版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年吉林省四平市普通高校對口單招數(shù)學(xué)自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.若不等式|ax+2|<6的解集是{x|-1<x<2},則實(shí)數(shù)a等于()A.8B.2C.-4D.-8
2.A.負(fù)數(shù)B.正數(shù)C.非負(fù)數(shù)D.非正數(shù)
3.點(diǎn)A(a,5)到直線如4x-3y=3的距離不小于6時,則a的取值為()A.(-3,2)B.(-3,12)C.(-,-3][12,+)D.(-,-3)(12,+)
4.下列函數(shù)中,是增函數(shù),又是奇函數(shù)的是(〕A.y=
B.y=1/x
C.y=x2
D.y=x1/3
5.若實(shí)數(shù)a,b滿足a+b=2,則3a+3b的最小值是()A.18
B.6
C.
D.
6.下列四個命題:①垂直于同一條直線的兩條直線相互平行;②垂直于同一個平面的兩條直線相互平行;③垂直于同一條直線的兩個平面相互平行;④垂直于同一個平面的兩個平面相互平行.其中正確的命題有()A.1個B.2個C.3個D.4個
7.已知平面向量a=(1,3),b(-1,1),則ab=A.(0,4)B.(-1,3)C.0D.2
8.設(shè)集合,則MS等于()A.{x|x>}
B.{x|x≥}
C.{x|x<}
D.{x|x≤}
9.A.11B.99C.120D.121
10.等差數(shù)列中,a1=3,a100=36,則a3+a98=()A.42B.39C.38D.36
11.設(shè)集合{x|-3<2x-1<3},集合B為函數(shù)y=lg(x-1)的定義域,則A∩B=()A.(1,2)B.[1,2]C.[1,2)D.(1,2]
12.以點(diǎn)(2,0)為圓心,4為半徑的圓的方程為()A.(x-2)2+y2=16
B.(x-2)2+y2=4
C.(x+2)2+y2=46
D.(x+2)2+y2=4
13.A.15,5,25B.15,15,15C.10,5,30D.15,10,20
14.己知向量a
=(2,1),b
=(-1,2),則a,b之間的位置關(guān)系為()A.平行B.不平行也不垂直C.垂直D.以上都不對
15.設(shè)x∈R,則“x>1”是“x3>1”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件
16.對于數(shù)列0,0,0,...,0,...,下列表述正確的是()A.是等比但不是等差數(shù)列B.既是等差又是等比數(shù)列C.既不是等差又不是等比數(shù)列D.是等差但不是等比數(shù)列
17.為了了解全校240名學(xué)生的身高情況,從中抽取240名學(xué)生進(jìn)行測量,下列說法正確的是()A.總體是240B.個體是每-個學(xué)生C.樣本是40名學(xué)生D.樣本容量是40
18.從1,2,3,4這4個數(shù)中任取兩個數(shù),則取出的兩數(shù)都是奇數(shù)的概率是()A.2/3B.1/2C.1/6D.1/3
19.已知集合A={x|x>2},B={x|1<x<3},則A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}
20.A.一B.二C.三D.四
二、填空題(10題)21.已知函數(shù)f(x)=ax3的圖象過點(diǎn)(-1,4),則a=_______.
22.某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A種型號產(chǎn)品有6件,那么n=
。
23.
24.
25.
26.若lgx=-1,則x=______.
27.
28.
29.
30.若事件A與事件ā互為對立事件,且P(ā)=P(A),則P(ā)=
。
三、計算題(10題)31.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
32.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
33.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.
34.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
35.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
36.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
37.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
38.己知直線l與直線y=2x+5平行,且直線l過點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
39.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
40.解不等式4<|1-3x|<7
四、簡答題(10題)41.已知函數(shù),且.(1)求a的值;(2)求f(x)函數(shù)的定義域及值域.
42.已知平行四邊形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中點(diǎn),求。
43.己知邊長為a的正方形ABCD,PA丄底面ABCD,PA=a,求證,PC丄BD
44.設(shè)拋物線y2=4x與直線y=2x+b相交A,B于兩點(diǎn),弦AB長,求b的值
45.已知函數(shù):,求x的取值范圍。
46.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當(dāng)x<0時,判斷f(x)的單調(diào)性并加以證明.
47.解關(guān)于x的不等式
48.等差數(shù)列的前n項和為Sn,已知a10=30,a20=50。(1)求通項公式an。(2)若Sn=242,求n。
49.求過點(diǎn)P(2,3)且被兩條直線:3x+4y-7=0,:3x+4y+8=0所截得的線段長為的直線方程。
50.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點(diǎn)恰好是坐標(biāo)原點(diǎn),求直線l的方程.
五、解答題(10題)51.如圖,AB是⊙O的直徑,P是⊙O所在平面外一點(diǎn),PA垂直于⊙O所在的平面,且PA=AB=10,設(shè)點(diǎn)C為⊙O上異于A,B的任意一點(diǎn).(1)求證:BC⊥平面PAC;(2)若AC=6,求三棱錐C-PAB的體積.
52.如圖,ABCD-A1B1C1D1為長方體.(1)求證:B1D1//平面BC1D;(2)若BC=CC1,,求直線BC1與平面ABCD所成角的大小.
53.已知a為實(shí)數(shù),函數(shù)f(x)=(x2+l)(x+a).若f(-1)=0,求函數(shù):y=f(x)在[-3/2,1]上的最大值和最小值。
54.
55.如圖,在三棱錐A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直線AD與平面BCD所成的角為45°點(diǎn)E,F(xiàn)分別是AC,AD的中點(diǎn).(1)求證:EF//平面BCD;(2)求三棱錐A-BCD的體積.
56.
57.
58.已知函數(shù)f(x)=log21+x/1-x.(1)求f(x)的定義域;(2)討論f(x)的奇偶性;(3)用定義討論f(x)的單調(diào)性.
59.已知公差不為零的等差數(shù)列{an}的前4項和為10,且a2,a3,a7成等比數(shù)列.(1)求通項公式an;(2)設(shè)bn=2an求數(shù)列{bn}的前n項和Sn.
60.如圖,在正方體ABCD—A1B1C1D1中,E,F(xiàn)分別為棱AD,AB的中點(diǎn).(1)求證:EF//平面CB1D1;(2)求證:平面CAA1C1丄平面CB1D1
六、單選題(0題)61.已知互為反函數(shù),則k和b的值分別是()A.2,
B.2,
C.-2,
D.-2,
參考答案
1.C
2.C
3.C
4.D函數(shù)奇偶性和單調(diào)性的判斷.奇函數(shù)只有B,D,而B不是增函數(shù).
5.B不等式求最值.3a+3b≥2
6.B直線與平面垂直的性質(zhì),空間中直線與直線之間的位置關(guān)系.①垂直于同一條直線的兩條直線相互平行,不正確,如正方體的一個頂角的三個邊就不成立;②垂直于同一個平面的兩條直線相互平行,根據(jù)線面垂直的性質(zhì)定理可知正確;③垂直于同一條直線的兩個平面相互平行,根據(jù)面面平行的判定定理可知正確;④垂直于同一個平面的兩個平面相互平行,不正確,如正方體相鄰的三個面就不成立.
7.D
8.A由于MS表示既屬于集合M又屬于集合的所有元素的集合,因此MS=。
9.C
10.B
11.D不等式的計算,集合的運(yùn)算.由題知A=[-1,2],B=(1,+∞),∴A∩B=(1,2]
12.A圓的方程.當(dāng)圓心坐標(biāo)為(x0,y0)時,圓的-般方程為(x-x0)2+(y-y0)2=r2.
13.D
14.C
15.C充分條件,必要條件,充要條件的判斷.由x>1知,x3>1;由x3>1可推出x>1.
16.D
17.D確定總體.總體是240名學(xué)生的身高情況,個體是每一個學(xué)生的身高,樣本是40名學(xué)生的身髙,樣本容量是40.
18.C古典概型.任意取到兩個數(shù)的方法有6種:1,2;1,3;1,4;2,3;2,4;3,4;,滿足題意的有1種:1,3;則要求的概率為1/6.
19.C集合的運(yùn)算.由已知條件得,A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}
20.A
21.-2函數(shù)值的計算.由函數(shù)f(x)=ax3-2x過點(diǎn)(-1,4),得4=a(-1)3-2×(-1),解得a=-2.
22.72
23.-2i
24.
25.
26.1/10對數(shù)的運(yùn)算.x=10-1=1/10
27.12
28.75
29.2
30.0.5由于兩個事件是對立事件,因此兩者的概率之和為1,又兩個事件的概率相等,因此概率均為0.5.
31.
32.
33.
34.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
35.
36.
37.
38.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時,y=-4∴直線l在y軸上的截距為-4
39.
40.
41.(1)(2)
42.平行四邊形ABCD,CD為AB平移所得,從B點(diǎn)開始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中點(diǎn),E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
43.證明:連接ACPA⊥平面ABCD,PC是斜線,BD⊥ACPC⊥BD(三垂線定理)
44.由已知得整理得(2x+m)2=4x即∴再根據(jù)兩點(diǎn)間距離公式得
45.
X>4
46.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵
∴
若時
故當(dāng)X<-1時為增函數(shù);當(dāng)-1≤X<0為減函數(shù)
47.
48.
49.x-7y+19=0或7x+y-17=0
50.
51.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB為⊙O的直徑,C為⊙O上異于A、B的-點(diǎn),AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC為直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB=1/3×SPAC×BC=1/3×30×8=80
52.(1)ABCD-A1B1C1D1為長方體,所以B1D1//BD,又BD包含于平面BC1D,B1D1不包含BC1D,所以B1D1//平面BC1D(2)因?yàn)锳BCD-A1B1C1D1為長方體,CC1⊥平面ABCD,所以BC為BC1在平面ABCD內(nèi)的射影,所以角C1BC為與ABCD夾角,在Rt△C1BC,BC=CC1所以角C1BC=45°,所以直線BC1與平面ABCD所成角的大小為45°.
53.
54.
55.
56.
57.
58.(1)要使函數(shù)f(x)=㏒21+x/1-x有意義,則須1+x/1-x>0解得-1<x<1,所以f(x)的定義域?yàn)閧x|-1<x<1}.(2)因?yàn)閒(x)的定義域?yàn)閧x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 5-氰基異喹啉行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 書店裝修改造合同樣本
- 豪華酒店套房設(shè)計合同范例
- 湖北醫(yī)藥學(xué)院《融合教育理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度食品展會贊助與宣傳合作合同3篇
- 2025年戶外活動租賃合同3篇
- 2025年度食用油出口業(yè)務(wù)合作合同范本3篇
- 2025年度舞臺搭建與舞臺背景設(shè)計合同3篇
- 2025年度融媒體中心(二零二五版)體育賽事報道及媒體合作合同3篇
- 2024銷售行業(yè)居間服務(wù)合同范本
- 公務(wù)員考試工信部面試真題及解析
- GB/T 15593-2020輸血(液)器具用聚氯乙烯塑料
- 2023年上海英語高考卷及答案完整版
- 西北農(nóng)林科技大學(xué)高等數(shù)學(xué)期末考試試卷(含答案)
- 金紅葉紙業(yè)簡介-2 -紙品及產(chǎn)品知識
- 《連鎖經(jīng)營管理》課程教學(xué)大綱
- 《畢淑敏文集》電子書
- 頸椎JOA評分 表格
- 員工崗位能力評價標(biāo)準(zhǔn)
- 定量分析方法-課件
- 朱曦編著設(shè)計形態(tài)知識點(diǎn)
評論
0/150
提交評論