




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn),若點(diǎn)在曲線上運(yùn)動(dòng),則面積的最小值為()A.6 B.3 C. D.2.設(shè),集合,則()A. B. C. D.3.函數(shù)在的圖象大致為()A. B.C. D.4.設(shè),則()A. B. C. D.5.已知,復(fù)數(shù),,且為實(shí)數(shù),則()A. B. C.3 D.-36.設(shè)復(fù)數(shù)滿足,則()A. B. C. D.7.已知雙曲線滿足以下條件:①雙曲線E的右焦點(diǎn)與拋物線的焦點(diǎn)F重合;②雙曲線E與過(guò)點(diǎn)的冪函數(shù)的圖象交于點(diǎn)Q,且該冪函數(shù)在點(diǎn)Q處的切線過(guò)點(diǎn)F關(guān)于原點(diǎn)的對(duì)稱點(diǎn).則雙曲線的離心率是()A. B. C. D.8.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.9.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點(diǎn),則異面直線EF與BD所成角的余弦值為()A. B. C. D.10.1777年,法國(guó)科學(xué)家蒲豐在宴請(qǐng)客人時(shí),在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個(gè)客人發(fā)許多等質(zhì)量的,長(zhǎng)度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對(duì)針落地的位置進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計(jì)數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.11.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計(jì)),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個(gè) B.個(gè) C.個(gè) D.個(gè)12.一只螞蟻在邊長(zhǎng)為的正三角形區(qū)域內(nèi)隨機(jī)爬行,則在離三個(gè)頂點(diǎn)距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),,若函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),則的取值范圍是_________.14.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬.如圖,若四棱錐為陽(yáng)馬,側(cè)棱底面,且,,設(shè)該陽(yáng)馬的外接球半徑為,內(nèi)切球半徑為,則__________.15.已知橢圓的離心率是,若以為圓心且與橢圓有公共點(diǎn)的圓的最大半徑為,此時(shí)橢圓的方程是____.16.直線過(guò)圓的圓心,則的最小值是_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知橢圓的左、右頂點(diǎn)分別為、,焦距為2,直線與橢圓交于兩點(diǎn)(均異于橢圓的左、右頂點(diǎn)).當(dāng)直線過(guò)橢圓的右焦點(diǎn)且垂直于軸時(shí),四邊形的面積為6.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的斜率分別為.①若,求證:直線過(guò)定點(diǎn);②若直線過(guò)橢圓的右焦點(diǎn),試判斷是否為定值,并說(shuō)明理由.18.(12分)已知橢圓的右焦點(diǎn)為,過(guò)作軸的垂線交橢圓于點(diǎn)(點(diǎn)在軸上方),斜率為的直線交橢圓于兩點(diǎn),過(guò)點(diǎn)作直線交橢圓于點(diǎn),且,直線交軸于點(diǎn).(1)設(shè)橢圓的離心率為,當(dāng)點(diǎn)為橢圓的右頂點(diǎn)時(shí),的坐標(biāo)為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.19.(12分)市民小張計(jì)劃貸款60萬(wàn)元用于購(gòu)買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢(shì),且從第二個(gè)還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個(gè)月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當(dāng)天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張?jiān)摴P貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個(gè)還款月應(yīng)還4900元,最后一個(gè)還款月應(yīng)還2510元,試計(jì)算小張?jiān)摴P貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過(guò)家庭平均月收入的一半,已知小張家庭平均月收入為1萬(wàn)元,判斷小張?jiān)摴P貸款是否能夠獲批(不考慮其他因素);(3)對(duì)比兩種還款方式,從經(jīng)濟(jì)利益的角度來(lái)考慮,小張應(yīng)選擇哪種還款方式.參考數(shù)據(jù):.20.(12分)如圖,在直三棱柱中,,,為的中點(diǎn),點(diǎn)在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.21.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,求的面積的值(或最大值).已知的內(nèi)角,,所對(duì)的邊分別為,,,三邊,,與面積滿足關(guān)系式:,且,求的面積的值(或最大值).22.(10分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
求得直線的方程,畫出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點(diǎn)到直線的距離公式和兩點(diǎn)的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點(diǎn)為圓心,1為半徑的下半圓(包括兩個(gè)端點(diǎn)),如圖,直線的方程為,可得,由圓與直線的位置關(guān)系知在時(shí),到直線距離最短,即為,則的面積的最小值為.故選:B.【點(diǎn)睛】本題考查三角形面積最值,解題關(guān)鍵是掌握直線與圓的位置關(guān)系,確定半圓上的點(diǎn)到直線距離的最小值,這由數(shù)形結(jié)合思想易得.2、B【解析】
先化簡(jiǎn)集合A,再求.【詳解】由得:,所以,因此,故答案為B【點(diǎn)睛】本題主要考查集合的化簡(jiǎn)和運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和計(jì)算推理能力.3、C【解析】
先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項(xiàng);當(dāng)時(shí),,所以排除A選項(xiàng);當(dāng)時(shí),,排除D選項(xiàng);綜上可知,C為正確選項(xiàng),故選:C.【點(diǎn)睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.4、C【解析】試題分析:,.故C正確.考點(diǎn):復(fù)合函數(shù)求值.5、B【解析】
把和代入再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn),利用虛部為0求得m值.【詳解】因?yàn)闉閷?shí)數(shù),所以,解得.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,考查運(yùn)算求解能力.6、D【解析】
根據(jù)復(fù)數(shù)運(yùn)算,即可容易求得結(jié)果.【詳解】.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,屬基礎(chǔ)題.7、B【解析】
由已知可求出焦點(diǎn)坐標(biāo)為,可求得冪函數(shù)為,設(shè)出切點(diǎn)通過(guò)導(dǎo)數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點(diǎn)坐標(biāo),然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點(diǎn)為,F(xiàn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn);,,所以,,設(shè),則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點(diǎn)睛】本題考查雙曲線的性質(zhì),已知拋物線方程求焦點(diǎn)坐標(biāo),求冪函數(shù)解析式,直線的斜率公式及導(dǎo)數(shù)的幾何意義,考查了學(xué)生分析問(wèn)題和解決問(wèn)題的能力,難度一般.8、A【解析】
是函數(shù)的零點(diǎn),根據(jù)五點(diǎn)法求出圖中零點(diǎn)及軸左邊第一個(gè)零點(diǎn)可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個(gè)零點(diǎn)為,在軸左邊第一個(gè)零點(diǎn)是,∴的最小值是.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對(duì)稱性.函數(shù)的零點(diǎn)就是其圖象對(duì)稱中心的橫坐標(biāo).9、C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點(diǎn)睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.10、D【解析】
根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出頻率,用以估計(jì)概率.【詳解】.故選:D.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計(jì)概率,屬于基礎(chǔ)題.11、C【解析】
計(jì)算球心連線形成的正四面體相對(duì)棱的距離為cm,得到最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,得到不等式,計(jì)算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個(gè)球兩兩相切,這樣,相鄰的四個(gè)球的球心連線構(gòu)成棱長(zhǎng)為cm的正面體,易求正四面體相對(duì)棱的距離為cm,每裝兩個(gè)球稱為“一層”,這樣裝層球,則最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個(gè)球.故選:【點(diǎn)睛】本題考查了圓柱和球的綜合問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.12、A【解析】
求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點(diǎn)到頂點(diǎn)、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點(diǎn)、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點(diǎn)到三個(gè)頂點(diǎn)、、的距離都大于的概率是.故選:A.【點(diǎn)睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據(jù)題意,求出的解得或,然后求出f(x)的導(dǎo)函數(shù),求其單調(diào)性以及最值,在根據(jù)題意求出函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數(shù)有3個(gè)不同的零點(diǎn),即+m=0有兩個(gè)不同的解,解之得即或因?yàn)榈膶?dǎo)函數(shù),令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數(shù)有3個(gè)不同的零點(diǎn),(1)有兩個(gè)不同的解,此時(shí)有一個(gè)解;(2)有兩個(gè)不同的解,此時(shí)有一個(gè)解當(dāng)有兩個(gè)不同的解,此時(shí)有一個(gè)解,此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=-m,此時(shí)有兩個(gè)不同的解,此時(shí)有一個(gè)解此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=,綜上:的取值范圍是故答案為【點(diǎn)睛】本題主要考查了函數(shù)與導(dǎo)函數(shù)的綜合,考查到了函數(shù)的零點(diǎn),導(dǎo)函數(shù)的應(yīng)用,以及數(shù)形結(jié)合的思想、分類討論的思想,屬于綜合性極強(qiáng)的題目,屬于難題.14、【解析】
該陽(yáng)馬補(bǔ)形所得到的長(zhǎng)方體的對(duì)角線為外接球的直徑,由此能求出,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,從而內(nèi)切球半徑為,由此能求出.【詳解】四棱錐為陽(yáng)馬,側(cè)棱底面,且,,設(shè)該陽(yáng)馬的外接球半徑為,該陽(yáng)馬補(bǔ)形所得到的長(zhǎng)方體的對(duì)角線為外接球的直徑,,,側(cè)棱底面,且底面為正方形,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,內(nèi)切球半徑為,故.故答案為.【點(diǎn)睛】本題考查了幾何體外接球和內(nèi)切球的相關(guān)問(wèn)題,補(bǔ)形法的運(yùn)用,以及數(shù)學(xué)文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問(wèn)題,關(guān)鍵是能夠確定球心位置,以及選擇恰當(dāng)?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補(bǔ)形法(構(gòu)造法),通過(guò)補(bǔ)形為長(zhǎng)方體(正方體),球心位置即為體對(duì)角線的中點(diǎn);(2)外心垂線法,先找出幾何體中不共線三點(diǎn)構(gòu)成的三角形的外心,再找出過(guò)外心且與不共線三點(diǎn)確定的平面垂直的垂線,則球心一定在垂線上.15、【解析】
根據(jù)題意設(shè)為橢圓上任意一點(diǎn),表達(dá)出,再根據(jù)二次函數(shù)的對(duì)稱軸與求解的關(guān)系分析最值求解即可.【詳解】因?yàn)闄E圓的離心率是,,所以,故橢圓方程為.因?yàn)橐詾閳A心且與橢圓有公共點(diǎn)的圓的最大半徑為,所以橢圓上的點(diǎn)到點(diǎn)的距離的最大值為.設(shè)為橢圓上任意一點(diǎn),則.所以因?yàn)榈膶?duì)稱軸為.(i)當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.此時(shí),解得.(ii)當(dāng)時(shí),在上單調(diào)遞減.此時(shí),解得舍去.綜上,橢圓方程為.故答案為:【點(diǎn)睛】本題主要考查了橢圓上的點(diǎn)到定點(diǎn)的距離最值問(wèn)題,需要根據(jù)題意設(shè)橢圓上的點(diǎn),再求出距離,根據(jù)二次函數(shù)的對(duì)稱軸與區(qū)間的關(guān)系分析最值的取值點(diǎn)分類討論求解.屬于中檔題.16、【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過(guò)圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過(guò)圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當(dāng)且僅當(dāng)m=n時(shí)取等號(hào).∴則的最小值是4.故答案為:4.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)①證明見解析;②【解析】
(1)由題意焦距為2,設(shè)點(diǎn),代入橢圓,解得,從而四邊形的面積,由此能求出橢圓的標(biāo)準(zhǔn)方程.(2)①由題意,聯(lián)立直線與橢圓的方程,得,推導(dǎo)出,,,,由此猜想:直線過(guò)定點(diǎn),從而能證明,,三點(diǎn)共線,直線過(guò)定點(diǎn).②由題意設(shè),,,,直線,代入橢圓標(biāo)準(zhǔn)方程:,得,推導(dǎo)出,,由此推導(dǎo)出(定值).【詳解】(1)由題意焦距為2,可設(shè)點(diǎn),代入橢圓,得,解得,四邊形的面積,,,橢圓的標(biāo)準(zhǔn)方程為.(2)①由題意,聯(lián)立直線與橢圓的方程,得,,解得,從而,,,同理可得,,猜想:直線過(guò)定點(diǎn),下證之:,,,,三點(diǎn)共線,直線過(guò)定點(diǎn).②為定值,理由如下:由題意設(shè),,,,直線,代入橢圓標(biāo)準(zhǔn)方程:,得,,,,(定值).【點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線過(guò)定點(diǎn)的證明,考查兩直線的斜率的比值是否為定值的判斷與求法,考查橢圓、直線方程、韋達(dá)定理等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題.18、(1);(2)不存在,理由見解析【解析】
(1)寫出,根據(jù),斜率乘積為-1,建立等量關(guān)系求解離心率;(2)寫出直線AB的方程,根據(jù)韋達(dá)定理求出點(diǎn)B的坐標(biāo),計(jì)算出弦長(zhǎng),根據(jù)垂直關(guān)系同理可得,利用等式即可得解.【詳解】(1)由題可得,過(guò)點(diǎn)作直線交橢圓于點(diǎn),且,直線交軸于點(diǎn).點(diǎn)為橢圓的右頂點(diǎn)時(shí),的坐標(biāo)為,即,,化簡(jiǎn)得:,即,解得或(舍去),所以;(2)橢圓的方程為,由(1)可得,聯(lián)立得:,設(shè)B的橫坐標(biāo),根據(jù)韋達(dá)定理,即,,所以,同理可得若存在使得成立,則,化簡(jiǎn)得:,,此方程無(wú)解,所以不存在使得成立.【點(diǎn)睛】此題考查求橢圓離心率,根據(jù)直線與橢圓的位置關(guān)系解決弦長(zhǎng)問(wèn)題,關(guān)鍵在于熟練掌握解析幾何常用方法,尤其是韋達(dá)定理在解決解析幾何問(wèn)題中的應(yīng)用.19、(1)289200元;(2)能夠獲批;(3)應(yīng)選擇等額本金還款方式【解析】
(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個(gè)等差數(shù)列,即可由等差數(shù)列的前n項(xiàng)和公式求得其還款總額,減去本金即為還款的利息;(2)根據(jù)題意,采取等額本息的還款方式,每月還款額為一等比數(shù)列,設(shè)小張每月還款額為元,由等比數(shù)列求和公式及參考數(shù)據(jù),即可求得其還款額,與收入的一半比較即可判斷;(3)計(jì)算出等額本息還款方式時(shí)所付出的總利息,兩個(gè)利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個(gè)等差數(shù)列,記為,表示數(shù)列的前項(xiàng)和,則,,則,故小張?jiān)摴P貸款的總利息為元.(2)設(shè)小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數(shù)列,則,所以,即,因?yàn)?,所以小張?jiān)摴P貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因?yàn)?,所以從?jīng)濟(jì)利益的角度來(lái)考慮,小張應(yīng)選擇等額本金還款方式.【點(diǎn)睛】本題考查了等
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 代理電動(dòng)車合同范例
- 借名買房合同范本
- 租賃合同通知函
- 農(nóng)村收購(gòu)單車合同范例
- 農(nóng)村果園承包合同范本
- 云平臺(tái)建設(shè)合同范本
- 云南租房合同范本
- 供應(yīng)電水氣合同范本
- 水電站隧道排水孔施工方案
- 乙方裝修合同范本
- 2024-2025學(xué)年新教材高中化學(xué) 第三章 鐵 金屬材料 2.1 合金說(shuō)課稿 新人教版必修1
- 《籃球防守腳步移動(dòng)技術(shù) 滑步》教案
- 完整版項(xiàng)目部組織機(jī)構(gòu)圖
- 浙江省杭州市2023-2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 人工智能客服機(jī)器人使用手冊(cè)
- 品牌全球化體育營(yíng)銷趨勢(shì)洞察報(bào)告 2024
- 安徽省蕪湖市普通高中2025屆高考全國(guó)統(tǒng)考預(yù)測(cè)密卷物理試卷含解析
- (新版)拖拉機(jī)駕駛證科目一知識(shí)考試題庫(kù)500題(含答案)
- (人衛(wèi)版第九版?zhèn)魅静W(xué)總論(一))課件
- 工業(yè)機(jī)器人仿真與離線編程項(xiàng)目-8-KUKA-Sim-Pro-軟件的介紹及基本操作
- 第2課++生涯規(guī)劃+筑夢(mèng)未來(lái)(課時(shí)2)【中職專用】中職思想政治《心理健康與職業(yè)生涯》高效課堂 (高教版基礎(chǔ)模塊)
評(píng)論
0/150
提交評(píng)論