版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為了加強“精準扶貧”,實現(xiàn)偉大復興的“中國夢”,某大學派遣甲、乙、丙、丁、戊五位同學參加三個貧困縣的調研工作,每個縣至少去1人,且甲、乙兩人約定去同一個貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.642.曲線在點處的切線方程為()A. B. C. D.3.一個盒子里有4個分別標有號碼為1,2,3,4的小球,每次取出一個,記下它的標號后再放回盒子中,共取3次,則取得小球標號最大值是4的取法有()A.17種 B.27種 C.37種 D.47種4.定義在R上的偶函數(shù)滿足,且在區(qū)間上單調遞減,已知是銳角三角形的兩個內角,則的大小關系是()A. B.C. D.以上情況均有可能5.已知,,,若,則()A. B. C. D.6.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領域的語音識別、人臉識別,數(shù)據(jù)分析、機器學習、服務器開發(fā)五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種7.已知隨機變量服從正態(tài)分布,,()A. B. C. D.8.設全集,集合,,則集合()A. B. C. D.9.函數(shù),,的部分圖象如圖所示,則函數(shù)表達式為()A. B.C. D.10.已知實數(shù),滿足,則的最大值等于()A.2 B. C.4 D.811.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.12.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”二、填空題:本題共4小題,每小題5分,共20分。13.某市高三理科學生有名,在一次調研測試中,數(shù)學成績服從正態(tài)分布,已知,若按成績分層抽樣的方式取份試卷進行分析,則應從分以上的試卷中抽取的份數(shù)為__________.14.在中,為定長,,若的面積的最大值為,則邊的長為____________.15.已知橢圓C:1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點P(c,2c)作線段PF1,PF2分別交橢圓C于點A、B,若|PA|=|AF1|,則_____.16.已知函數(shù),則不等式的解集為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,求函數(shù)在處的切線方程;(2)若函數(shù)沒有零點,求實數(shù)的取值范圍.18.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.(1)求直線和圓的普通方程;(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.19.(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設,,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.20.(12分)某健身館為響應十九屆四中全會提出的“聚焦增強人民體質,健全促進全民健身制度性舉措”,提高廣大市民對全民健身運動的參與程度,推出了健身促銷活動,收費標準如下:健身時間不超過1小時免費,超過1小時的部分每小時收費標準為20元(不足l小時的部分按1小時計算).現(xiàn)有甲、乙兩人各自獨立地來該健身館健身,設甲、乙健身時間不超過1小時的概率分別為,,健身時間1小時以上且不超過2小時的概率分別為,,且兩人健身時間都不會超過3小時.(1)設甲、乙兩人所付的健身費用之和為隨機變量(單位:元),求的分布列與數(shù)學期望;(2)此促銷活動推出后,健身館預計每天約有300人來參與健身活動,以這兩人健身費用之和的數(shù)學期望為依據(jù),預測此次促銷活動后健身館每天的營業(yè)額.21.(12分)在平面直角坐標系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.22.(10分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當按照進行分配時,則有種不同的方案;當按照進行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點睛】本題考查排列組合、數(shù)學文化,還考查數(shù)學建模能力以及分類討論思想,屬于中檔題.2、A【解析】
將點代入解析式確定參數(shù)值,結合導數(shù)的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當時,代入可得,所以切點坐標為,求得導函數(shù)可得,由導數(shù)幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導數(shù)的幾何意義,在曲線上一點的切線方程求法,屬于基礎題.3、C【解析】
由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標號均不為4的球的情況,進而求解.【詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標號最大值是4的取法有種,故選:C【點睛】本題考查古典概型,考查補集思想的應用,屬于基礎題.4、B【解析】
由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對稱性可求在上的單調性,結合三角函數(shù)的性質即可比較.【詳解】由可得,即函數(shù)的周期,因為在區(qū)間上單調遞減,故函數(shù)在區(qū)間上單調遞減,根據(jù)偶函數(shù)的對稱性可知,在上單調遞增,因為,是銳角三角形的兩個內角,所以且即,所以即,.故選:.【點睛】本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調性之間的關系是解決本題的關鍵.5、B【解析】
由平行求出參數(shù),再由數(shù)量積的坐標運算計算.【詳解】由,得,則,,,所以.故選:B.【點睛】本題考查向量平行的坐標表示,考查數(shù)量積的坐標運算,掌握向量數(shù)量積的坐標運算是解題關鍵.6、B【解析】
將人臉識別方向的人數(shù)分成:有人、有人兩種情況進行分類討論,結合捆綁計算出不同的分配方法數(shù).【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數(shù)學思想方法,屬于基礎題.7、B【解析】
利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎題.8、C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.9、A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導公式,屬于基礎題.10、D【解析】
畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據(jù)可行域求非線性目標函數(shù)的最值,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.11、A【解析】
由題先畫出基本圖形,結合向量加法和點乘運算化簡可得,結合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應用,數(shù)形結合思想,屬于中檔題12、B【解析】
解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關系可判斷C、D選項的正誤.綜合可得出結論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.【點睛】本題考查四種命題的關系,考查推理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意結合正態(tài)分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應從分以上的試卷中抽取份.故答案為:.【點睛】本題考查正態(tài)分布曲線,屬于基礎題.14、【解析】
設,以為原點,為軸建系,則,,設,,,利用求向量模的公式,可得,根據(jù)三角形面積公式進一步求出的值即為所求.【詳解】解:設,以為原點,為軸建系,則,,設,,則,即,由,可得.則.故答案為:.【點睛】本題考查向量模的計算,建系是關鍵,屬于難題.15、【解析】
根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點A為橢圓上頂點,則有b=c,解出B的坐標即可得到比值.【詳解】因為|PA|=|AF1|,所以點A是線段PF1的中點,又因為點O為線段F1F2的中點,所以OA∥PF2,且|PF2|=2|OA|,因為點P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以OA⊥x軸,則點A為橢圓上頂點,所以|OA|=b,則2b=2c,所以b=c,ac,設B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【點睛】本題考查橢圓的基本性質,考查直線位置關系的判斷,方程思想,屬于中檔題.16、【解析】
,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點睛】本題考查分段函數(shù)的應用,涉及到解一元二次不等式,考查學生的計算能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】
(1)利用導數(shù)的幾何意義求解即可;(2)利用導數(shù)得出的單調性以及極值,從而得出的圖象,將函數(shù)的零點問題轉化為函數(shù)圖象的交點問題,由圖,即可得出實數(shù)的取值范圍.【詳解】(1)當時,,∴切線斜率,又切點∴切線方程為,即.(2),記,令得;∴的情況如下表:2+0單調遞增極大值單調遞減當時,取極大值又時,;時,若沒有零點,即的圖像與直線無公共點,由圖像知的取值范圍是.【點睛】本題主要考查了導數(shù)的幾何意義的應用,利用導數(shù)研究函數(shù)的零點問題,屬于中檔題.18、(1),;(2)【解析】分析:(1)用代入法消參數(shù)可得直線的普通方程,由公式可化極坐標方程為直角坐標方程;(2)把直線的參數(shù)方程代入曲線的直角坐標方程,其中參數(shù)的絕對值表示直線上對應點到的距離,因此有,,直接由韋達定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關系,由此可求得的取值范圍.詳解:(1)直線的參數(shù)方程為,普通方程為,將代入圓的極坐標方程中,可得圓的普通方程為,(2)解:直線的參數(shù)方程為代入圓的方程為可得:(*),且由題意,,.因為方程(*)有兩個不同的實根,所以,即,又,所以.因為,所以所以.點睛:(1)參數(shù)方程化為普通方程,一般用消參數(shù)法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標方程與直角坐標方程互化一般利用公式;(3)過的直線的參數(shù)方程為(為參數(shù))中參數(shù)具有幾何意義:直線上任一點對應參數(shù),則.19、(Ⅰ)證明見解析(Ⅱ)【解析】
(Ⅰ)由平面,可得,又因為是的中點,即得證;(Ⅱ)如圖建立空間直角坐標系,設,計算平面的法向量,由直線與平面所成角的大小為30°,列出等式,即得解.【詳解】(Ⅰ)如圖,連接交于點,連接,則是平面與平面的交線,因為平面,故,又因為是的中點,所以是的中點,故.(Ⅱ)由條件可知,,所以,故以為坐標原點,為軸,為軸,為軸建立空間直角坐標系,則,,,,,,,設,則,設平面的法向量為,則,即,故取因為直線與平面所成角的大小為30°所以,即,解得,故此時.【點睛】本題考查了立體幾何和空間向量綜合,考查了學生邏輯推理,空間想象,數(shù)學運算的能力,屬于中檔題.20、(1)見解析,40元(2)6000元【解析】
(1)甲、乙兩人所付的健身費用都是0元、20元、40元三種情況,因此甲、乙兩人所付的健身費用之和共有9種情況,分情況計算即可(2)根據(jù)(1)結果求均值.【詳解】解:(1)由題設知可能取值為0,20,40,60,80,則;;;;.故的分布列為:020406080所以數(shù)學期望(元)(2)此次促銷活動后健身館每天的營業(yè)額預計為:(元)【點睛】考查離散型隨機變量的分布列及其期望的求法,中檔題.21、(1)(2)為定值.【解析】
(1)根據(jù)題意,得出,從而得出橢圓的標準方程.(2)根據(jù)題意設直線方程:,因為直線與橢圓相切,這有一個交點,聯(lián)立直線與橢圓方程得,則,解得①把和代入,得和,,的表達式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標準方程為.(2)為定值.①因為直線分別與直線和直線相交,所以,直線一定存在斜率.②設直線:,由得,由,得.①把代入,得,把代入,得,又因為,所以,,②由①式,得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 礦泉水廠施工合同文本
- 電商客服人員聘用合同書
- 物流行業(yè)稅務籌劃
- 健身教練操作工招聘協(xié)議
- 橋梁擴建電纜頂管施工合同
- 學校體育館鋼結構樓梯施工合同
- 保齡球器材租賃合同模板
- 水上婚禮婚禮樂隊游艇租賃合同
- 特色小鎮(zhèn)房產(chǎn)評估師聘用合同
- 餅干市場土地租賃合同
- 《梯形的面積》(課堂PPT)
- 天然氣脫硫(課堂運用)
- 幼兒園教師師德師風考核表(共2頁)
- 《施工組織設計專項施工方案資料》古建筑油漆彩畫施工方案
- 城鎮(zhèn)職工醫(yī)療保險運行中的問題分析及措施
- 阿拉丁神燈介紹ppt[共27頁]
- 人教版英語選擇性必修一Unit 1 People of Achievement(Reading and Thinking)教案(2課時)
- 學校食堂五常法管理制度
- 畢業(yè)設計500kv變電站設計
- 講故事社團活動教案
- 五四制新青島版二年級科學上冊14《身邊的動植物資源》課件
評論
0/150
提交評論