版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年湖北省宜昌市普通高校對口單招數(shù)學(xué)自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.A.(1,2)B.(-1,2)C.(-1,-2)D.(1,-2)
2.cos240°=()A.1/2
B.-1/2
C./2
D.-/2
3.已知logN10=,則N的值是()A.
B.
C.100
D.不確定
4.設(shè)復(fù)數(shù)z滿足z+i=3-i,則=()A.-1+2iB.1-2iC.3+2iD.3-2i
5.公比為2的等比數(shù)列{an}的各項都是正數(shù),且a3a11=16,則a5=()A.1B.2C.4D.8
6.A.
B.
C.
7.直線2x-y+7=0與圓(x-b2)+(y-b2)=20的位置關(guān)系是()A.相離B.相交但不過圓心C.相交且過圓心D.相切
8.設(shè)集合,則A與B的關(guān)系是()A.
B.
C.
D.
9.某中學(xué)有高中生3500人,初中生1500人.為了解學(xué)生的學(xué)習(xí)情況,用分層抽樣的方法從該校學(xué)生中抽取一個容量為n的樣本,已知從高中生中抽取70人,則n為()A.100B.150C.200D.250
10.在等差數(shù)列{an}中,若a3+a17=10,則S19等于()A.65B.75C.85D.95
11.不等式組的解集是()A.{x|0<x<2}
B.{x|0<x<2.5}
C.{x|0<x<}
D.{x|0<x<3}
12.為了了解全校240名學(xué)生的身高情況,從中抽取240名學(xué)生進(jìn)行測量,下列說法正確的是()A.總體是240B.個體是每-個學(xué)生C.樣本是40名學(xué)生D.樣本容量是40
13.下列句子不是命題的是A.5+1-3=4
B.正數(shù)都大于0
C.x>5
D.
14.下列四個命題:①垂直于同一條直線的兩條直線相互平行;②垂直于同一個平面的兩條直線相互平行;③垂直于同一條直線的兩個平面相互平行;④垂直于同一個平面的兩個平面相互平行.其中正確的命題有()A.1個B.2個C.3個D.4個
15.不等式lg(x-1)的定義域是()A.{x|x<0}B.{x|1<x}C.{x|x∈R}D.{x|0<x<1}
16.已知過點A(0,-1),點B在直線x-y+1=0上,直線AB的垂直平分線x+2y-3=0,則點B的坐標(biāo)是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)
17.A.
B.
C.
D.
18.設(shè)a>b,c>d則()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be
19.橢圓9x2+16y2=144短軸長等于()A.3B.4C.6D.8
20.已知P:x1,x2是方程x2-2y-6=0的兩個根,Q:x1+x2=-5,則P是Q的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件
二、填空題(10題)21.
22.設(shè)等差數(shù)列{an}的前n項和為Sn,若S8=32,則a2+2a5十a(chǎn)6=_______.
23.
24.以點(1,0)為圓心,4為半徑的圓的方程為_____.
25.圓心在直線2x-y-7=0上的圓C與y軸交于兩點A(0,-4),B(0,一2),則圓C的方程為___________.
26.的展開式中,x6的系數(shù)是_____.
27.
28.若函數(shù)_____.
29.函數(shù)的最小正周期T=_____.
30.設(shè)x>0,則:y=3-2x-1/x的最大值等于______.
三、計算題(10題)31.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
32.有語文書3本,數(shù)學(xué)書4本,英語書5本,書都各不相同,要把這些書隨機(jī)排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。
33.解不等式4<|1-3x|<7
34.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).
35.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
36.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
37.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
38.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.
39.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
40.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.
四、簡答題(10題)41.已知雙曲線C:的右焦點為,且點到C的一條漸近線的距離為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)P為雙曲線C上一點,若|PF1|=,求點P到C的左焦點的距離.
42.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時,判斷函數(shù)的單調(diào)性并加以證明。
43.已知拋物線y2=4x與直線y=2x+b相交與A,B兩點,弦長為,求b的值。
44.在拋物線y2=12x上有一弦(兩端點在拋物線上的線段)被點M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長度.
45.已知函數(shù),且.(1)求a的值;(2)求f(x)函數(shù)的定義域及值域.
46.已知等差數(shù)列的前n項和是求:(1)通項公式(2)a1+a3+a5+…+a25的值
47.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點B到平面PCD的距離。
48.在1,2,3三個數(shù)字組成無重復(fù)數(shù)字的所有三位數(shù)中,隨機(jī)抽取一個數(shù),求:(1)此三位數(shù)是偶數(shù)的概率;(2)此三位數(shù)中奇數(shù)相鄰的概率.
49.已知函數(shù):,求x的取值范圍。
50.點A是BCD所在平面外的一點,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
五、解答題(10題)51.已知橢圓C:x2/a2+y2/b2=1(a>b>0)的離心率為,在C上;(1)求C的方程;(2)直線L不過原點O且不平行于坐標(biāo)軸,L與C有兩個交點A,B,線段AB的中點為M.證明:直線OM的斜率與直線L的斜率的乘積為定值.
52.已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為F1和F2,且|F1F2|=2,點(1,3/2)在該橢圓上.(1)求橢圓C的方程;(2)過F1的直線L與橢圓C相交于A,B兩點,以F2為圓心為半徑的圓與直線L相切,求△AF2B的面積.
53.如圖,在四棱錐P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求證:DC丄平面PAC;(2)求證:平面PAB丄平面PAC.
54.設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).(1)若曲線y=f(x)在點(2,f(x))處與直線y=8相切,求a,b的值;(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點.
55.已知圓X2+y2=5與直線2x-y-m=0相交于不同的A,B兩點,O為坐標(biāo)原點.(1)求m的取值范圍;(2)若OA丄OB,求實數(shù)m的值.
56.
57.
58.
59.
60.已知數(shù)列{an}是首項和公差相等的等差數(shù)列,其前n項和為Sn,且S10=55.(1)求an和Sn(2)設(shè)=bn=1/Sn,數(shù)列{bn}的前n項和為T=n,求Tn的取值范圍.
六、單選題(0題)61.下列函數(shù)為偶函數(shù)的是A.B.C.
參考答案
1.D
2.B誘導(dǎo)公式的運用.cos240°=cos(60°+180°)=-cos60°=-1/2
3.C由題可知:N1/2=10,所以N=100.
4.C復(fù)數(shù)的運算.由z+i=3-i,得z=3-2i,∴z=3+2i.
5.A
6.A
7.D由題可知,直線2x-y+7=0到圓(x-b)2+(y-b)2=20的距離等于半徑,所以二者相切。
8.A
9.A分層抽樣方法.樣本抽取比70/3500=1/50例為該???cè)藬?shù)為1500+3500=5000,則=n/5000=1/50,∴n=100.
10.D
11.C由不等式組可得,所以或,由①可得,求得;由②可得,求得,綜上可得。
12.D確定總體.總體是240名學(xué)生的身高情況,個體是每一個學(xué)生的身高,樣本是40名學(xué)生的身髙,樣本容量是40.
13.C
14.B直線與平面垂直的性質(zhì),空間中直線與直線之間的位置關(guān)系.①垂直于同一條直線的兩條直線相互平行,不正確,如正方體的一個頂角的三個邊就不成立;②垂直于同一個平面的兩條直線相互平行,根據(jù)線面垂直的性質(zhì)定理可知正確;③垂直于同一條直線的兩個平面相互平行,根據(jù)面面平行的判定定理可知正確;④垂直于同一個平面的兩個平面相互平行,不正確,如正方體相鄰的三個面就不成立.
15.B
16.B由于B在直線x-y+1=0上,所以可以設(shè)B的坐標(biāo)為(x,x+1),AB的斜率為,垂直平分線的斜率為,所以有,因此點B的坐標(biāo)為(2,3)。
17.A
18.B不等式的性質(zhì)。由不等式性質(zhì)得B正確.
19.C
20.A根據(jù)根與系數(shù)的關(guān)系,可知由P能夠得到Q,而已知x1+x2=5,并不能推出二者是原方程的根,所以P是Q的充分條件。
21.
22.16.等差數(shù)列的性質(zhì).由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.
23.-2i
24.(x-1)2+y2=16圓的方程.當(dāng)圓心坐標(biāo)為(x0,y0)時,圓的-般方程為(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16
25.(x-2)2+(y+3)2=5圓的方程.圓心在AB中垂線y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圓C的方程為(x-2)2+(y+3)2=5
26.1890,
27.
28.1,
29.
,由題可知,所以周期T=
30.
基本不等式的應(yīng)用.
31.
32.
33.
34.
35.
36.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
37.
38.
39.
40.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
41.(1)∵雙曲線C的右焦點為F1(2,0),∴c=2又點F1到C1的一條漸近線的距離為,∴,即以解得b=
42.(1)-1<x<1(2)奇函數(shù)(3)單調(diào)遞增函數(shù)
43.
44.∵(1)這條弦與拋物線兩交點
∴
45.(1)(2)
46.
47.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設(shè)點B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=
PD=PC=2
48.1,2,3三個數(shù)字組成無重復(fù)數(shù)字的所有三位數(shù)共有(1)其中偶數(shù)有,故所求概率為(2)其中奇數(shù)相鄰的三位數(shù)有個故所求概率為
49.
X>4
50.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點O,以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
51.
52.
以F2為圓心為半徑的圓的方程為(x-l)22+y2=2①當(dāng)直線l⊥x軸時,與圓不相切,不符合題意.②當(dāng)直線l與x不垂直時,設(shè)直線的方程為y=k(x+1),由圓心到直線的距離等
53.(1)∵PC丄平面ABCD,DC包含于平面ABCD,∴PC丄DC.又AC丄DC,PC∩AC=C,PC包含于平面PAC,AC包含于平面PAC,∴CD丄平面PAC.(2)證明∵AB//CD,CD丄平面PAC,∴AB丄平面PAC,AB包含于平面PAB,∴平面PAB丄平面PAC.
54.(1)f(x)=3x2-3a,∵曲線:y=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 青少年如何預(yù)防糖尿病
- 成都高爾夫球場租賃合同范本
- 電力公司入駐管理
- 酒店網(wǎng)絡(luò)營銷人員勞動合同模板
- 融資風(fēng)險防范確保企業(yè)資金安全
- 智能家居招投標(biāo)基本知識介紹
- 國有企業(yè)采購政策制定
- 電力工程鋼板租賃協(xié)議
- 市場營銷技能工資管理
- 環(huán)保科技公司人事經(jīng)理聘用合同
- 上海市中考英語試卷及答案
- 智能建筑的通信網(wǎng)絡(luò)
- 言語理解與表達(dá)的真題全面
- 人體常見病 知到智慧樹網(wǎng)課答案
- SJG 164-2024 自密實混凝土應(yīng)用技術(shù)規(guī)程
- 2024年上海市中考語文一輪復(fù)習(xí):教材知識點歸納
- 臨床醫(yī)學(xué)職業(yè)生涯規(guī)劃
- 幼兒園課程故事開展培訓(xùn)
- 《電力建設(shè)施工技術(shù)規(guī)范 第3部分:汽輪發(fā)電機(jī)組》DLT 5190.3
- 重大版小學(xué)英語六年級上冊全冊教案
- 跌倒墜床護(hù)理個案分析
評論
0/150
提交評論