初中數(shù)學(xué)蘇科版八年級(jí)上冊(cè)第1章全等三角形本章復(fù)習(xí)與測(cè)試【省一等獎(jiǎng)】_第1頁(yè)
初中數(shù)學(xué)蘇科版八年級(jí)上冊(cè)第1章全等三角形本章復(fù)習(xí)與測(cè)試【省一等獎(jiǎng)】_第2頁(yè)
初中數(shù)學(xué)蘇科版八年級(jí)上冊(cè)第1章全等三角形本章復(fù)習(xí)與測(cè)試【省一等獎(jiǎng)】_第3頁(yè)
初中數(shù)學(xué)蘇科版八年級(jí)上冊(cè)第1章全等三角形本章復(fù)習(xí)與測(cè)試【省一等獎(jiǎng)】_第4頁(yè)
初中數(shù)學(xué)蘇科版八年級(jí)上冊(cè)第1章全等三角形本章復(fù)習(xí)與測(cè)試【省一等獎(jiǎng)】_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

主題全等三角形復(fù)習(xí)學(xué)習(xí)目標(biāo)復(fù)習(xí)全等三角形這一章節(jié)的重點(diǎn)題型重點(diǎn):全等三角形的性質(zhì);全等三角形的判定方法;全等三角形的實(shí)際應(yīng)用。難點(diǎn):綜合題;知識(shí)梳理1全等三角形的性質(zhì)全等三角形對(duì)應(yīng)邊相等全等三角形對(duì)應(yīng)角相等【例題精講】例1:如圖,A、D、E三點(diǎn)在同一直線上,且△BAD≌△ACE,試說(shuō)明:

(1)BD=DE+CE;

(2)△ABD滿足什么條件時(shí),BD∥CE?解:∵△BAD≌△ACE,

∴BD=AE,AD=CE,

∴BD=AE=AD+DE=CE+DE,

即BD=DE+CE.

(2)解:△ABD滿足∠ADB=90°時(shí),BD∥CE,

理由是:∵△BAD≌△ACE,

∴∠E=∠ADB=90°(添加的條件是∠ADB=90°),

∴∠BDE=180°-90°=90°=∠E,

∴BD∥CE.例2:如圖,△ADC≌△AFB,∠DAB=20°,DA∥BF,DC、BF交于E,∠FEC=110°.

(1)求∠FAC的度數(shù);

(2)AF平行于DC嗎?說(shuō)明理由;

(3)求∠BAC的度數(shù).解:(1)∵△ADC≌△AFB,

∴∠DAC=∠FAB.

∴∠DAC-∠BAC=∠FAB-∠BAC.

∴∠FAC=∠DAB=20°;

(2)∵DA∥BF,

∴∠DAF+∠F=180°.

∵△ADC≌△AFB,

∴∠D=∠F.

∴∠DAF+∠D=180°.

∴AF∥DC.

(3)∵AF∥DC,

∴∠F=∠FEC=110°.

∵AD∥BF,

∴∠DAF+∠F=180°.

∴∠DAF=180°-110°=70°.

∠BAC=∠BAF-∠FAC=70°-20°=50°.【鞏固練習(xí)】1.如圖,△ABC中,∠ACB=90°,AC=6,BC=8.點(diǎn)P從A點(diǎn)出發(fā)沿A-C-B路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)Q從B點(diǎn)出發(fā)沿B-C-A路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn).點(diǎn)P和Q分別以1和3的運(yùn)動(dòng)速度同時(shí)開(kāi)始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過(guò)P和Q作PE⊥l于E,QF⊥l于F.問(wèn):點(diǎn)P運(yùn)動(dòng)多少時(shí)間時(shí),△PEC與QFC全等?請(qǐng)說(shuō)明理由.解:設(shè)運(yùn)動(dòng)時(shí)間為t秒時(shí),△PEC≌△QFC,

∵△PEC≌△QFC,

∴斜邊CP=CQ,

有四種情況:①P在AC上,Q在BC上,

CP=6-t,CQ=8-3t,

∴6-t=8-3t,

∴t=1;

②P、Q都在AC上,此時(shí)P、Q重合,

∴CP=6-t=3t-8,

∴t=;

③P在BC上,Q在AC時(shí),此時(shí)不存在;

理由是:8÷3×1<6,Q到AC上時(shí),P應(yīng)也在AC上;

④當(dāng)Q到A點(diǎn)(和A重合),P在BC上時(shí),

∵CQ=CP,CQ=AC=6,CP=t-6,

∴t-6=6

∴t=12

∵t<14

∴t=12符合題意

答:點(diǎn)P運(yùn)動(dòng)1或或12秒時(shí),△PEC與△QFC全等.知識(shí)梳理2全等三角形的判定三角形全等的判定定理:(1)邊角邊定理:有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫成“邊角邊”或“SAS”)(2)角邊角定理:有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫成“角邊角”或“ASA”)(3)邊邊邊定理:有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫成“邊邊邊”或“SSS”)。直角三角形全等的判定:對(duì)于特殊的直角三角形,判定它們?nèi)葧r(shí),還有HL定理(斜邊、直角邊定理):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(可簡(jiǎn)寫成“斜邊、直角邊”或“HL”)【例題精講】例1:已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.

求證:(1)△BAD≌△CAE;(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.證明:∵∠BAC=∠DAE=90°

∴∠BAC+∠CAD=∠DAE+CAD

即∠BAD=∠CAE,

又∵AB=AC,AD=AE,

∴△BAD≌△CAE(SAS).

(2)BD、CE特殊位置關(guān)系為BD⊥CE.

證明如下:由(1)知△BAD≌△CAE,

∴∠ADB=∠E.

∵∠DAE=90°,

∴∠E+∠ADE=90°.

∴∠ADB+∠ADE=90°.

即∠BDE=90°.

∴BD、CE特殊位置關(guān)系為BD⊥CE.例2:如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC邊上,且BE=BD,連結(jié)AE、DE、DC.

①求證:△ABE≌△CBD;

②若∠CAE=30°,求∠BDC的度數(shù).①證明:在△ABE和△CBD中,AB=CB∠ABC=∠CBD=90°BE=BD,

∴△ABE≌△CBD(SAS);

②解:∵△ABE≌△CBD,

∴∠AEB=∠BDC,

∵∠AEB為△AEC的外角,

∴∠AEB=∠ACB+∠CAE=30°+45°=75°,

則∠BDC=75°.例3:如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),

(1)寫出圖中一對(duì)全等的三角形,并寫出它們的所有對(duì)應(yīng)角;

(2)設(shè)∠AED的度數(shù)為x,∠ADE的度數(shù)為y,那么∠1,∠2的度數(shù)分別是多少?(用含有x或y的代數(shù)式表示)

(3)∠A與∠1+∠2之間有一種數(shù)量關(guān)系始終保持不變,請(qǐng)找出這個(gè)規(guī)律.解:(1)△EAD≌△EA'D,其中∠EAD=∠EA'D,∠AED=∠A'ED,∠ADE=∠A'DE;

(2)∠1=180°-2x,∠2=180°-2y;

(3)∵∠1+∠2=360°-2(x+y)=360°-2(180°-∠A)=2∠A.

規(guī)律為:∠1+∠2=2∠A.【鞏固練習(xí)】1.如圖,已知BD為△ABC的中線,CE⊥BD于E,AF⊥BD于F.于是小白說(shuō):“BE+BF=2BD”.你認(rèn)為他的判斷對(duì)嗎?為什么?解:對(duì).理由如下:

∵BD為△ABC的中線,

∴AD=CD,

∵CE⊥BD于E,AF⊥BD于F,

∴∠F=∠CED=90°,

在△AFD和△CED中,∠F=∠CED=90°∠CDE=∠ADFAD=CD,

∴△AFD≌△CED(AAS),

∴DE=DF,

∵BE+BF=(BD-DE)+(BD+DF),

∴BE+BF=2BD.2.如圖(1),在等邊△ABC的頂點(diǎn)B、C處各有一只蝸牛,它們同時(shí)出發(fā)分別以每分鐘1各單位的速度油B向C和由C向A爬行,其中一只蝸牛爬到終點(diǎn)s時(shí),另一只也停止運(yùn)動(dòng),經(jīng)過(guò)t分鐘后,它們分別爬行到D,P處,請(qǐng)問(wèn):

(1)在爬行過(guò)程中,BD和AP始終相等嗎?為什么?

(2)問(wèn)蝸牛在爬行過(guò)程中BD與AP所成的∠DQA大小有無(wú)變化?請(qǐng)證明你的結(jié)論.

(3)若蝸牛沿著B(niǎo)C和CA的延長(zhǎng)線爬行,BD與AP交于點(diǎn)Q,其他條件不變,如圖(2)所示,蝸牛爬行過(guò)程中的∠DQA大小變化了嗎?若無(wú)變化,請(qǐng)證明.若有變化,請(qǐng)直接寫出∠DQA的度數(shù).

解:(1)在爬行過(guò)程中,BD和AP始終相等,

理由是:∵△ABC是等邊三角形,

∴∠CAB=∠C=∠ABP=60°,AB=BC,

在△BDC和△APB中,BC=AB∠C=∠ABPCD=BP,

∴△BDC≌△APB(SAS),

∴BD=AP.

(2)蝸牛在爬行過(guò)程中BD與AP所成的∠DQA大小無(wú)變化,

理由:∵△BDC≌△APB,

∴∠CBD=∠BAP,

∴∠DQA=∠DBA+∠BAP=∠DBA+∠CBD=∠ABC=60°,

即蝸牛在爬行過(guò)程中BD與AP所成的∠DQA大小無(wú)變化,始終是60°.

(3)蝸牛爬行過(guò)程中的∠DQA大小無(wú)變化,

理由是:根據(jù)題意得:BP=CD,

∵BC=AC,

∴CP=AD,

∵△ABC是等邊三角形,

∴AC=AB,∠CAB=∠ACB=60°,

∵∠ACP+∠ACB=180°,∠DAB+∠CAB=180°,

∴∠ACP=∠BAD,

在△ABD和△ACP中,AB=AC∠BAD=∠ACPAD=CP,

∴△ABD≌△ACP(SAS),

∴∠CAP=∠ABD,

∴∠AQD=∠ABD+∠BAQ=∠CAP+∠QAB

=180°-∠CAB

=180°-60°

=120°,

即蝸牛爬行過(guò)程中的∠DQA無(wú)變化,等于120°.3.如圖,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關(guān)系?試證明你的結(jié)論.解:BD=CE,BD⊥CE;

理由:∵∠BAC=∠DAE=90°,

∴∠BAC+∠C

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論