版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年山東省濱州市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.微分方程y''-2y'=x的特解應(yīng)設(shè)為
A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c
2.
3.A.sin(2x-1)+C
B.
C.-sin(2x-1)+C
D.
4.
5.
6.下面哪個(gè)理論關(guān)注下屬的成熟度()
A.管理方格B.路徑—目標(biāo)理論C.領(lǐng)導(dǎo)生命周期理論D.菲德勒權(quán)變理論
7.
8.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
9.下列命題正確的是().A.A.
B.
C.
D.
10.設(shè)函數(shù)為().A.A.0B.1C.2D.不存在
11.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動,(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。
A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s
B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2
C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0
D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2
12.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
13.交換二次積分次序等于().A.A.
B.
C.
D.
14.
15.
16.已知作用在簡支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
17.
18.設(shè)平面則平面π1與π2的關(guān)系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直19.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-2
20.若f(x)有連續(xù)導(dǎo)數(shù),下列等式中一定成立的是
A.d∫f(x)dx=f(x)dx
B.d∫f(x)dx=f(x)
C.d∫f(x)dx=f(x)+C
D.∫df(x)=f(x)
二、填空題(20題)21.微分方程y''+y=0的通解是______.
22.
23.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則24.
25.設(shè)z=xy,則dz=______.
26.
27.
28.設(shè)f(x)=xex,則f'(x)__________。
29.
30.
31.
32.y"+8y=0的特征方程是________。
33.
34.35.
36.37.微分方程exy'=1的通解為______.
38.
39.
40.三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
42.
43.將f(x)=e-2X展開為x的冪級數(shù).
44.求微分方程y"-4y'+4y=e-2x的通解.
45.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.46.證明:47.48.求微分方程的通解.49.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.52.求曲線在點(diǎn)(1,3)處的切線方程.53.
54.
55.56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
57.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則58.
59.
60.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)61.求方程y''-2y'+5y=ex的通解.
62.
63.證明:64.設(shè)區(qū)域D為:
65.
66.
67.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.f(z,y)=e-x.sin(x+2y),求
六、解答題(0題)72.
參考答案
1.C本題考查了二階常系數(shù)微分方程的特解的知識點(diǎn)。
因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
2.D
3.B本題考查的知識點(diǎn)為不定積分換元積分法。
因此選B。
4.B
5.B
6.C解析:領(lǐng)導(dǎo)生命周期理論關(guān)注下屬的成熟度。
7.C
8.D由拉格朗日定理
9.D本題考查的知識點(diǎn)為收斂級數(shù)的性質(zhì)和絕對收斂的概念.
由絕對收斂級數(shù)的性質(zhì)“絕對收斂的級數(shù)必定收斂”可知應(yīng)選D.
10.D本題考查的知識點(diǎn)為極限與左極限、右極限的關(guān)系.
由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.
11.D
12.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
13.B本題考查的知識點(diǎn)為交換二次積分次序.
由所給二次積分可知積分區(qū)域D可以表示為
1≤y≤2,y≤x≤2,
交換積分次序后,D可以表示為
1≤x≤2,1≤y≤x,
故應(yīng)選B.
14.D
15.A
16.D
17.D
18.C本題考查的知識點(diǎn)為兩平面的位置關(guān)系.
由于平面π1,π2的法向量分別為
可知n1⊥n2,從而π1⊥π2.應(yīng)選C.
19.D本題考查的知識點(diǎn)為原函數(shù)的概念、復(fù)合函數(shù)求導(dǎo).
20.A解析:若設(shè)F'(x)=f(x),由不定積分定義知,∫f(x)dx=F(x)+C。從而
有:d∫f(x)dx=d∫F(x)+C]=F'(x)dx=f(x)dx,故A正確。D中應(yīng)為∫df(x)=f(x)+C。21.y=C1cosx+C2sinx微分方程y''+y=0的特征方程是r2+1=0,故特征根為r=±i,所以方程的通解為y=C1cosx+C2sinx.
22.23.本題考查的知識點(diǎn)為二重積分的計(jì)算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長、寬都為1的正形,可知其面積為1。因此24.本題考查的知識點(diǎn)為重要極限公式。
25.yxy-1dx+xylnxdy
26.
27.f(x)+Cf(x)+C解析:
28.(1+x)ex
29.30.1
31.
32.r2+8r=0本題考查的知識點(diǎn)為二階常系數(shù)線性微分方程特征方程的概念。y"+8y"=0的特征方程為r2+8r=0。
33.
34.1本題考查了一階導(dǎo)數(shù)的知識點(diǎn)。35.2.
本題考查的知識點(diǎn)為二次積分的計(jì)算.
由相應(yīng)的二重積分的幾何意義可知,所給二次積分的值等于長為1,寬為2的矩形的面積值,故為2.或由二次積分計(jì)算可知
36.x37.y=-e-x+C本題考查的知識點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
由于方程為exy'=1,先變形為
變量分離dy=e-xdx.
兩端積分
為所求通解.
38.
39.5
40.
41.
列表:
說明
42.
43.
44.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
45.
46.
47.
48.
49.
50.由二重積分物理意義知
51.函數(shù)的定義域?yàn)?/p>
注意
52.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.
54.
55.
56.
57.由等價(jià)無窮小量的定義可知58.由一階線性微分方程通解公式有
59.
則
60.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
61.
62.
63.
64.利用極坐標(biāo),區(qū)域D可以表示為0≤θ≤π,0≤r≤2本題考查的知識點(diǎn)為二重積分的計(jì)算(極坐標(biāo)系).
如果積分區(qū)域?yàn)閳A域或圓的一部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標(biāo)計(jì)算較方便.
使用極坐標(biāo)計(jì)算二重積分時(shí),要先將區(qū)域D的邊界曲線化為極坐標(biāo)下的方程表示,以確定出區(qū)域D的不等式表示式,再將積分化為二次積分.
本題考生中常見的錯(cuò)誤為:
被積函數(shù)中丟掉了r.這是將直角坐標(biāo)系下的二重積分化為極坐標(biāo)下的二次積分時(shí)常見的錯(cuò)誤,考生務(wù)必要注意.
65.【解析】本題考查的知識點(diǎn)為求二元隱函數(shù)的偏導(dǎo)數(shù)與全微分.
解法1
解法2利用微分運(yùn)算
【解題指導(dǎo)】
求二元隱函數(shù)的偏導(dǎo)數(shù)有兩種方法:
66.67.解:設(shè)所圍圖形面積為A,則
68.
69.
70.
7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年勞務(wù)施工總承包合同
- 信息通信業(yè)務(wù)經(jīng)營許可證咨詢協(xié)議文本
- 天津市2024年離婚協(xié)議書樣本
- 出租車股權(quán)轉(zhuǎn)讓合同范本
- 深圳市勞動合同范本
- 工程分包個(gè)人合同模板
- 教學(xué)研究中心項(xiàng)目合作協(xié)議模板
- 房屋裝潢施工合同范本
- 2024年商業(yè)公司鋼筋購銷合同
- 代理其他商業(yè)銀行辦理全國銀行匯票業(yè)務(wù)協(xié)議-合同范本
- 教育心理學(xué)-形考作業(yè)1(第一至三章)-國開-參考資料
- 某地產(chǎn)集團(tuán)有限公司檔案歸檔范圍、保管期限及分類表
- 云計(jì)算導(dǎo)論(微課版) 課件 項(xiàng)目9 構(gòu)建高可用云應(yīng)用
- 2024年陜西省中考英語試題及解析版
- 9《復(fù)活(節(jié)選)》教學(xué)設(shè)計(jì) 2023-2024學(xué)年統(tǒng)編版高中語文選擇性必修上冊
- 2024-2030年中國維生素原料藥市場產(chǎn)銷需求與前景趨勢預(yù)測報(bào)告
- 《藥品管理法》知識考試題庫300題(含答案)
- 裸子植物和被子植物課件 2024-2025學(xué)年人教版生物七年級上冊
- 2024年電力行業(yè)風(fēng)力發(fā)電運(yùn)行檢修職業(yè)技能考試題庫(含答案)
- 2024水利云播五大員考試題庫及答案
- 散文化小說-從2023年高考陳村《給兒子》說開去
評論
0/150
提交評論