版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣22.如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口,4小時后貨船在小島的正東方向,則貨船的航行速度是()A.7海里/時 B.7海里/時 C.7海里/時 D.28海里/時3.如圖,在平面直角坐標系中,△ABC位于第二象限,點B的坐標是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關(guān)于于x軸對稱的△A2B2C2,則點B的對應(yīng)點B2的坐標是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)4.如圖,已知菱形ABCD的對角線AC.BD的長分別為6cm、8cm,AE⊥BC于點E,則AE的長是()A. B. C. D.5.如圖所示,在平面直角坐標系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為().A.3 B. C. D.6.如果兩圓只有兩條公切線,那么這兩圓的位置關(guān)系是()A.內(nèi)切 B.外切 C.相交 D.外離7.如圖,數(shù)軸上的四個點A,B,C,D對應(yīng)的數(shù)為整數(shù),且AB=BC=CD=1,若|a|+|b|=2,則原點的位置可能是()A.A或B B.B或C C.C或D D.D或A8.a(chǎn)、b是實數(shù),點A(2,a)、B(3,b)在反比例函數(shù)y=﹣的圖象上,則()A.a(chǎn)<b<0 B.b<a<0 C.a(chǎn)<0<b D.b<0<a9.如圖,在△ABC中,DE∥BC交AB于D,交AC于E,錯誤的結(jié)論是(
).A. B. C. D.10.下列計算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a(chǎn)2+a3=a5 D.(a2)3=a611.的值是A.±3 B.3 C.9 D.8112.為了支援地震災(zāi)區(qū)同學,某校開展捐書活動,九(1)班40名同學積極參與.現(xiàn)將捐書數(shù)量繪制成頻數(shù)分布直方圖如圖所示,則捐書數(shù)量在5.5~6.5組別的頻率是()A.0.1 B.0.2C.0.3 D.0.4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發(fā),沿BC以2cm/s的速度向點C移動,點Q從點C出發(fā),以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設(shè)運動時間為ts,當t=__________時,△CPQ與△CBA相似.14.如圖,正方形ABCD的邊長為,點E在對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為點F,則EF的長是__________.15.已知,正六邊形的邊長為1cm,分別以它的三個不相鄰的頂點為圓心,1cm長為半徑畫?。ㄈ鐖D),則所得到的三條弧的長度之和為__________cm(結(jié)果保留π).16.若點A(1,m)在反比例函數(shù)y=的圖象上,則m的值為________.17.如圖,分別以正六邊形相間隔的3個頂點為圓心,以這個正六邊形的邊長為半徑作扇形得到“三葉草”圖案,若正六邊形的邊長為3,則“三葉草”圖案中陰影部分的面積為_____(結(jié)果保留π)18.已知是銳角,那么cos=_________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,點P從點A出發(fā),沿折線AB﹣BC向終點C運動,在AB上以每秒8個單位長度的速度運動,在BC上以每秒2個單位長度的速度運動,點Q從點C出發(fā),沿CA方向以每秒個單位長度的速度運動,兩點同時出發(fā),當點P停止時,點Q也隨之停止.設(shè)點P運動的時間為t秒.(1)求線段AQ的長;(用含t的代數(shù)式表示)(2)當點P在AB邊上運動時,求PQ與△ABC的一邊垂直時t的值;(3)設(shè)△APQ的面積為S,求S與t的函數(shù)關(guān)系式;(4)當△APQ是以PQ為腰的等腰三角形時,直接寫出t的值.20.(6分)一個不透明的口袋中裝有2個紅球、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.21.(6分)初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結(jié)果精確到0.01米)22.(8分)如圖,△ABC中,點D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的長.23.(8分)某農(nóng)場用2臺大收割機和5臺小收割機同時工作2小時共收割小麥3.6公頃,3臺大收割機和2臺小收割機同時工作5小時共收割小麥8公頃.1臺大收割機和1臺小收割機每小時各收割小麥多少公頃?24.(10分)已知,,,斜邊,將繞點順時針旋轉(zhuǎn),如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長度;(3)如圖2,點,同時從點出發(fā),在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設(shè)運動時間為秒,的面積為,求當為何值時取得最大值?最大值為多少?25.(10分)樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)26.(12分)如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;(2)若AD=2,AC=,求AB的長.27.(12分)在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墻上的影子MN=1.1m,求木竿PQ的長度.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)二次根式有意義的條件可得,再解不等式即可.【詳解】解:由題意得:,解得:,
故選:B.【點睛】此題主要考查了二次根式有意義的條件,關(guān)鍵是掌握二次根式中的被開方數(shù)是非負數(shù).2、A【解析】試題解析:設(shè)貨船的航行速度為海里/時,小時后貨船在點處,作于點.由題意海里,海里,在中,所以在中,所以所以解得:故選A.3、D【解析】
首先利用平移的性質(zhì)得到△A1B1C1中點B的對應(yīng)點B1坐標,進而利用關(guān)于x軸對稱點的性質(zhì)得到△A2B2C2中B2的坐標,即可得出答案.【詳解】解:把△ABC向右平移4個單位長度得到△A1B1C1,此時點B(-5,2)的對應(yīng)點B1坐標為(-1,2),則與△A1B1C1關(guān)于于x軸對稱的△A2B2C2中B2的坐標為(-1,-2),故選D.【點睛】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關(guān)鍵.4、D【解析】
根據(jù)菱形的性質(zhì)得出BO、CO的長,在RT△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故選D.點睛:此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.5、A【解析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點B,再利用配方法得到點A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因為AP垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【點睛】本題考查的是二次函數(shù)的綜合運用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.6、C【解析】
兩圓內(nèi)含時,無公切線;兩圓內(nèi)切時,只有一條公切線;兩圓外離時,有4條公切線;兩圓外切時,有3條公切線;兩圓相交時,有2條公切線.【詳解】根據(jù)兩圓相交時才有2條公切線.故選C.【點睛】本題考查了圓與圓的位置關(guān)系.熟悉兩圓的不同位置關(guān)系中的外公切線和內(nèi)公切線的條數(shù).7、B【解析】
根據(jù)AB=BC=CD=1,|a|+|b|=2,分四種情況進行討論判斷即可.【詳解】∵AB=BC=CD=1,∴當點A為原點時,|a|+|b|>2,不合題意;當點B為原點時,|a|+|b|=2,符合題意;當點C為原點時,|a|+|b|=2,符合題意;當點D為原點時,|a|+|b|>2,不合題意;故選:B.【點睛】此題主要考查了數(shù)軸以及絕對值,解題時注意:數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值.8、A【解析】解:∵,∴反比例函數(shù)的圖象位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大,∵點A(2,a)、B(3,b)在反比例函數(shù)的圖象上,∴a<b<0,故選A.9、D【解析】
根據(jù)平行線分線段成比例定理及相似三角形的判定與性質(zhì)進行分析可得出結(jié)論.【詳解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正確;D錯誤;故選D.【點睛】考點:1.平行線分線段成比例;2.相似三角形的判定與性質(zhì).10、D【解析】
根據(jù)合并同類項法則判斷A、C;根據(jù)積的乘方法則判斷B;根據(jù)冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯誤;B、(ab)2=a2b2,故B錯誤;C、a2與a3不是同類項,不能合并,故C錯誤;D、(a2)3=a6,故D正確,故選D.【點睛】本題考查冪的乘方與積的乘方,合并同類項,熟練掌握各運算的運算性質(zhì)和運算法則是解題的關(guān)鍵.11、C【解析】試題解析:∵∴的值是3故選C.12、B【解析】∵在5.5~6.5組別的頻數(shù)是8,總數(shù)是40,∴=0.1.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4.8或【解析】
根據(jù)題意可分兩種情況,①當CP和CB是對應(yīng)邊時,△CPQ∽△CBA與②CP和CA是對應(yīng)邊時,△CPQ∽△CAB,根據(jù)相似三角形的性質(zhì)分別求出時間t即可.【詳解】①CP和CB是對應(yīng)邊時,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是對應(yīng)邊時,△CPQ∽△CAB,所以=,即=,解得t=.綜上所述,當t=4.8或時,△CPQ與△CBA相似.【點睛】此題主要考查相似三角形的性質(zhì),解題的關(guān)鍵是分情況討論.14、2【解析】
設(shè)EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【詳解】設(shè)EF=x,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
∴BD=AB=4+4,EF=BF=x,
∴BE=x,
∵∠BAE=22.5°,
∴∠DAE=90°-22.5°=67.5°,
∴∠AED=180°-45°-67.5°=67.5°,
∴∠AED=∠DAE,
∴AD=ED,
∴BD=BE+ED=x+4+2=4+4,
解得:x=2,
即EF=2.15、【解析】考點:弧長的計算;正多邊形和圓.分析:本題主要考查求正多邊形的每一個內(nèi)角,以及弧長計算公式.解:方法一:先求出正六邊形的每一個內(nèi)角==120°,所得到的三條弧的長度之和=3×=2πcm;方法二:先求出正六邊形的每一個外角為60°,得正六邊形的每一個內(nèi)角120°,每條弧的度數(shù)為120°,三條弧可拼成一整圓,其三條弧的長度之和為2πcm.16、3【解析】試題解析:把A(1,m)代入y=得:m=3.所以m的值為3.17、18π【解析】
根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和,利用扇形面積公式解答即可.【詳解】解:∵正六邊形的內(nèi)角為=120°,∴扇形的圓心角為360°?120°=240°,∴“三葉草”圖案中陰影部分的面積為=18π,故答案為18π.【點睛】此題考查正多邊形與圓,關(guān)鍵是根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和解答.18、【解析】
根據(jù)已知條件設(shè)出直角三角形一直角邊與斜邊的長,再根據(jù)勾股定理求出另一直角邊的長,由三角函數(shù)的定義直接解答即可.【詳解】由sinα==知,如果設(shè)a=x,則c=2x,結(jié)合a2+b2=c2得b=x.∴cos==.故答案為.【點睛】本題考查的知識點是同角三角函數(shù)的關(guān)系,解題的關(guān)鍵是熟練的掌握同角三角函數(shù)的關(guān)系.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)4﹣t;(2)當點P在AB邊上運動時,PQ與△ABC的一邊垂直時t的值是t=0或或;(3)S與t的函數(shù)關(guān)系式為:S=;(4)t的值為或.【解析】分析:(1)根據(jù)勾股定理求出AC的長,然后由AQ=AC-CQ求解即可;(2)當點P在AB邊上運動時,PQ與△ABC的一邊垂直,有三種情況:當Q在C處,P在A處時,PQ⊥BC;當PQ⊥AB時;當PQ⊥AC時;分別求解即可;(3)當P在AB邊上時,即0≤t≤1,作PG⊥AC于G,或當P在邊BC上時,即1<t≤3,分別根據(jù)三角形的面積求函數(shù)的解析式即可;(4)當△APQ是以PQ為腰的等腰三角形時,有兩種情況:①當P在邊AB上時,作PG⊥AC于G,則AG=GQ,列方程求解;②當P在邊AC上時,AQ=PQ,根據(jù)勾股定理求解.詳解:(1)如圖1,Rt△ABC中,∠A=30°,AB=8,∴BC=AB=4,∴AC=,由題意得:CQ=t,∴AQ=4﹣t;(2)當點P在AB邊上運動時,PQ與△ABC的一邊垂直,有三種情況:①當Q在C處,P在A處時,PQ⊥BC,此時t=0;②當PQ⊥AB時,如圖2,∵AQ=4﹣t,AP=8t,∠A=30°,∴cos30°=,∴,t=;③當PQ⊥AC時,如圖3,∵AQ=4﹣t,AP=8t,∠A=30°,∴cos30°=,∴t=;綜上所述,當點P在AB邊上運動時,PQ與△ABC的一邊垂直時t的值是t=0或或;(3)分兩種情況:①當P在AB邊上時,即0≤t≤1,如圖4,作PG⊥AC于G,∵∠A=30°,AP=8t,∠AGP=90°,∴PG=4t,∴S△APQ=AQ?PG=(4﹣t)?4t=﹣2t2+8t;②當P在邊BC上時,即1<t≤3,如圖5,由題意得:PB=2(t﹣1),∴PC=4﹣2(t﹣1)=﹣2t+6,∴S△APQ=AQ?PC=(4﹣t)(﹣2t+6)=t2;綜上所述,S與t的函數(shù)關(guān)系式為:S=;(4)當△APQ是以PQ為腰的等腰三角形時,有兩種情況:①當P在邊AB上時,如圖6,AP=PQ,作PG⊥AC于G,則AG=GQ,∵∠A=30°,AP=8t,∠AGP=90°,∴PG=4t,∴AG=4t,由AQ=2AG得:4﹣t=8t,t=,②當P在邊AC上時,如圖7,AQ=PQ,Rt△PCQ中,由勾股定理得:CQ2+CP2=PQ2,∴,t=或﹣(舍),綜上所述,t的值為或.點睛:此題主要考查了三角形中的動點問題,用到勾股定理,等腰三角形的性質(zhì),直角三角形的性質(zhì),二次函數(shù)等知識,是一道比較困難的綜合題,關(guān)鍵是合理添加輔助線,構(gòu)造合適的方程求解.20、【解析】分析:列表得出所有等可能的情況數(shù),找出兩次都摸到紅球的情況數(shù),即可求出所求的概率.詳解:列表如下:紅紅白黑紅﹣﹣﹣(紅,紅)(白,紅)(黑,紅)紅(紅,紅)﹣﹣﹣(白,紅)(黑,紅)白(紅,白)(紅,白)﹣﹣﹣(黑,白)黑(紅,黑)(紅,黑)(白,黑)﹣﹣﹣所有等可能的情況有12種,其中兩次都摸到紅球有2種可能,則P(兩次摸到紅球)==.點睛:此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、AD=38.28米.【解析】
過點B作BE⊥DA,BF⊥DC,垂足分別為E、F,已知AD=AE+ED,則分別求得AE、DE的長即可求得AD的長.【詳解】過點B作BE⊥DA,BF⊥DC,垂足分別為E,F(xiàn),由題意知,AD⊥CD∴四邊形BFDE為矩形∴BF=ED在Rt△ABE中,AE=AB?cos∠EAB在Rt△BCF中,BF=BC?cos∠FBC∴AD=AE+BF=20?cos60°+40?cos45°=20×+40×=10+20=10+20×1.414=38.28(米).即AD=38.28米.【點睛】解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.22、.【解析】試題分析:可證明△ACD∽△ABC,則,即得出AC2=AD?AB,從而得出AC的長.試題解析:∵∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC.∴,∵AD=2,AB=6,∴.∴.∴AC=.考點:相似三角形的判定與性質(zhì).23、1臺大收割機和1臺小收割機每小時各收割小麥0.4hm2和0.2hm2.【解析】
此題可設(shè)1臺大收割機和1臺小收割機每小時各收割小麥x公頃和y公頃,根據(jù)題中的等量關(guān)系列出二元一次方程組解答即可【詳解】設(shè)1臺大收割機和1臺小收割機每小時各收割小麥x公頃和y公頃根據(jù)題意可得解得答:每臺大小收割機每小時分別收割0.4公頃和0.2公頃.【點睛】此題主要考查了二元一次方程組的實際應(yīng)用,解題關(guān)鍵在于弄清題意,找到合適的等量關(guān)系24、(1)1;(2);(3)x時,y有最大值,最大值.【解析】
(1)只要證明△OBC是等邊三角形即可;(2)求出△AOC的面積,利用三角形的面積公式計算即可;(3)分三種情形討論求解即可解決問題:①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.②當x≤4時,M在BC上運動,N在OB上運動.③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.【詳解】(1)由旋轉(zhuǎn)性質(zhì)可知:OB=OC,∠BOC=1°,∴△OBC是等邊三角形,∴∠OBC=1°.故答案為1.(2)如圖1中.∵OB=4,∠ABO=30°,∴OAOB=2,ABOA=2,∴S△AOC?OA?AB2×2.∵△BOC是等邊三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC,∴OP.(3)①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.則NE=ON?sin1°x,∴S△OMN?OM?NE1.5xx,∴yx2,∴x時,y有最大值,最大值.②當x≤4時,M在BC上運動,N在OB上運動.作MH⊥OB于H.則BM=8﹣1.5x,MH=BM?sin1°(8﹣1.5x),∴yON×MHx2+2x.當x時,y取最大值,y,③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y?MN?OG=12x,當x=4時,y有最大值,最大值=2.綜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 有效的財務(wù)溝通技巧計劃
- 班級活動豐富性的提升計劃
- 魯科版高中化學必修第一冊專題復習資料
- 中學生標準學術(shù)能力診斷性測試2024-2025學年高三上學期10月月考試題 歷史 含答案
- 小學信息技術(shù)課程整合方案
- 重慶市渝北區(qū)2022-2023學年一年級上學期數(shù)學期末試卷
- 企業(yè)秋季安全培訓課件
- 2024-2025學年上海市普陀區(qū)八年級(上)期中數(shù)學試卷
- 依法治教專題培訓
- 醫(yī)院依法職業(yè)培訓課件
- 高架橋樁基施工方案(鉆孔灌注樁)
- 班組長的自我成長與發(fā)展課件
- 危重病人心理護理與溝通技巧
- 3 《“探界者”鐘揚》公開課一等獎創(chuàng)新教案統(tǒng)編版高中語文必修上冊
- 初中道德法治教學大綱
- 消防設(shè)施維護和保養(yǎng)
- 2024年浙江省公務(wù)員考試《行測》真題及答案解析
- 縫紉機的培訓課件
- 半導體智能制造與自動化技術(shù)
- 民宿溫泉旅游可行性方案
- 醫(yī)療服務(wù)外包市場狀況及發(fā)展趨勢調(diào)查
評論
0/150
提交評論