福建省龍文區(qū)2022-2023學(xué)年中考二模數(shù)學(xué)試題含解析_第1頁
福建省龍文區(qū)2022-2023學(xué)年中考二模數(shù)學(xué)試題含解析_第2頁
福建省龍文區(qū)2022-2023學(xué)年中考二模數(shù)學(xué)試題含解析_第3頁
福建省龍文區(qū)2022-2023學(xué)年中考二模數(shù)學(xué)試題含解析_第4頁
福建省龍文區(qū)2022-2023學(xué)年中考二模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.為喜迎黨的十九大召開,樂陵某中學(xué)剪紙社團(tuán)進(jìn)行了剪紙大賽,下列作品既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B.C. D.2.已知x1,x2是關(guān)于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣33.如圖所示,數(shù)軸上兩點(diǎn)A,B分別表示實(shí)數(shù)a,b,則下列四個(gè)數(shù)中最大的一個(gè)數(shù)是(

)A.a(chǎn)

B.b

C. D.4.某城年底已有綠化面積公頃,經(jīng)過兩年綠化,到年底增加到公頃,設(shè)綠化面積平均每年的增長率為,由題意所列方程正確的是().A. B. C. D.5.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=50°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°6.關(guān)于二次函數(shù),下列說法正確的是()A.圖像與軸的交點(diǎn)坐標(biāo)為 B.圖像的對(duì)稱軸在軸的右側(cè)C.當(dāng)時(shí),的值隨值的增大而減小 D.的最小值為-37.方程2x2﹣x﹣3=0的兩個(gè)根為()A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=38.方程的解是A.3 B.2 C.1 D.09.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點(diǎn)D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+10.已知x=2是關(guān)于x的一元二次方程x2﹣x﹣2a=0的一個(gè)解,則a的值為()A.0 B.﹣1 C.1 D.2二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在△ABC中,AB=AC,BE、AD分別是邊AC、BC上的高,CD=2,AC=6,那么CE=________.12.如圖,為了測量河寬AB(假設(shè)河的兩岸平行),測得∠ACB=30°,∠ADB=60°,CD=60m,則河寬AB為m(結(jié)果保留根號(hào)).13.某班有54名學(xué)生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新學(xué)期準(zhǔn)備調(diào)整座位,設(shè)某個(gè)學(xué)生原來的座位為(m,n),如果調(diào)整后的座位為(i,j),則稱該生作了平移[a,b]=[m-i,n-j],并稱a+b為該生的位置數(shù).若某生的位置數(shù)為10,則當(dāng)m+n取最小值時(shí),m?n的最大值為_____________.14.一個(gè)正多邊形的一個(gè)外角為30°,則它的內(nèi)角和為_____.15.計(jì)算:(3+1)(3﹣1)=.16.如圖,從一塊直徑是8m的圓形鐵皮上剪出一個(gè)圓心角為90°的扇形,將剪下的扇形圍成一個(gè)圓錐,圓錐的高是_________m.三、解答題(共8題,共72分)17.(8分)如圖,在四邊形ABCD中,E是AB的中點(diǎn),AD//EC,∠AED=∠B.求證:△AED≌△EBC;當(dāng)AB=6時(shí),求CD的長.18.(8分)已知:如圖所示,拋物線y=﹣x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(1,0),B(3,0)(1)求拋物線的表達(dá)式;(2)設(shè)點(diǎn)P在該拋物線上滑動(dòng),且滿足條件S△PAB=1的點(diǎn)P有幾個(gè)?并求出所有點(diǎn)P的坐標(biāo).19.(8分)如圖1,正方形ABCD的邊長為4,把三角板的直角頂點(diǎn)放置BC中點(diǎn)E處,三角板繞點(diǎn)E旋轉(zhuǎn),三角板的兩邊分別交邊AB、CD于點(diǎn)G、F.(1)求證:△GBE∽△GEF.(2)設(shè)AG=x,GF=y,求Y關(guān)于X的函數(shù)表達(dá)式,并寫出自變量取值范圍.(3)如圖2,連接AC交GF于點(diǎn)Q,交EF于點(diǎn)P.當(dāng)△AGQ與△CEP相似,求線段AG的長.20.(8分)在平面直角坐標(biāo)系中,二次函數(shù)y=x2+ax+2a+1的圖象經(jīng)過點(diǎn)M(2,-3)。(1)求二次函數(shù)的表達(dá)式;(2)若一次函數(shù)y=kx+b(k≠0)的圖象與二次函數(shù)y=x2+ax+2a+1的圖象經(jīng)過x軸上同一點(diǎn),探究實(shí)數(shù)k,b滿足的關(guān)系式;(3)將二次函數(shù)y=x2+ax+2a+1的圖象向右平移2個(gè)單位,若點(diǎn)P(x0,m)和Q(2,n)在平移后的圖象上,且m>n,結(jié)合圖象求x0的取值范圍.21.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.求拋物線y=ax2+2x+c的解析式:;點(diǎn)D為拋物線上對(duì)稱軸右側(cè)、x軸上方一點(diǎn),DE⊥x軸于點(diǎn)E,DF∥AC交拋物線對(duì)稱軸于點(diǎn)F,求DE+DF的最大值;①在拋物線上是否存在點(diǎn)P,使以點(diǎn)A,P,C為頂點(diǎn),AC為直角邊的三角形是直角三角形?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;②點(diǎn)Q在拋物線對(duì)稱軸上,其縱坐標(biāo)為t,請(qǐng)直接寫出△ACQ為銳角三角形時(shí)t的取值范圍.22.(10分)在平面直角坐標(biāo)系中,已知直線y=﹣x+4和點(diǎn)M(3,2)(1)判斷點(diǎn)M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當(dāng)它經(jīng)過M關(guān)于坐標(biāo)軸的對(duì)稱點(diǎn)時(shí),求平移的距離;(3)另一條直線y=kx+b經(jīng)過點(diǎn)M且與直線y=﹣x+4交點(diǎn)的橫坐標(biāo)為n,當(dāng)y=kx+b隨x的增大而增大時(shí),則n取值范圍是_____.23.(12分)如圖,在等腰直角△ABC中,∠C是直角,點(diǎn)A在直線MN上,過點(diǎn)C作CE⊥MN于點(diǎn)E,過點(diǎn)B作BF⊥MN于點(diǎn)F.(1)如圖1,當(dāng)C,B兩點(diǎn)均在直線MN的上方時(shí),①直接寫出線段AE,BF與CE的數(shù)量關(guān)系.②猜測線段AF,BF與CE的數(shù)量關(guān)系,不必寫出證明過程.(2)將等腰直角△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)至圖2位置時(shí),線段AF,BF與CE又有怎樣的數(shù)量關(guān)系,請(qǐng)寫出你的猜想,并寫出證明過程.(3)將等腰直角△ABC繞著點(diǎn)A繼續(xù)旋轉(zhuǎn)至圖3位置時(shí),BF與AC交于點(diǎn)G,若AF=3,BF=7,直接寫出FG的長度.24.某公司今年1月份的生產(chǎn)成本是400萬元,由于改進(jìn)技術(shù),生產(chǎn)成本逐月下降,3月份的生產(chǎn)成本是361萬元.假設(shè)該公司2、3、4月每個(gè)月生產(chǎn)成本的下降率都相同.求每個(gè)月生產(chǎn)成本的下降率;請(qǐng)你預(yù)測4月份該公司的生產(chǎn)成本.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)軸對(duì)稱和中心對(duì)稱的定義去判斷即可得出正確答案.【詳解】解:A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;B、不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;C、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故此選項(xiàng)正確;D、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查的是軸對(duì)稱和中心對(duì)稱的知識(shí)點(diǎn),解題關(guān)鍵在于對(duì)知識(shí)點(diǎn)的理解和把握.2、A【解析】

根據(jù)一元二次方程根與系數(shù)的關(guān)系和整體代入思想即可得解.【詳解】∵x1,x2是關(guān)于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.【點(diǎn)睛】本題主要考查一元二次方程的根與系數(shù)的關(guān)系(韋達(dá)定理),韋達(dá)定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2=-ba,x1x2=3、D【解析】

∵負(fù)數(shù)小于正數(shù),在(0,1)上的實(shí)數(shù)的倒數(shù)比實(shí)數(shù)本身大.∴<a<b<,故選D.4、B【解析】

先用含有x的式子表示2015年的綠化面積,進(jìn)而用含有x的式子表示2016年的綠化面積,根據(jù)等式關(guān)系列方程即可.【詳解】由題意得,綠化面積平均每年的增長率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經(jīng)過兩年的增長,綠化面積由300公頃變?yōu)?63公頃.可列出方程:300(1+x)2=363.故選B.【點(diǎn)睛】本題主要考查一元二次方程的應(yīng)用,找準(zhǔn)其中的等式關(guān)系式解答此題的關(guān)鍵.5、C【解析】試題分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故選C.考點(diǎn):平行線的性質(zhì).6、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個(gè)選項(xiàng)中的結(jié)論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當(dāng)x=0時(shí),y=-1,故選項(xiàng)A錯(cuò)誤,該函數(shù)的對(duì)稱軸是直線x=-1,故選項(xiàng)B錯(cuò)誤,當(dāng)x<-1時(shí),y隨x的增大而減小,故選項(xiàng)C錯(cuò)誤,當(dāng)x=-1時(shí),y取得最小值,此時(shí)y=-3,故選項(xiàng)D正確,故選D.點(diǎn)睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.7、A【解析】

利用因式分解法解方程即可.【詳解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1.故選A.【點(diǎn)睛】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個(gè)一次因式的積的形式,那么這兩個(gè)因式的值就都有可能為0,這就能得到兩個(gè)一元一次方程的解,這樣也就把原方程進(jìn)行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學(xué)轉(zhuǎn)化思想).8、A【解析】試題分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經(jīng)檢驗(yàn)x=3是分式方程的解.故選A.9、C【解析】

過點(diǎn)C作CM⊥AB,垂足為M,根據(jù)勾股定理求出BC的長,再根據(jù)DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數(shù)值計(jì)算即可.【詳解】過點(diǎn)C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點(diǎn)睛】本題考查了勾股定理,解題的關(guān)鍵是熟練的掌握勾股定理的運(yùn)算.10、C【解析】試題分析:把方程的解代入方程,可以求出字母系數(shù)a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本題選C.【考點(diǎn)】一元二次方程的解;一元二次方程的定義.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】∵AB=AC,AD⊥BC,∴BD=CD=2,∵BE、AD分別是邊AC、BC上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ACD∽△BCE,∴,∴,∴CE=,故答案為.12、【解析】

解:∵∠ACB=30°,∠ADB=60°,

∴∠CAD=30°,

∴AD=CD=60m,

在Rt△ABD中,

AB=AD?sin∠ADB=60×=(m).故答案是:.13、36【解析】

10=a+b=(m-i)+(n-j)=(m+n)-(i+j)所以:m+n=10+i+j當(dāng)(m+n)取最小值時(shí),(i+j)也必須最小,所以i和j都是2,這樣才能(i+j)才能最小,因此:m+n=10+2=12也就是:當(dāng)m+n=12時(shí),m·n最大是多少?這就容易了:m·n<=36所以m·n的最大值就是3614、1800°【解析】試題分析:這個(gè)正多邊形的邊數(shù)為=12,所以這個(gè)正多邊形的內(nèi)角和為(12﹣2)×180°=1800°.故答案為1800°.考點(diǎn):多邊形內(nèi)角與外角.15、1.【解析】

根據(jù)平方差公式計(jì)算即可.【詳解】原式=(3)2-12=18-1=1故答案為1.【點(diǎn)睛】本題考查的是二次根式的混合運(yùn)算,掌握平方差公式、二次根式的性質(zhì)是解題的關(guān)鍵.16、【解析】分析:首先連接AO,求出AB的長度是多少;然后求出扇形的弧長弧BC為多少,進(jìn)而求出扇形圍成的圓錐的底面半徑是多少;最后應(yīng)用勾股定理,求出圓錐的高是多少即可.詳解:如圖1,連接AO,∵AB=AC,點(diǎn)O是BC的中點(diǎn),∴AO⊥BC,又∵∴∴∴弧BC的長為:(m),∴將剪下的扇形圍成的圓錐的半徑是:(m),∴圓錐的高是:故答案為.點(diǎn)睛:考查圓錐的計(jì)算,正確理解圓錐的側(cè)面展開圖與原來扇形之間的關(guān)系式解決本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2)CD=3【解析】分析:(1)根據(jù)二直線平行同位角相等得出∠A=∠BEC,根據(jù)中點(diǎn)的定義得出AE=BE,然后由ASA判斷出△AED≌△EBC;(2)根據(jù)全等三角形對(duì)應(yīng)邊相等得出AD=EC,然后根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形得出四邊形AECD是平行四邊形,根據(jù)平行四邊形的對(duì)邊相等得出答案.詳解:(1)證明:∵AD∥EC∴∠A=∠BEC∵E是AB中點(diǎn),∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四邊形AECD是平行四邊形∴CD=AE∵AB=6∴CD=AB=3點(diǎn)睛:本題考查全等三角形的判定和性質(zhì)、平行四邊形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考常考題型.18、(1)y=﹣x2+4x﹣3;(2)滿足條件的P點(diǎn)坐標(biāo)有3個(gè),它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【解析】

(1)由于已知拋物線與x軸的交點(diǎn)坐標(biāo),則可利用交點(diǎn)式求出拋物線解析式;(2)根據(jù)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,可設(shè)P(t,-t2+4t-3),根據(jù)三角形面積公式得到?2?|-t2+4t-3|=1,然后去絕對(duì)值得到兩個(gè)一元二次方程,再解方程求出t即可得到P點(diǎn)坐標(biāo).【詳解】解:(1)拋物線解析式為y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)設(shè)P(t,﹣t2+4t﹣3),因?yàn)镾△PAB=1,AB=3﹣1=2,所以?2?|﹣t2+4t﹣3|=1,當(dāng)﹣t2+4t﹣3=1時(shí),t1=t2=2,此時(shí)P點(diǎn)坐標(biāo)為(2,1);當(dāng)﹣t2+4t﹣3=﹣1時(shí),t1=2+,t2=2﹣,此時(shí)P點(diǎn)坐標(biāo)為(2+,﹣1)或(2﹣,﹣1),所以滿足條件的P點(diǎn)坐標(biāo)有3個(gè),它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時(shí),要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.一般地,當(dāng)已知拋物線上三點(diǎn)時(shí),常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當(dāng)已知拋物線的頂點(diǎn)或?qū)ΨQ軸時(shí),常設(shè)其解析式為頂點(diǎn)式來求解;當(dāng)已知拋物線與x軸有兩個(gè)交點(diǎn)時(shí),可選擇設(shè)其解析式為交點(diǎn)式來求解.19、(1)見解析;(2)y=4﹣x+(0≤x≤3);(3)當(dāng)△AGQ與△CEP相似,線段AG的長為2或4﹣.【解析】

(1)先判斷出△BEF'≌△CEF,得出BF'=CF,EF'=EF,進(jìn)而得出∠BGE=∠EGF,即可得出結(jié)論;

(2)先判斷出△BEG∽△CFE進(jìn)而得出CF=,即可得出結(jié)論;

(3)分兩種情況,①△AGQ∽△CEP時(shí),判斷出∠BGE=60°,即可求出BG;

②△AGQ∽△CPE時(shí),判斷出EG∥AC,進(jìn)而得出△BEG∽△BCA即可得出BG,即可得出結(jié)論.【詳解】(1)如圖1,延長FE交AB的延長線于F',∵點(diǎn)E是BC的中點(diǎn),∴BE=CE=2,∵四邊形ABCD是正方形,∴AB∥CD,∴∠F'=∠CFE,在△BEF'和△CEF中,,∴△BEF'≌△CEF,∴BF'=CF,EF'=EF,∵∠GEF=90°,∴GF'=GF,∴∠BGE=∠EGF,∵∠GBE=∠GEF=90°,∴△GBE∽△GEF;(2)∵∠FEG=90°,∴∠BEG+∠CEF=90°,∵∠BEG+∠BGE=90°,∴∠BGE=∠CEF,∵∠EBG=∠C=90°,∴△BEG∽△CFE,∴,由(1)知,BE=CE=2,∵AG=x,∴BG=4﹣x,∴,∴CF=,由(1)知,BF'=CF=,由(1)知,GF'=GF=y,∴y=GF'=BG+BF'=4﹣x+當(dāng)CF=4時(shí),即:=4,∴x=3,(0≤x≤3),即:y關(guān)于x的函數(shù)表達(dá)式為y=4﹣x+(0≤x≤3);(3)∵AC是正方形ABCD的對(duì)角線,∴∠BAC=∠BCA=45°,∵△AGQ與△CEP相似,∴①△AGQ∽△CEP,∴∠AGQ=∠CEP,由(2)知,∠CEP=∠BGE,∴∠AGQ=∠BGE,由(1)知,∠BGE=∠FGE,∴∠AGQ=∠BGQ=∠FGE,∴∠AGQ+∠BGQ+∠FGE=180°,∴∠BGE=60°,∴∠BEG=30°,在Rt△BEG中,BE=2,∴BG=,∴AG=AB﹣BG=4﹣,②△AGQ∽△CPE,∴∠AQG=∠CEP,∵∠CEP=∠BGE=∠FGE,∴∠AQG=∠FGE,∴EG∥AC,∴△BEG∽△BCA,∴,∴,∴BG=2,∴AG=AB﹣BG=2,即:當(dāng)△AGQ與△CEP相似,線段AG的長為2或4﹣.【點(diǎn)睛】本題考核知識(shí)點(diǎn):相似三角形綜合.解題關(guān)鍵點(diǎn):熟記相似三角形的判定和性質(zhì).20、(1)y=x2-2x-3;(2)k=b;(3)x0<2或x0>1.【解析】

(1)將點(diǎn)M坐標(biāo)代入y=x2+ax+2a+1,求出a的值,進(jìn)而可得到二次函數(shù)表達(dá)式;(2)先求出拋物線與x軸的交點(diǎn),將交點(diǎn)代入一次函數(shù)解析式,即可得到k,b滿足的關(guān)系;(3)先求出平移后的新拋物線的解析式,確定新拋物線的對(duì)稱軸以及Q的對(duì)稱點(diǎn)Q′,根據(jù)m>n結(jié)合圖像即可得到x0的取值范圍.【詳解】(1)把M(2,-3)代入y=x2+ax+2a+1,可以得到1+2a+2a+1=-3,a=-2,因此,二次函數(shù)的表達(dá)式為:y=x2-2x-3;(2)y=x2-2x-3與x軸的交點(diǎn)是:(3,0),(-1,0).當(dāng)y=kx+b(k≠0)經(jīng)過(3,0)時(shí),3k+b=0;當(dāng)y=kx+b(k≠0)經(jīng)過(-1,0)時(shí),k=b.(3)將二次函數(shù)y=x2-2x-3的圖象向右平移2個(gè)單位得到y(tǒng)=x2-6x+5,對(duì)稱軸是直線x=3,因此Q(2,n)在圖象上的對(duì)稱點(diǎn)是(1,n),若點(diǎn)P(x0,m)使得m>n,結(jié)合圖象可以得出x0<2或x0>1.【點(diǎn)睛】本題主要考查二次函數(shù)的圖像和性質(zhì),熟練掌握這些知識(shí)點(diǎn)是解題的關(guān)鍵.21、(1)y=﹣x2+2x+3;(2)DE+DF有最大值為;(3)①存在,P的坐標(biāo)為(,)或(,);②<t<.【解析】

(1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),根據(jù)系數(shù)的關(guān)系,即可解答(2)先求出當(dāng)x=0時(shí),C的坐標(biāo),設(shè)直線AC的解析式為y=px+q,把A,C的坐標(biāo)代入即可求出AC的解析式,過D作DG垂直拋物線對(duì)稱軸于點(diǎn)G,設(shè)D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①過點(diǎn)C作AC的垂線交拋物線于另一點(diǎn)P1,求出直線PC的解析式,再結(jié)合拋物線的解析式可求出P1,過點(diǎn)A作AC的垂線交拋物線于另一點(diǎn)P2,再利用A的坐標(biāo)求出P2,即可解答②觀察函數(shù)圖象與△ACQ為銳角三角形時(shí)的情況,即可解答【詳解】解:(1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;(2)當(dāng)x=0時(shí),y=﹣x2+2x+3=3,則C(0,3),設(shè)直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3,如答圖1,過D作DG垂直拋物線對(duì)稱軸于點(diǎn)G,設(shè)D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知拋物線對(duì)稱軸為x=1,∴DG=x-1,DF=(x-1),∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,∴當(dāng)x=,DE+DF有最大值為;答圖1答圖2(3)①存在;如答圖2,過點(diǎn)C作AC的垂線交拋物線于另一點(diǎn)P1,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設(shè)為y=x+m,把C(0,3)代入得m=3,∴直線P1C的解析式為y=x+3,解方程組,解得或,則此時(shí)P1點(diǎn)坐標(biāo)為(,);過點(diǎn)A作AC的垂線交拋物線于另一點(diǎn)P2,直線AP2的解析式可設(shè)為y=x+n,把A(﹣1,0)代入得n=,∴直線PC的解析式為y=,解方程組,解得或,則此時(shí)P2點(diǎn)坐標(biāo)為(,),綜上所述,符合條件的點(diǎn)P的坐標(biāo)為(,)或(,);②<t<.【點(diǎn)睛】此題考查二次函數(shù)綜合題,解題關(guān)鍵在于把已知點(diǎn)代入解析式求值和作輔助線.22、(1)點(diǎn)M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解析】

(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點(diǎn)M(1,2)不在直線y=-x+4上;(2)設(shè)直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進(jìn)行討論:①點(diǎn)M(1,2)關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)M1(1,-2);②點(diǎn)M(1,2)關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經(jīng)過點(diǎn)M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點(diǎn)的橫坐標(biāo)為n,得出y=kn+b=-n+4,k=.根據(jù)y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【詳解】(1)點(diǎn)M不在直線y=﹣x+4上,理由如下:∵當(dāng)x=1時(shí),y=﹣1+4=1≠2,∴點(diǎn)M(1,2)不在直線y=﹣x+4上;(2)設(shè)直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點(diǎn)M(1,2)關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)M1(1,﹣2),∵點(diǎn)M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點(diǎn)M(1,2)關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)M2(﹣1,2),∵點(diǎn)M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經(jīng)過點(diǎn)M(1,2),∴2=1k+b,b=2﹣1k.∵直線y=kx+b與直線y=﹣x+4交點(diǎn)的橫坐標(biāo)為n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=.∵y=kx+b隨x的增大而增大,∴k>0,即>0,∴①,或②,不等式組①無解,不等式組②的解集為2<n<1.∴n的取值范圍是2<n<1.故答案為2<n<1.【點(diǎn)睛】本題考查了一次函數(shù)圖象與幾何變換,一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,一次函數(shù)的性質(zhì),解一元一次不等式組,都是基礎(chǔ)知識(shí),需熟練掌握.23、(1)①AE+BF=EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見解析;(3)FG=.【解析】

(1)①只要證明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四邊形CEFD為正方形,即可解決問題;②利用①中結(jié)論即可解決問題;(2)首先證明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解決問題;【詳解】解:(1)證明:①如圖1,過點(diǎn)C做CD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論