biāo)系xoy中,拋物線與x軸的交點為點A,與y軸的交點為點B。過點B作x軸的平行線BC,交拋物線于點C,連結(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 5 Music Reading for Writing(教學(xué)設(shè)計)高一英語同步高效課堂(人教版2019必修第二冊)
- Unit 2 topic 1 You should brush your teeth.Section B 教學(xué)設(shè)計-2024-2025學(xué)年 仁愛科普版英語八年級上冊
- Module 5 Unit 1 We went to the Great Wall.(教學(xué)設(shè)計)-2024-2025學(xué)年外研版(一起)英語四年級上冊
- 科技創(chuàng)新中心項目組織結(jié)構(gòu)與管理模式
- 地方高??蒲袆?chuàng)新與產(chǎn)學(xué)研結(jié)合策略
- Unit 2 SectionB 1a-1c 教學(xué)設(shè)計 2024-2025學(xué)年人教版(2024)七年級英語下冊
- 北京市健身房裝修合同范本
- 二零二五年度生態(tài)牧草種植基地合作合同
- 2025年八色膠版印刷機(jī)行業(yè)深度研究分析報告
- 2025年度中式餐廳區(qū)域代理合同
- 2024-2025學(xué)年成都市樹德東馬棚七年級上英語期末考試題(含答案)
- 3ds Max動畫制作實戰(zhàn)訓(xùn)練(第3版)教學(xué)教案
- 2025年度交通運輸規(guī)劃外聘專家咨詢協(xié)議3篇
- 2024年04月北京中信銀行北京分行社會招考(429)筆試歷年參考題庫附帶答案詳解
- 專項債券培訓(xùn)課件
- 中央企業(yè)人工智能應(yīng)用場景案例白皮書(2024年版)-中央企業(yè)人工智能協(xié)同創(chuàng)新平臺
- 《會務(wù)的組織和管理》課件
- 春季安全行車培訓(xùn)資料
- 《倒虹吸管安全評價導(dǎo)則》
- 2025年中國濕度傳感器行業(yè)深度分析、投資前景、趨勢預(yù)測報告(智研咨詢)
- 人民調(diào)解知識課件
評論
0/150
提交評論