初三年級上冊學(xué)期期末基礎(chǔ)復(fù)習(xí)_第1頁
初三年級上冊學(xué)期期末基礎(chǔ)復(fù)習(xí)_第2頁
初三年級上冊學(xué)期期末基礎(chǔ)復(fù)習(xí)_第3頁
初三年級上冊學(xué)期期末基礎(chǔ)復(fù)習(xí)_第4頁
初三年級上冊學(xué)期期末基礎(chǔ)復(fù)習(xí)_第5頁
已閱讀5頁,還剩63頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2.下列圖形中,不是中心對稱圖形但是軸對稱圖形的是()

4.在平面直角坐標(biāo)系中,若將拋物線y=2x2分別向上、向右平移2個單位,則新拋物線的

解析式是()

A.y=2(x-2)2+2B.y=2(x+2)2-2C.y=2(x-2)2-2D.y=2(x+2)2+2

2.下列一元二次方程中.沒有實數(shù)根的是

A.X2+2X-4=0B.x2-4x+4=0

22

C.x—2x-5=0D.xr+3x+4=0

1.一元二次方程x2+2x=0的根是()

A.x=0B.x=-2C.x=0或x=-2D.x=0或x=2

2.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()

3.口袋內(nèi)裝有一些除顏色外其他完全相同的紅球、白球和黑球,從中摸出一球,摸出紅球

的概率為0.2,摸出白球的概率為0.5,那么摸出黑球的概率為()

A.0.2B.0.7C.0.5D.0.3

4.如圖,。。的半徑為5,AB為弦,OC_LAB,垂足為E,如果CE=2,那么AB的長是()

A.4B.8C.6D.10

5.將拋物線y=5x?先向左平移2個單位,再向上平移3個單位后得到新的拋物線,則新拋

物線的表達式是()

A.y=5(x+2)2+3B.y=5(x-2)'+3C.y=5(x-2)2-3D.y=5(x+2)2-3

7.某市2004年底已有綠化面積300公頃,經(jīng)過兩年綠化,綠化面積逐年增加,到2006年

底增加到363公頃.設(shè)綠化面積平均每年的增長率為X,由題意,所列方程正確的是()

A.300(1+x)=363B.300(1+x)2=363C.300(l+2x)=363D.363(1-x)2=300

8.已知拋物線y=x2-8x+c的頂點在x軸上,則c等于()

A.4B.8C.-4D.16

9.圓錐的母線長5cm,底面半徑長3cm,那么它的側(cè)面展開圖的面積是(()

A.10nB.12nC.15nD.20n

4、方程/=25的解是

A、x=5B、x=-5

D、X]=—J~5,x=J~5

C>Xj=5,x2=—52

5、甲乙兩人玩一個游戲,判定這個游戲公平不公平的標(biāo)準(zhǔn)是

A、游戲的規(guī)則由甲方確定B、游戲的規(guī)則由乙方確定

C、游戲的規(guī)則由甲乙雙方確定D、游戲雙方要各有50%贏的機會

14rX2-V1,

6、下列各式±(1-x)=0,2匚=0,-----------=0>—I-x=0,x"+3x=0,

5n-32--------x

其中一元二次方程的個數(shù)為

A、2個B、3個C、4個D、5個

12、下列事件發(fā)生的概率為0的是

A、隨意擲一枚均勻的硬幣兩次,至少有一次反面朝上

B、今年冬天黑龍江會下雪

C、隨意擲一枚均勻的正方體骰子兩次,兩次朝上面的點數(shù)之和為1

D、一個轉(zhuǎn)盤被分成6個扇形,按紅、白、白、紅、紅、白排列,轉(zhuǎn)動轉(zhuǎn)盤,

指針停在紅色區(qū)域

16、關(guān)于*的方程,+2在*-1=0有兩個不相等的實數(shù)根,則k的取值范圍是

A、k20B、k>0C^k^-1D、k>-l

19、用配方法解一元二次方程,+4X+3=0,下列配方正確的是

A、(x+2-=1B、(x-2)2=1

C、(x+2/=7D、(x-2)2=7

1.下列圖形中,是中心對稱圖形的是()

2.下列事件中,屬于必然事件的是()

A.隨機拋一枚硬幣,落地后國徽的一面一定朝上

B.一個袋中只裝有5個黑球,從中摸出一個球是黑球

C.某射擊運動射擊一次,命中靶心

D.某種彩票的中獎率是10%,則購買該種彩票100張一定中獎

3.下列方程是一元二次方程的是()

A.X2+2X-y=3B.--C.(3x2-1)2-3=0D.代x2-8=@

5.如圖,在半徑為5cm的。O中,圓心。到弦AB的距離為3cm,則弦AB的長是()

B.6cmC.8cmD.10cm

8.某農(nóng)場的糧食產(chǎn)量在兩年內(nèi)從2800噸增加到3090噸,若設(shè)平均每年增產(chǎn)的百分率為x,

則所列的方程為()

A.2800(l+2x)=3090B.2=3090D.2800(1+x2)=3090

3.如圖,是△ABC的外接圓,連接OA、OB,ZOBA=50°,則NC的度數(shù)為()

1.拋物線y=(x+2)2-3的對稱軸是()

A.直線x=-3B.直線x=3C.直線x=2D.直線x=-2

2.配方法解方程x2+8x+7=0,則方程可化為()

A.(X-4)2=9B.(x+4)2=9C.(x-8)2=16D.(x+8)2=16

3.下列說法正確的是()

A.一顆質(zhì)地均勻的骰子已連續(xù)拋擲了2000次,其中,拋擲出5點的次數(shù)最少,則第2001

次一定拋擲出5點

B.某種彩票中獎的概率是1%,因此買100張該種彩票一定會中獎

C.天氣預(yù)報說明天下雨的概率是50%,所以明天將有一半時間在下雨

D.拋擲一枚圖釘,釘尖觸地和釘尖朝上的概率不相等

3.用配方法解一元二次方程x2-4x-5=0的過程中,配方正確的是()

A.(x+2)2=1B.(x-2)2=1C.(x+2)2=9D.(x-2)2=9

5.一元二次方程x.2x-1=0的兩根為xi,X2,則X|+X2的值為()

A.2B.-2C.1D.-1

1.一元二次方程X(2x+3)=5的常數(shù)項是()

A.-5B.2C.3D.5

1.方程x2-4=0的根是()

A.x=2B.x=-2C.Xi=2,X2=-2D.x=4

2.方程x(x-1)=0的根是()

A.0B.1C.0或1D.無解

3.拋物線y=(x+2)2-1頂點坐標(biāo)是()

A.(2,-1)B.(2,1)C.(-2,-1)D.(-2,1)

4.有一個正方體,6個面上分別標(biāo)有1?6這6個整數(shù),投擲這個正方體一次,則出現(xiàn)向上

一面的數(shù)字為偶數(shù)的概率是()

A.2B.2C.士D.士

3624

5.某果園第1年水果產(chǎn)量為100噸,第3年水果產(chǎn)量為144噸,求該果園水果產(chǎn)量的年平

均增長率.設(shè)該果園水果產(chǎn)量的年平均增長率為x,則根據(jù)題意可列方程為()

A.144(1-x)2=100B.100(1-x)2=144C.144(1+x)2=100D.100(1+x)2=144

8.如圖,△ABC的邊AC與。O相交于C、D兩點,且經(jīng)過圓心O,邊AB與。O相切,

切點為B.己知NA=30。,則NC的大小是()

9.如圖,將RSABC繞點A按順時針旋轉(zhuǎn)一定角度得到RtAADE,點B的對應(yīng)點D恰好

落在BC邊上.若AC=?,ZB=60°,則CD的長為()

E.

W\

C,::二妙云3

°D°

A.0.5B.1.5C.>/2D-1

2.下列事件中是必然事件的是()

A.明天太陽從西邊升起

B.籃球隊員在罰球線上投籃一次,未投中

C.實心鐵球投入水中會沉入水底

D.拋出一枚硬幣,落地后正面朝上

4.如圖,四邊形ABCD為。。的內(nèi)接四邊形,E是BC延長線上的一點,已知NBOD=100。,

D.80°

2.為備戰(zhàn)2016屆中考,同學(xué)們積極投入復(fù)習(xí),卓瑪同學(xué)的試卷袋里裝有語文試卷2張,臧

文試卷3張,英語試卷1張,從中任意抽出一張試卷,恰好是語文試卷的概率是()

A.—B.—C.

25

5.如圖,在。。中,直徑CD垂直于弦AB,若/C=25。,則NBOD的度數(shù)是()

A.25°B.30°C.40°D.50°

1.方程x-3二x(x-3)的解為()

A.x=0B.X]=0,X2=3C.X=3D.X]=l,x2=3

4.一個布袋里裝有6個只有顏色可以不同的球,其中2個紅球,4個白球.從布袋里任意

摸出1個球,則摸出的球是紅球的概率為()

2.一元二次方程x2-9=0的解是()

A.x=-3B.x=3C.X]=3,X2=-3D.x=81

5.一個口袋中有2個紅球,3個白球,這些球除色外都相同,從口袋中隨機摸出一個球,

這個球是紅球的概率是()

5/511

A.7B.7C.7D.7

jUjrjr一*3

2.下列說法正確的是()

A.”明天降雨的概率是80%”表示明天有80%的時間都在降雨

B."拋一枚硬幣正面朝上的概率嗎”表示每拋2次就有一次正面朝上

C.”彩票中獎的概率為1%"表示買100張彩票肯定會中獎

D."拋一枚正方體骰子,朝上的點數(shù)為2的概率為當(dāng)表示隨著拋擲次數(shù)的增加,"拋出朝上

6

的點數(shù)為2"這一事件發(fā)生的頻率穩(wěn)定在士附近

6

4.將一元二次方程x2-4x-1-0配方后得到的結(jié)果是()

A.(x+4)2=1B.(x-4)2=3C.(x+2)2=4D.(x-2)2=5

5.在四張完全相同的卡片上分別印有等邊三角形、平行四邊形、等腰梯形、圓的圖案,現(xiàn)

將印有圖案的一面朝下,混合后從中隨機抽取一張,則抽到的卡片上印有的圖案是軸對稱圖

形的概率為()

6.2011年初中畢業(yè)生診斷考試)某校2016屆九年級學(xué)生畢業(yè)時,每個同學(xué)都將自己的相

片向全班其他同學(xué)各送一張表示留念,全班共送了2450張相片,如果全班有x名學(xué)生,根

據(jù)題意,列出方程為()

x(x-1)

A.x(x-1)=2450B.x(x+1)=2450C.2x(x+1)=2450D.-------^—=2450

2.已知。。的半徑是6cm,點。到同一平面內(nèi)直線1的距離為5cm,則直線1與。O的位

置關(guān)系是()

A.相交B.相切C.相離D.無法判斷

3.若X|,X2是方程x2=4的兩根,則X1+X2的值是()

A.0B.2C.4D.8

5.圓心角為120。,弧長為12n的扇形半徑為()

A.6B.9C.18D.36

6.關(guān)于x的一元二次方程x2-3x+m=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍為

()

A.B.C.np^D.m<C-

4444

7.若二次函數(shù)y=ax2的圖象經(jīng)過點P(-2,4),則該圖象必經(jīng)過點()

A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)

2.一元二次方程x2-2x+3=0的根的情況是()

A.沒有實數(shù)根B.有兩個相等的實數(shù)根

C.有兩個不相等的實數(shù)根D.有兩個實數(shù)根

3.拋物線y=(x-1)2+2的頂點坐標(biāo)是()

A.(-1,2)B.(-1,-2)C.(1,-2)D.(1,2)

4.下列事件中,是必然事件的為()

A.3天內(nèi)會下雨

B.打開電視機,正在播放廣告

C.367人中至少有2人公歷生日相同

D.某婦產(chǎn)醫(yī)院里,下一個出生的嬰兒是女孩

6.在。。中,若圓心角/A08=100°,C是晶匕一點,則/ACB等于().

A.80°B.100°C.130°D.140°

6.己知點A(2,3)在函數(shù)y=ax?-x+1的圖象上,貝ija等于()

A.-1B.IC.2D.-2

1.將拋物線y=x2-2x+3向上平移2個單位長度,再向右平移3個單位長度后,得到的拋物

線的解析式為()

A.y=(x-1)2+4B.y=(x-4)2+4C.y=(x+2)2+6D.y=(x-4)2+6

6.。。的半徑r=5cm,圓心到直線1的距離OM=4cm,在直線1上有一點P,且PM=3cm,

則點P()

A.在。O內(nèi)B.在。O上

C.在。O外D.可能在。。上或在。O內(nèi)

3.在一個不透明的口袋中有若干個只有顏色不同的球,如果口袋中裝有4個黃球,且摸出

黃球的概率為那么袋中共有球的個數(shù)為()

A.6個B.7個C.9個D.12個

1.二次函數(shù)y=-(x-2)2-1的圖象的頂點坐標(biāo)是()

A.(2,-1)B.(-2,-1)C.(-2,1)D.(2,1)

5.如圖,點A、B、C是。O上的三點,若NBOC=80。,則/A的度數(shù)是()

工1

3.二次函數(shù)y=2(x-1)2+2的圖象可由y=3?的圖象()

A.向左平移1個單位,再向下平移2個單位得到

B.向左平移1個單位,再向上平移2個單位得到

C.向右平移1個單位,再向下平移2個單位得到

D.向右平移1個單位,再向上平移2個單位得到

9.若在“正三角形、平行四邊形、菱形、正五邊形、正六邊形"這五種圖形中隨機抽取一種

圖形,則抽到的圖形屬于中心對稱圖形的概率是()

234

A.5B.5C.5D.5

6.如圖,正三角形ABC內(nèi)接于圓0,動點P在圓周的劣弧AB上,且不與A,B重合,則

ZBPC等于()

7.拋物線y=-1x2的圖象向左平移2個單位,在向下平移1個單位,得到的函數(shù)表達式為()

A.y=-1x2+2x+lB.y=-^x2+2x-2C.y=^x2-2x-1D.y=-1x2-2x+l

2."拋一枚均勻硬幣,落地后正面朝上”這一事件是()

A.必然事件B.隨機事件C.確定事件D.不可能事件

5.如圖,將△ABC繞點A逆時針旋轉(zhuǎn)一定角度,得到AADE,若NCAE=65。,旦ADLBC,

C.35°D.45°

9.如圖,A,B,C是OO上的三個點,ZABC=25°,則NAOC的度數(shù)是()

C.60°D,90°

5.已知點P(2+m,n-3)與點Q(m,1+n)關(guān)于原點對稱,則m-n的值是()

A.1B.-1C.2D.-2

6.如圖,(DO中,弦AB、CD相交于點P,若NA=30。,ZAPD=70°,則NB等于()

3.關(guān)于x的一元二次方程9x2-6x+k=0有兩個不相等的實根,則k的范圍是()

A.k<1B.k>lC.k<lD.k>l

8.四張完全相同的卡片上,分別畫有圓、矩形、等邊三角形、等腰梯形,現(xiàn)從中隨機抽取

一張,卡片上畫的恰好是中心對稱圖形的概率為()

11V

A.-B.-C.-D.1

424

3.拋物線y=-3(x-3)2-5的對稱軸是直線()

2

A.x=-3B.x=3C.x=5D.x=-5

4.如圖,點A、B、P為。上的點,若/APB=40。,則/AOB等于()

A.20°B.40°C.80°D.100°

5.在一個不透明的布袋中裝有50個黃、白兩種顏色的球,除顏色外其他都相同,小紅通過

多次摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在0.3左右,則布袋中白球可能有()

A.15個B.20個C.30個D.35個

7.已知x=3是一元二次方程2x2+mx+15=0的一個解,則方程的另一個解是()

2.下列事件為必然事件的是()

A.明天一定會下雨

B.經(jīng)過有交通信號燈的路口,遇到紅燈

C.任意買一張電影票,座位號是2的倍數(shù)

D.在一個標(biāo)準(zhǔn)大氣壓下,水加熱到100℃時會沸騰

3.如圖,在圓。中,ZAOC=160°,則NABC=()

B

A.20°B.40°C.80°D.160°

7.已知在。0中,弦AB的長為8,圓心O到AB的距離為3,則。O的半徑是()

A.3B.4C.5D.8

9.如圖,OO中,ABDC是圓內(nèi)接四邊形,ZBOC=1IO°,則NBDC的度數(shù)是()

A.110°B.70°C.55°D.125°

13.小偉擲一個質(zhì)地均勻的正方體骰子,骰子的六個面上分別刻有1到6的點數(shù).則向上的

一面的點數(shù)大于4的概率為()

A.-B.-C.-D.-

6325

1.甲、乙、丙、丁四名選手參加100米決賽,賽場只設(shè)1、2、3、4四個跑道,選手以隨機

抽簽的方式?jīng)Q定各自的跑道,若甲首先抽簽,則甲抽到1號跑道的概率是()

A.1B.1C.1D.1

234

4.把拋物線y=-2x2向上平移1個單位,得到的拋物線是()

A.y=-2(x+1)2B.y=-2(x-1)2C.y=-2x2+lD.y=-2x2-1

4.圓。的半徑為7c〃z,點P到圓心。的距離OP=10cm,則點P與圓心。的位置關(guān)系是

A.點P在圓上B.點尸在圓內(nèi)

C.點P在圓外D.無法確定

6.若一元二次方程F+2x+a=0有實數(shù)根,則。的取值范圍是

A.a<\B.tz<4C.a<\D.a>\

2.在平面直角坐標(biāo)系中,點M(3,-5)關(guān)于原點對稱的點的坐標(biāo)是()

A.(-3,-5)B.(3,5)C.(5,-3)D.(一3,5)

3.頂點坐標(biāo)為(1,2),開口方向和大小與拋物線y=x2相同的解析式為()

A.y=(x-1)2+2B.y=(x+1)2-2C.y=(x+1)2+2D.y=-(x+1)2+2

5.如圖,OO的半徑為5,AB為弦,OC±AB,垂足為E,如果CE=2,那么AB的長是()

6D.10

11.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側(cè)面積是()

A.20cm2B.20ncm2C.1Oncm2D.5ncm2

3、如圖,在圓O中,NAOC=160°,則NABC=()

A、20°

B、40°

C、80°

D、160°

1.若。。的半徑為3,圓心。到直線/的距離為2,則直線/與。。的位置關(guān)系是

A.相交B.相切C.相離D.無法確定

4.已知關(guān)于x的一元二次方程x2-5x+b=0的一個根是3,則實數(shù)b的值為()

A.3B.5C.6D.-6

5.從3,4,5三個數(shù)中隨機抽取兩個數(shù),則取出的兩個數(shù)都是奇數(shù)的概率為()

A.0B.-C.-D.1

4.已知:如圖,OA,0B是。0的兩條半徑,且OA_LOB,點C在。O上,則/ACB的

度數(shù)為()

A.45°B.35°C.25°D.20°

4.如圖,點B、D、C是。O上的點,ZBDC=130°,則NBOC是()

0

D

A.100°B.110°C.120°D.130°

8.若二次函數(shù)y=x,bx+5配方后為y=(x-2)2+k,則b、k的值分別為()

A.0,5B.0,1C.-4,5D.-4,1

2.如圖,點A、B、C、D、。都在方格紙的格點上,若ACOD是由△AOB繞點0按逆時

針方向旋轉(zhuǎn)而得,則旋轉(zhuǎn)的角度為()

3.如圖,在半徑為5的。O中,如果弦AB的長為8,那么它的弦心距OC等于()

A.2B.3C.4D.6

7.甲、乙兩人賽跑,則開始起跑時都邁出左腿的概率是()

A.1B.?—C.—D.—,

234

2.已知。。的半徑是4,OP=3,則點P與。O的位置關(guān)系是()

A.點P在圓內(nèi)B.點P在圓上C.點P在圓外D.不能確定

4.將某拋物線向左平移1個單位,得到的拋物線解析式為y=x2,則該拋物線為()

A.y=x?+lB.y=x2-1C.y=(x-I)2D.y=(x+1)2

3.若二次函數(shù)y=x2+x+m(m-2)的圖象經(jīng)過原點,則m的值必為()

A.0或2B.0C.2D.無法確定

2.對于二次函數(shù)y=(x-2)2+2的圖象,下列說法正確的是()

A.開口向下B.對稱軸是x=-2

C.頂點坐標(biāo)是(-2,2)D.與x軸無交點

8.已知AB是。O的直徑,過點A的弦AD平行于半徑OC,若/A=70。,則/B等于(

B

A.30°B.35°C.40°D.60°

6.如圖,在。O中,半徑OA,弦BC,NAOB=5(T,點D在圓上,則NADC的度數(shù)是()

30°D.25°

3.下列一元二次方程中,沒有實數(shù)根的是()

A.4x2-5x+2=0B.x2-6x+9=0C.5x2-4x-1=0D.3x2-4x+l=0

9如圖,線段AB是。。的直徑,弦CD_LAB,ZCAB=20°,則NAOD等于()

A.160°B.150°C.140°D.120°

5.二次函數(shù)y=x?-2x+2與y軸交點坐標(biāo)為()

A.(0,1)B.(0,2)C.(0,-1)D.(0,-2)

8.如圖,(DO的半徑為5,AB為弦,半徑OCLAB,垂足為點E,若CE=2,則AB的長

A.4B.6C.8D.10

1.若關(guān)于的%方程f+3x+a=()有一個根為-1,則。的值為

——

A.4B.-2C.2D.r4

3.半徑為5的圓的一條弦長不可能是()

A.3B.5C.10D.12

9.如圖,在方格紙上建立的平面直角坐標(biāo)系中,將△ABO繞點O按順時針方向旋轉(zhuǎn)90。,

得△ABXT,則點A,的坐標(biāo)為()

A.(3,1)B.(3,2)C.(2,3)D.(1,3)

3.二次函數(shù)y=(x-1)?+3的最小值是()

A.1B.-1C.-3D.3

2.如圖,A、B、C是。O上的三點,ZBOC=70°,則NA的度數(shù)為()

7.甲、乙兩人賽跑,則開始起跑時都邁出左腿的概率是()

A.1B.—C.—D.—

234

2.已知。O的半徑是4,OP=3,則點P與。O的位置關(guān)系是()

A.點P在圓內(nèi)B.點P在圓上C.點P在圓外D.不能確定

4.將某拋物線向左平移1個單位,得到的拋物線解析式為y=x2,則該拋物線為()

A.y=x2+lB.y=x2-1C.(x-1)2D.y=(x+1)2

3.若二次函數(shù)y=x2+x+m(m-2)的圖象經(jīng)過原點,則m的值必為()

A.0或2B.0C.2D.無法確定

2.對于二次函數(shù)y=(x-2)2+2的圖象,下列說法正確的是()

A.開口向下B.對稱軸是x=-2

C.頂點坐標(biāo)是(-2,2)D.與x軸無交點

8.已知AB是。。的直徑,過點A的弦AD平行于半徑0C,若NA=70。,則NB等于()

6.如圖,在。0中,半徑OAL弦BC,/AOB=50。,點D在圓上,則NADC的度數(shù)是()

3.下列一元二次方程中,沒有實數(shù)根的是()

7907

A.4x~-5x+2=0B.x2-6x+9=0C.5x-4x-1=0D.3x-4x+l=0

9如圖,線段AB是。O的直徑,弦CD_LAB,ZCAB=20°,則NAOD等于()

A.160°B.150°C.140°D.120°

5.二次函數(shù)y=x?-2x+2與y軸交點坐標(biāo)為()

A.(0,1)B.(0,2)C.(0,-1)D.(0,-2)

8.如圖,的半徑為5,AB為弦,半徑OCLAB,垂足為點E,若CE=2,則AB的長

是()

1,若關(guān)于的為方程/+3%+0=0有一個根為-1,則。的值為

A.—4B.—2C.2D.――4

3.半徑為5的圓的一條弦長不可能是()

A.3B.5C.10D.12

9.如圖,在方格紙上建立的平面直角坐標(biāo)系中,將△ABO繞點O按順時針方向旋轉(zhuǎn)90。,

得△A,B,Cr,則點A,的坐標(biāo)為()

A.(3,1)B.(3,2)C.(2,3)D.(1,3)

3.二次函數(shù)y=(x-1)2+3的最小值是()

A.1B.-IC.-3D.3

2.如圖,A、B、C是OO上的三點,ZBOC=70°,則NA的度數(shù)為()

o

A.70°B.45°C.40°D.35°

5.如圖,已知PA、PB是。O的切線,A、B為切點,AC是。O的直徑,ZP=40°,則NBAC

的度數(shù)是()

2.在平面直角坐標(biāo)系中,點M(3,-5)關(guān)于原點對稱的點的坐標(biāo)是()

A.(-3,-5)B.(3,5)C.(5,-3)D.(-3,5)

8.在平面直角坐標(biāo)系中,點P(-2,3)與點Q關(guān)于原點對稱,則點Q的坐標(biāo)為()

A.(-2,-3)B.(3,-2)C.(2,3)D.(2,-3)

8.如圖所示,點A,B,C在圓O上,ZA=64°,則NBOC的度數(shù)是()

c

A.26°B.116°C.128°D.154°

8.如圖,AB是。O的直徑,BC是。。的弦?,若/AOC=80。,則NB的度數(shù)為()

A.30°B.35°C.40°D.45°

4.如圖,四邊形ABCD為。。的內(nèi)接四邊形,E是BC延長線上的一點,已知NBOD=100。,

則/DCE的度數(shù)為()

4-------E

A.40°B.60°C.50°D.80°

5.如圖,CD切。O于B,CO的延長線交。O于A,若NC=36。,則/ABD的度數(shù)是()

w

A.72°B.63°C.54°D.36°

.如圖,△ABC是等邊三角形,D是BC上一點,若將△ADC繞點A順時針旋轉(zhuǎn)n度后到

達AAEB的位置,則n的值為()

BD

A.45B.50C.60D.90

5.一元二次方程x?+3x-5=0的兩根為x”x2,則X]+X2的值是()

A.3B.5C.-3D.-5

6.從下列直角三角板與圓弧的位置關(guān)系中,可判斷圓弧為半圓的是()

2.如圖,將△ABC繞著點C按順時針方向旋轉(zhuǎn)20。,B點落在B,立置,A點落在A,位置,

若AC_LA,B一則NBAC的度數(shù)是()

10.如圖,在直角^OAB中,ZAOB=30°,OA=2,將AOAB繞點O逆時針旋轉(zhuǎn)n。得到△

OA-B",則/AQB、OA,大小分別為()

O

A.n",1B.n°,2C.n°-30°,1D.n°-30°,2

3.如圖,CD是。O的弦,直徑AB_LCD于點P,下列結(jié)論不正確的是()

B

A.CB=BDB-ZCDB="iZCOBC.ZCDB-ZBADD.ZOCD=ZOBD

3.如圖,BC是。O的直徑,點A是。O上異于B,C的一點,則NA的度數(shù)為()

A.60"B.70°C.80°D.90°

10.如圖,以等腰直角△ABC兩銳角頂點A、B為圓心作等圓,0A與。B恰好外切,若

AC=2,那么圖中兩個扇形(即陰影部分)的面積之和為()

13.如圖,圓錐體的高h=2j^cm,底面圓半徑r=2cm,則圓錐體的全面積為()cm2.

A.12nB.8nC.D.(46+4)n

11.如圖,△ABC中,ZC=70°,NB=30。,將△ABC繞點A順時針旋轉(zhuǎn)后,得到△AB,C,

且C在邊BC上,則/B,CB的度數(shù)為()

B,.

A.30°B.40°C.46°D.60°

5.如圖,點A、B、C在。O上,若NBAC=24。,則/BOC的度數(shù)是()

C.48°D.60°

8.如圖,在RtAABC中,ZBAC=90°.如果將該三角形繞點A按順時針方向旋轉(zhuǎn)到△ABQ

的位置,點&恰好落在邊BC的中點處.那么旋轉(zhuǎn)的角度等于()

A.55°B.60°C.65°D.80°

8.如圖,AB與。O相切于點B,AO的延長線交。O于點C,聯(lián)結(jié)BC,若/A=36。,則NC

D.27°

2、如圖,點D是等邊△ABC內(nèi)一點,如果△ABD繞點A逆時針旋轉(zhuǎn)后能與△ACE重合

則NDAE的度數(shù)是()

A、45°B、60°C、90°D、120°

10.一元二次方程x2—2x=0的實數(shù)根是.

11.已知反比例函數(shù)y=&(k為常數(shù),且kWO)的圖象位

X

13.直接寫出拋物線y=-1(x-4#+3的頂點坐標(biāo).

14.如圖,OO的半徑為4cm,BC是直徑,AC是。。的切線,若AB=10cm,那么AC=_

cm.

15.若扇形面積為ISncn?,半徑為6cm,則扇形的弧長是cm.

13.把一元二次方程(x-3)2=4化為一般形式為:,二次項為,

一次項系數(shù)為,常數(shù)項為.

15.拋物線y=2x2-bx+3的對稱軸是直線x=l,則b的值為.

17.函數(shù)y=2(x-4)2+5的頂點坐標(biāo)為.

11.若x=2為一元二次方程x2-ax-2=0的一根,則a=.

12.一個扇形的弧長是20ncm,面積是240ncm2,則這個扇形的圓心角是度.

13.某校準(zhǔn)備組織師生觀看北京奧運會球類比賽,在不同時間段里有3場比賽,其中2場是

乒乓球賽,1場是羽毛球賽,從中任意選看2場,則選看的2場恰好都是乒乓球比賽的概率

是.

12.把拋物線y=-x2先向上平移2個單位,再向左平移3個單位,所得的拋物線

15.如圖,把△ABC繞點C按順時針方向旋轉(zhuǎn)35。,得到△ABC,A,B,交AC于點D.若

ZA-DC=90",則NA=.

14.一個十字路口的交通信號每分鐘紅燈亮32秒,綠燈亮25秒,黃燈亮3秒.當(dāng)你抬頭看

信號燈時,是綠燈的概率是.

10.拋物線y=x2+2x+3的頂點坐標(biāo)是.

14.如圖,PA為。。的切線,A為切點,B是OP與。O的交點.若NP=20。,OA=3,則標(biāo)

的長為(結(jié)果保留n)

13.某樓盤2013年房價為每平方米8100元,經(jīng)過兩年連續(xù)降價后,2015年房價為7600元.設(shè)

該樓盤這兩年房價平均降低率為X,根據(jù)題意可列方程為.

11.如圖,在圓內(nèi)接四邊形ABCD中,NB=60°,AD

則ND=________

12.如圖,AB是。O的直徑,ZA=80°.

則NABC=.

11題圖

12題

15.若點A(a,3)與點8(-4,6)關(guān)于原點對稱,則a+6=.

11.扇形的半徑為9,且圓心角為120。,則它的弧長為.

16.已知關(guān)于x的方程x?—px+q=0的兩個根為0和—3,貝ljp=.q=.

10.如圖,轉(zhuǎn)盤中8個扇形的面積都相等,任意轉(zhuǎn)動轉(zhuǎn)盤1次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針指

向大于6的數(shù)的概率為.

11.把拋物線y=(X-1)2+2先向下平移2個單位,再向左平移1個單位后得到的拋物線

是.

12.已知扇形的圓心角為45。,半徑長為12,則該扇形的弧長為.

13.如圖,AB是。0的弦,AO的延長線交過點B的。O的切線于點C,如果/ABO=28。,

13.方程(x+2)(x-3)=x+2的解是.

14.二次函數(shù)y=x2-2x+3的最小值是.

13.已知扇形的面積為ISncn?,半徑長為5cm,則扇形周長為cm.

15.把拋物線y=-2x2先向左平移1個單位,再向下平移2個單位長度后,所得函數(shù)的表達

式為.

12.拋物線y=3x2的對稱軸是.

13.將拋物線y=2x2-1向下平移2個單位,所得拋物線的解析式是.

14.某型號的手機連續(xù)兩次降階,售價由原來的3600元降到2916元,設(shè)平均每次降價的百

分率為x,則可列出方程.

11.一元二次方程-3x2=5(x-3)的二次項系數(shù)是,常數(shù)項是

11.已知點M(3,-4)與點N關(guān)于原點O對稱,點N的坐標(biāo)為.

12.在半徑為12的。O中,60。圓心角所對的弧長是.

13.已知。。的半徑為5cm,弦CD=6cm,則圓心O到弦CD的距離是cm.

11.在平面直角坐標(biāo)系中,點A(-2,-3)關(guān)于原點對稱的點A,的坐標(biāo)是

11.等腰直角三角形AOB的頂點A在第二象限,ZABO=90°,點B的坐標(biāo)是(0,1).若

將^AOB繞點O順時針旋轉(zhuǎn)90。得到△A9B,,則點A的對應(yīng)點A,的坐標(biāo)是.

11.從分別標(biāo)有數(shù)-5,-2,-1,0,1,3,4的七張卡片中,隨機抽取一張,所抽卡片上數(shù)的絕

對值小于2的概率是.

13.二次函數(shù)y=-2(x-1)2-1,當(dāng)*=時,y的值最大.

14.二次函數(shù)y=x2+bx+3配方后為y=(x-2)2+k,則b=.

16.一個不透明的袋子中裝有若干個紅球,為了估計袋中紅球的個數(shù),小明在袋中放入20

個白球(每個球除顏色外其余都與紅球相同).搖勻后每次隨機從袋中摸出一個球,記下顏

色后放回袋中,通過大量重復(fù)摸球?qū)嶒灪蟀l(fā)現(xiàn),摸到白球的頻率是",則袋中紅球約為

5

__________個.

11、在平面直角坐標(biāo)系中,點A(-2,-3)關(guān)于原點對稱的點A,的坐標(biāo)是。

15.若關(guān)于x的一元二次方程mx2+3x+4=0有實數(shù)根,則m的取值范圍是.

13.已知一元二次方程X?-x-c=0有一個根為2,則常數(shù)c的值是.

14.投擲一枚質(zhì)地均勻的骰子,向上一面的點數(shù)大于4的概率是.

15.點(-2,1)關(guān)于原點對稱的點的坐標(biāo)為.

113.在一個不透明的口袋中,裝有若干個除顏色不同其余都相同的球,如果口袋中裝有3

個紅球且摸到紅球的概率為《,那么口袋中球的總個數(shù)為.

5

14.關(guān)于x的一元二次方程x2+2x+a=0的一個根為2,則它的另一個根為.

9.拋物線y=3(x-2)2+5的頂點坐標(biāo)是.

15.小李是9人隊伍中的一員,他們隨機排成一列隊伍,從1開始按順序報數(shù),小李報到偶

數(shù)的概率是.

13.如圖,將△ABC繞點C順時針方向旋轉(zhuǎn)50。得到△A,CB1若ACLAB,,則

ZBAC=.

A

16.如圖所示,轉(zhuǎn)盤被等分成十個扇形,并在上面依次標(biāo)有數(shù)字1,2,3,4,5,6,7,8,

9,10.自由轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)它停止轉(zhuǎn)動時,指針指向的數(shù)正好能被3整除的概率

是____________.

13.圓心角是60。的扇形的半徑為6,則這個扇形的面積是.

16.如圖,把△ABC繞點C按順時針方向旋轉(zhuǎn)35。,得到△ABC,A,B,交AC

于點D.若NA,DC=90。,則NA=.

15.已知扇形的半徑為3ctm,圓心角為120。,則此扇形的弧長是cm.

20.直徑為10cm的。O中,弦AB=5cm,則弦AB所對的圓周角是.

14.若修、&是方程5/+4%-3=0的兩個根,則芭-々

15.點A(-2,3)與點B(a,b)關(guān)于坐標(biāo)原點對稱,則a+b的值為.

15.如圖,AB是。O的弦,AC是。。的切線,A為切點,BC經(jīng)過圓心,若NB=25。,則

ZC的大小等于.

14.如圖,在。。中,弦AB的長為8cm,圓心。到AB的距離為3cm,則。O的半徑是

E

\0

11.口袋中放有3只紅球和11只黃球,這兩種球除顏色外沒有任何區(qū)別.隨機從口袋中任

取一只球,取到黃球的概率是.

12.在“文博會”期間,某公司展銷如圖所示的長方形工藝品,該工藝品長6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論