版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年貴州省六盤水市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.A.e-x+CB.-e-x+CC.ex+CD.-ex+C
2.
3.A.A.e2/3
B.e
C.e3/2
D.e6
4.
5.
6.方程z=x2+y2表示的曲面是()
A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面7.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
8.下列各式中正確的是()。
A.
B.
C.
D.
9.設(shè)y=2x3,則dy=().
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
10.設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)=f(1),則在(0,1)內(nèi)曲線y=f(x)的所有切線中().A.A.至少有一條平行于x軸B.至少有一條平行于y軸C.沒有一條平行于x軸D.可能有一條平行于y軸11.()。A.e-6
B.e-2
C.e3
D.e6
12.
13.
14.A.等價(jià)無(wú)窮小
B.f(x)是比g(x)高階無(wú)窮小
C.f(x)是比g(x)低階無(wú)窮小
D.f(x)與g(x)是同階但非等價(jià)無(wú)窮小
15.若x0為f(x)的極值點(diǎn),則().A.A.f'(x0)必定存在,且f'(x0)=0
B.f'(x0)必定存在,但f'(x0)不一定等于零
C.f'(x0)不存在或f'(x0)=0
D.f'(x0)必定不存在
16.
17.A.I1=I2
B.I1>I2
C.I1<I2
D.無(wú)法比較
18.
19.A.eB.e-1
C.e2
D.e-2
20.
A.
B.1
C.2
D.+∞
二、填空題(20題)21.22.23.
24.
25.
26.
27.
28.29.
30.
31.
32.
33.微分方程y=0的通解為.34.
35.
36.37.交換二重積分次序=______.
38.微分方程y'+4y=0的通解為_________。
39.
40.三、計(jì)算題(20題)41.
42.求曲線在點(diǎn)(1,3)處的切線方程.43.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.44.
45.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
46.
47.
48.求微分方程y"-4y'+4y=e-2x的通解.
49.
50.求微分方程的通解.51.52.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.53.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).55.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
56.證明:57.將f(x)=e-2X展開為x的冪級(jí)數(shù).58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.59.60.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.四、解答題(10題)61.
62.
63.
64.65.求微分方程的通解.66.在第Ⅰ象限內(nèi)的曲線上求一點(diǎn)M(x,y),使過(guò)該點(diǎn)的切線被兩坐標(biāo)軸所截線段的長(zhǎng)度為最?。?7.計(jì)算二重積分
,其中D是由直線
及y=1圍
成的平面區(qū)域.
68.
69.(本題滿分10分)
70.五、高等數(shù)學(xué)(0題)71.設(shè)某產(chǎn)品需求函數(shù)為
求p=6時(shí)的需求彈性,若價(jià)格上漲1%,總收入增加還是減少?
六、解答題(0題)72.
參考答案
1.B
2.B
3.D
4.C
5.C
6.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.
7.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
8.B
9.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.
10.A本題考查的知識(shí)點(diǎn)有兩個(gè):羅爾中值定理;導(dǎo)數(shù)的幾何意義.
由題設(shè)條件可知f(x)在[0,1]上滿足羅爾中值定理,因此至少存在一點(diǎn)ξ∈(0,1),使f'(ξ)=0.這表明曲線y=f(x)在點(diǎn)(ξ,f(ξ))處的切線必定平行于x軸,可知A正確,C不正確.
如果曲線y=f(x)在點(diǎn)(ξ,f(ξ))處的切線平行于y軸,其中ξ∈(0,1),這條切線的斜率為∞,這表明f'(ξ)=∞為無(wú)窮大,此時(shí)說(shuō)明f(x)在點(diǎn)x=ξ不可導(dǎo).因此可知B,D都不正確.
本題對(duì)照幾何圖形易于找出解答,只需依題設(shè)條件,畫出一條曲線,則可以知道應(yīng)該選A.
有些考生選B,D,這是由于不明確導(dǎo)數(shù)的幾何意義而導(dǎo)致的錯(cuò)誤.
11.A
12.A
13.C解析:
14.D
15.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).
若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:
(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(a)=|x|的極值點(diǎn).
(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f'(x0)=0.
從題目的選項(xiàng)可知應(yīng)選C.
本題常見的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f'(x0)=0”認(rèn)為是極值的充分必要條件.
16.C
17.C因積分區(qū)域D是以點(diǎn)(2,1)為圓心的一單位圓,且它位于直線x+y=1的上方,即在D內(nèi)恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.
18.D
19.C
20.C
21.
本題考查的知識(shí)點(diǎn)為求直線的方程.
由于所求直線平行于已知直線1,可知兩條直線的方向向量相同,由直線的標(biāo)準(zhǔn)式方程可知所求直線方程為
22.
23.
24.00解析:
25.
26.2/52/5解析:
27.y''=x(asinx+bcosx)
28.29.e;本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
注意:可以變形,化為形式的極限.但所給極限通??梢韵茸冃危?/p>
30.
解析:
31.
32.033.y=C.
本題考查的知識(shí)點(diǎn)為微分方程通解的概念.
微分方程為y=0.
dy=0.y=C.
34.
35.36.0.
本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.
通常求解的思路為:
37.本題考查的知識(shí)點(diǎn)為交換二重積分次序.
積分區(qū)域D:0≤x≤1,x2≤y≤x
積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此
38.y=Ce-4x
39.3x2+4y3x2+4y解析:
40.
41.42.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
43.由二重積分物理意義知
44.
則
45.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
46.
47.
48.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
49.由一階線性微分方程通解公式有
50.
51.
52.
53.由等價(jià)無(wú)窮小量的定義可知
54.
列表:
說(shuō)明
55.
56.
57.
58.
59.
60.函數(shù)的定義域?yàn)?/p>
注意
61.
62.
63.64.本題考查的知識(shí)點(diǎn)為求曲線的切線方程.切線方程為y+3=一3(x+1),或?qū)憺?x+y+6=0.求曲線y=f(x,y)的切線方程,通常要找出切點(diǎn)及函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值.所給問題沒有給出切點(diǎn),因此依已給條件找出切點(diǎn)是首要問題.得出切點(diǎn)、切線的斜率后,可依直線的點(diǎn)斜式方程求出切線方程.65.所給方程為一階線性微分方程
其通解為
本題考杏的知識(shí)點(diǎn)為求解一階線性微分方程.
66.本題考查的知識(shí)點(diǎn)為函數(shù)的最大值、最小值應(yīng)用題.
這類問題的關(guān)鍵是先依條件和題中要求,建立數(shù)學(xué)模型.
依題目要求需求的最小值.由于L為根式,為了簡(jiǎn)化運(yùn)算,可以考慮L2的最小值.這是應(yīng)該學(xué)習(xí)的技巧.67.所給積分區(qū)域D如圖5-6所示,如果選擇先對(duì)y積分后對(duì)x積分的二次積分,需要
將積分區(qū)域劃分為幾個(gè)子區(qū)域,如果選擇先對(duì)x積分后對(duì)y積分的二次積分,區(qū)域D可以表示為
0≤y≤1,Y≤x≤y+1,
因此
【評(píng)析】
上述分析通常又是選擇積分次序問題的常見方法.
68.解:
69.本題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度信息技術(shù)授權(quán)委托管理合作協(xié)議3篇
- 2024年物業(yè)管理服務(wù)與費(fèi)用結(jié)算合同
- 2024年設(shè)施完善的彩鋼房租賃合同3篇
- 二零二五年度公司勞動(dòng)合同補(bǔ)充協(xié)議書(特殊崗位)3篇
- 2024年貨車司機(jī)雇傭合同格式
- RL01、集團(tuán)招聘與選拔制度
- 2025年度消費(fèi)借款合同(醫(yī)療消費(fèi)貸款版)
- 二零二五年度博物館場(chǎng)地租賃及展覽展示服務(wù)合同模板3篇
- 二零二五年度P項(xiàng)目生態(tài)農(nóng)業(yè)園區(qū)基礎(chǔ)設(shè)施建設(shè)合同3篇
- 數(shù)字貨幣意識(shí)形態(tài)屬性解讀
- 藝術(shù)漆培訓(xùn)課件
- 穴位貼敷護(hù)理培訓(xùn)
- 四川新農(nóng)村建設(shè)農(nóng)房設(shè)計(jì)方案圖集川東南部分
- 2024年江蘇省普通高中學(xué)業(yè)水平測(cè)試小高考生物、地理、歷史、政治試卷及答案(綜合版)
- 浙江省杭州市西湖區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期期末語(yǔ)文試卷
- 復(fù)旦大學(xué)新聞傳播學(xué)考博真題
- IEC60335-1(中文)
- 對(duì)于申請(qǐng)?jiān)黾愚k公用房請(qǐng)示
- 民用無(wú)人駕駛航空器系統(tǒng)空中交通管理辦法
- 姓名代碼查詢
- 四層電梯控制系統(tǒng)設(shè)計(jì)-(共38頁(yè))
評(píng)論
0/150
提交評(píng)論