




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年山東省臨沂市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.函數(shù)y=sinx+cosx的最小值和最小正周期分別是()A.
B.-2,2π
C.
D.-2,π
2.A.B.C.D.
3.“x=-1”是“x2-1=0”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件
4.現(xiàn)無(wú)放回地從1,2,3,4,5,6這6個(gè)數(shù)字中任意取兩個(gè),兩個(gè)數(shù)均為偶數(shù)的概率是()A.1/5B.1/4C.1/3D.1/2
5.已知sin(5π/2+α)=1/5,那么cosα=()A.-2/5B.-1/5C.1/5D.2/5
6.若是兩條不重合的直線表示平面,給出下列正確的個(gè)數(shù)()(1)(2)(3)(4)A.lB.2C.3D.4
7.為了得到函數(shù)y=sin1/3x的圖象,只需把函數(shù)y=sinx圖象上所有的點(diǎn)的()A.橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,縱坐標(biāo)不變
B.橫坐標(biāo)縮小到原來(lái)的1/3倍,縱坐標(biāo)不變
C.縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,橫坐標(biāo)不變
D.縱坐標(biāo)縮小到原來(lái)的1/3倍,橫坐標(biāo)不變
8.已知全集U=R,集合A={x|x>2},則CuA=()A.{x|x≤1}B.{x|x<1}C.{x|x<2}D.{x|x≤2}
9.己知向量a=(3,-2),b=(-1,1),則3a+2b
等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)
10.若sinα=-3cosα,則tanα=()A.-3B.3C.-1D.1
11.A.1B.-1C.2D.-2
12.已知互相垂直的平面α,β交于直線l若直線m,n滿足m⊥a,n⊥β則()A.m//LB.m//nC.n⊥LD.m⊥n
13.A.B.C.D.
14.(X-2)6的展開(kāi)式中X2的系數(shù)是D()A.96B.-240C.-96D.240
15.直線以互相平行的一個(gè)充分條件為()A.以都平行于同一個(gè)平面
B.與同一平面所成角相等
C.平行于所在平面
D.都垂直于同一平面
16.若a,b兩直線異面垂直,b,c兩直線也異面垂直,則a,c的位置關(guān)系()A.平行B.相交、異面C.平行、異面D.相交、平行、異面
17.A.0
B.C.1
D.-1
18.已知a=(1,2),則|a|=()A.1
B.2
C.3
D.
19.“沒(méi)有公共點(diǎn)”是“兩條直線異面”的()A.充分而不必要條件B.充分必要條件C.必要而不充分條件D.既不充分也不必要條件
20.若函數(shù)y=log2(x+a)的反函數(shù)的圖像經(jīng)過(guò)點(diǎn)P(-1,0),則a的值為()A.-2
B.2
C.
D.
二、填空題(10題)21.Ig2+lg5=_____.
22.已知_____.
23.在:Rt△ABC中,已知C=90°,c=,b=,則B=_____.
24.正方體ABCD-A1B1C1D1中AC與AC1所成角的正弦值為
。
25.
26.已知正實(shí)數(shù)a,b滿足a+2b=4,則ab的最大值是____________.
27.橢圓x2/4+y2/3=1的短軸長(zhǎng)為_(kāi)__.
28.
29.在△ABC中,C=60°,AB=,BC=,那么A=____.
30.若復(fù)數(shù),則|z|=_________.
三、計(jì)算題(10題)31.近年來(lái),某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。
32.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).
33.解不等式4<|1-3x|<7
34.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
35.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.
36.己知直線l與直線y=2x+5平行,且直線l過(guò)點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
37.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
38.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
39.某小組有6名男生與4名女生,任選3個(gè)人去參觀某展覽,求(1)3個(gè)人都是男生的概率;(2)至少有兩個(gè)男生的概率.
40.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
四、簡(jiǎn)答題(10題)41.三個(gè)數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。
42.等比數(shù)列{an}的前n項(xiàng)和Sn,已知S1,S3,S2成等差數(shù)列(1)求數(shù)列{an}的公比q(2)當(dāng)a1-a3=3時(shí),求Sn
43.已知cos=,,求cos的值.
44.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
45.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點(diǎn)B到平面PCD的距離。
46.已知是等差數(shù)列的前n項(xiàng)和,若,.求公差d.
47.已知等差數(shù)列{an},a2=9,a5=21(1)求{an}的通項(xiàng)公式;(2)令bn=2n求數(shù)列{bn}的前n項(xiàng)和Sn.
48.如圖:在長(zhǎng)方體從中,E,F(xiàn)分別為和AB和中點(diǎn)。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。
49.化簡(jiǎn)
50.四棱錐S-ABCD中,底面ABOD為平行四邊形,側(cè)面SBC丄底面ABCD(1)證明:SA丄BC
五、解答題(10題)51.
52.如圖,ABCD-A1B1C1D1為長(zhǎng)方體.(1)求證:B1D1//平面BC1D;(2)若BC=CC1,,求直線BC1與平面ABCD所成角的大小.
53.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1時(shí)有極值0.(1)求常數(shù)a,b的值;(2)求f(x)的單調(diào)區(qū)間.
54.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒(méi)有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
55.已知函數(shù)f(x)=log21+x/1-x.(1)求f(x)的定義域;(2)討論f(x)的奇偶性;(3)用定義討論f(x)的單調(diào)性.
56.
57.已知函數(shù)f(x)=2sin(x-π/3).(1)寫出函數(shù)f(x)的周期;(2)將函數(shù)f(x)圖象上所有的點(diǎn)向左平移π/3個(gè)單位,得到函數(shù)g(x)的圖象,寫出函數(shù)g(x)的表達(dá)式,并判斷函數(shù)g(x)的奇偶性.
58.給定橢圓C:x2/a2+y2/b2(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓已知橢圓C的離心率為/2,且經(jīng)過(guò)點(diǎn)(0,1).(1)求橢圓C的方程;(2)求直線l:x—y+3=0被橢圓C的伴隨圓C1所截得的弦長(zhǎng).
59.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
60.設(shè)函數(shù)f(x)=2x3+3ax2+3bx+8c在x=1及x=2時(shí)取得極值.(1)求a,b的值;(2)若對(duì)于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范圍.</c
六、單選題(0題)61.根據(jù)如圖所示的框圖,當(dāng)輸入z為6時(shí),輸出的y=()A.1B.2C.5D.10
參考答案
1.A三角函數(shù)的性質(zhì),周期和最值.因?yàn)閥=,所以當(dāng)x+π/4=2kπ-π/2k∈Z時(shí),ymin=T=2π.
2.C
3.A命題的條件.若x=-1則x2=1,若x2=1則x=±1,
4.A
5.C同角三角函數(shù)的計(jì)算sin(5π/2+α)=sin(π/2+α)=cosα=-1/5.
6.B若兩條不重合的直線表示平面,由直線和平面之間的關(guān)系可知(1)、(4)正確。
7.A三角函數(shù)圖像的性質(zhì).y=sinx橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,縱坐標(biāo)不變y=sin1/3x.
8.D補(bǔ)集的計(jì)算.由A={x|x>2},全集U=R,則CuA={x|x≤2}
9.D
10.A同角三角函數(shù)的變換.若cosα=0,則sinα=0,顯然不成立,所以cosα≠0,所以sinα/cosα=tanα=-3.
11.A
12.C直線與平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因?yàn)閚⊥β,所以n⊥L.
13.C
14.D
15.D根據(jù)直線與平面垂直的性質(zhì)定理,D正確。
16.Da,c與b均為異面垂直,c與a有可能相交、平行和異面,
17.D
18.D向量的模的計(jì)算.|a|=
19.C
20.D
21.1.對(duì)數(shù)的運(yùn)算.lg2+lg5==lg(2×5)=lgl0=l.
22.-1,
23.45°,由題可知,因此B=45°。
24.
,由于CC1=1,AC1=,所以角AC1C的正弦值為。
25.√2
26.2基本不等式求最值.由題
27.2橢圓的定義.因?yàn)閎2=3,所以b=短軸長(zhǎng)2b=2
28.(3,-4)
29.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由題知BC<AB,得A<C,所以A=45°.
30.
復(fù)數(shù)的模的計(jì)算.
31.
32.
33.
34.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
35.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
36.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過(guò)點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時(shí),y=-4∴直線l在y軸上的截距為-4
37.
38.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
39.
40.
41.由已知得:由上可解得
42.
43.
44.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過(guò)O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點(diǎn),過(guò)O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
45.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設(shè)點(diǎn)B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=
PD=PC=2
46.根據(jù)等差數(shù)列前n項(xiàng)和公式得解得:d=4
47.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴數(shù)列為首項(xiàng)b1=32,q=16的等比數(shù)列
48.
49.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
50.證明:作SO丄BC,垂足為O,連接AO∵側(cè)面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形則OA丄OB得SA丄BC
51.
52.(1)ABCD-A1B1C1D1為長(zhǎng)方體,所以B1D1//BD,又BD包含于平面BC1D,B1D1不包含BC1D,所以B1D1//平面BC1D(2)因?yàn)锳BCD-A1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 計(jì)算機(jī)一級(jí)??荚囶}及答案
- 植物學(xué)練習(xí)題庫(kù)(附答案)
- 電梯廣告投放合同協(xié)議書(shū)
- 租賃合同終止合同范本
- 建筑施工項(xiàng)目承包合同轉(zhuǎn)讓范本
- 最明確的借款合同
- 建筑設(shè)備租賃的合同范本
- 房地產(chǎn)開(kāi)發(fā)公司勞動(dòng)合同模板
- 二手車購(gòu)銷及售后服務(wù)合同
- 生態(tài)綠化養(yǎng)護(hù)與管理合同
- 用戶體驗(yàn)與用戶界面設(shè)計(jì)培訓(xùn):提高用戶體驗(yàn)與用戶界面設(shè)計(jì)的技術(shù)與方法
- 小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)數(shù)學(xué)廣角鴿巢問(wèn)題教學(xué)課件22
- 國(guó)際貿(mào)易概論(第四版) 課件全套 姚大偉 第1-5單元 國(guó)際貿(mào)易基礎(chǔ)理論 -“互聯(lián)網(wǎng) +”時(shí)代背景下的國(guó)際貿(mào)易新發(fā)展
- 新規(guī)公路橋臺(tái)抗震計(jì)算程序
- 第九章 公共政策評(píng)估
- 浙江省殘疾兒童康復(fù)服務(wù)記錄表
- APQP第四版講義培訓(xùn)
- 國(guó)家中小學(xué)智慧教育平臺(tái)使用案例
- 周三多《管理學(xué)原理與方法》第七版筆記整理
- 2.PaleoScan詳細(xì)操作流程
- 駕駛員從業(yè)資格證電子版
評(píng)論
0/150
提交評(píng)論