四川省西昌市航天校2022-2023學(xué)年中考數(shù)學(xué)五模試卷含解析_第1頁
四川省西昌市航天校2022-2023學(xué)年中考數(shù)學(xué)五模試卷含解析_第2頁
四川省西昌市航天校2022-2023學(xué)年中考數(shù)學(xué)五模試卷含解析_第3頁
四川省西昌市航天校2022-2023學(xué)年中考數(shù)學(xué)五模試卷含解析_第4頁
四川省西昌市航天校2022-2023學(xué)年中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,△ABC中,AB=AC=15,AD平分∠BAC,點(diǎn)E為AC的中點(diǎn),連接DE,若△CDE的周長為21,則BC的長為()A.16 B.14 C.12 D.62.在△ABC中,∠C=90°,tanA=125,△ABC的周長為60,那么△ABCA.60 B.30 C.240 D.1203.如圖,已知在△ABC,AB=AC.若以點(diǎn)B為圓心,BC長為半徑畫弧,交腰AC于點(diǎn)E,則下列結(jié)論一定正確的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE4.3點(diǎn)40分,時(shí)鐘的時(shí)針與分針的夾角為()A.140° B.130° C.120° D.110°5.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是()A.60° B.65° C.55° D.50°6.甲、乙兩人同時(shí)分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時(shí).結(jié)果兩人同時(shí)到達(dá)C地.求兩人的平均速度,為解決此問題,設(shè)乙騎自行車的平均速度為x千米/時(shí).由題意列出方程.其中正確的是()A. B. C. D.7.如圖,直線l是一次函數(shù)y=kx+b的圖象,若點(diǎn)A(3,m)在直線l上,則m的值是()A.﹣5 B. C. D.78.如圖,在△ABC中,AB=AC,點(diǎn)D是邊AC上一點(diǎn),BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°9.如圖,已知△ABC,△DCE,△FEG,△HGI是4個(gè)全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點(diǎn)Q,則QI=()A.1 B. C. D.10.如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點(diǎn)E、F、G、H分別為邊AD、AB、BC、CD的中點(diǎn).若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.6011.如圖1,點(diǎn)E為矩形ABCD的邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿BE→ED→DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q從點(diǎn)B出發(fā)沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s.若點(diǎn)P、Q同時(shí)開始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:①當(dāng)0<t≤10時(shí),△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時(shí),y=110﹣1t;④在運(yùn)動(dòng)過程中,使得△ABP是等腰三角形的P點(diǎn)一共有3個(gè);⑤當(dāng)△BPQ與△BEA相似時(shí),t=14.1.其中正確結(jié)論的序號(hào)是()A.①④⑤ B.①②④ C.①③④ D.①③⑤12.如圖,⊙O是△ABC的外接圓,∠B=60°,⊙O的半徑為4,則AC的長等于()A.4 B.6 C.2 D.8二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,已知AB∥CD,F(xiàn)為CD上一點(diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.14.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點(diǎn)P在以D(4,4)為圓心,1為半徑的圓上運(yùn)動(dòng),且始終滿足∠BPC=90°,則a的最大值是______.15.如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于_____________.16.已知△ABC中,∠C=90°,AB=9,,把△ABC繞著點(diǎn)C旋轉(zhuǎn),使得點(diǎn)A落在點(diǎn)A′,點(diǎn)B落在點(diǎn)B′.若點(diǎn)A′在邊AB上,則點(diǎn)B、B′的距離為_____.17.在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),平行于x軸的直線與拋物線L:y=ax1相交于A,B兩點(diǎn)(點(diǎn)B在第一象限),點(diǎn)C在AB的延長線上.(1)已知a=1,點(diǎn)B的縱坐標(biāo)為1.如圖1,向右平移拋物線L使該拋物線過點(diǎn)B,與AB的延長線交于點(diǎn)C,AC的長為__.(1)如圖1,若BC=AB,過O,B,C三點(diǎn)的拋物線L3,頂點(diǎn)為P,開口向下,對應(yīng)函數(shù)的二次項(xiàng)系數(shù)為a3,=__.18.如圖,為了測量河寬AB(假設(shè)河的兩岸平行),測得∠ACB=30°,∠ADB=60°,CD=60m,則河寬AB為m(結(jié)果保留根號(hào)).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某網(wǎng)店銷售某款童裝,每件售價(jià)60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價(jià)銷售.市場調(diào)查反映:每降價(jià)1元,每星期可多賣30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷售量為y件.(1)求y與x之間的函數(shù)關(guān)系式;(2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷售利潤最大,最大利潤是多少元?(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?20.(6分)如圖,點(diǎn)P是⊙O外一點(diǎn),請你用尺規(guī)畫出一條直線PA,使得其與⊙O相切于點(diǎn)A,(不寫作法,保留作圖痕跡)21.(6分)先化簡:,然后從的范圍內(nèi)選取一個(gè)合適的整數(shù)作為x的值代入求值.22.(8分)如圖,在△ABC中,∠ABC=90°.(1)作∠ACB的平分線交AB邊于點(diǎn)O,再以點(diǎn)O為圓心,OB的長為半徑作⊙O;(要求:不寫做法,保留作圖痕跡)(2)判斷(1)中AC與⊙O的位置關(guān)系,直接寫出結(jié)果.23.(8分)已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長線交BA的延長線于點(diǎn)F,連接FD.求證:AB=AF;若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.24.(10分)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過點(diǎn)B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點(diǎn),∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點(diǎn)M,求QM的長.25.(10分)已知關(guān)于的一元二次方程.試證明:無論取何值此方程總有兩個(gè)實(shí)數(shù)根;若原方程的兩根,滿足,求的值.26.(12分)許昌芙蓉湖位于許昌市水系建設(shè)總體規(guī)劃中部,上游接納清泥河來水,下游為鹿鳴湖等水系供水,承擔(dān)著承上啟下的重要作用,是利用有限的水資源、形成良好的水生態(tài)環(huán)境打造生態(tài)宜居城市的重要部分.某校課外興趣小組想測量位于芙蓉湖兩端的A,B兩點(diǎn)之間的距離他沿著與直線AB平行的道路EF行走,走到點(diǎn)C處,測得∠ACF=45°,再向前走300米到點(diǎn)D處,測得∠BDF=60°.若直線AB與EF之間的距離為200米,求A,B兩點(diǎn)之間的距離(結(jié)果保留一位小數(shù))27.(12分)菏澤市牡丹區(qū)中學(xué)生運(yùn)動(dòng)會(huì)即將舉行,各個(gè)學(xué)校都在積極地做準(zhǔn)備,某校為獎(jiǎng)勵(lì)在運(yùn)動(dòng)會(huì)上取得好成績的學(xué)生,計(jì)劃購買甲、乙兩種獎(jiǎng)品共100件,已知甲種獎(jiǎng)品的單價(jià)是30元,乙種獎(jiǎng)品的單價(jià)是20元.(1)若購買這批獎(jiǎng)品共用2800元,求甲、乙兩種獎(jiǎng)品各購買了多少件?(2)若購買這批獎(jiǎng)品的總費(fèi)用不超過2900元,則最多購買甲種獎(jiǎng)品多少件?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

先根據(jù)等腰三角形三線合一知D為BC中點(diǎn),由點(diǎn)E為AC的中點(diǎn)知DE為△ABC中位線,故△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.【詳解】∵AB=AC=15,AD平分∠BAC,∴D為BC中點(diǎn),∵點(diǎn)E為AC的中點(diǎn),∴DE為△ABC中位線,∴DE=AB,∴△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故選C.【點(diǎn)睛】此題主要考查三角形的中位線定理,解題的關(guān)鍵是熟知等腰三角形的三線合一定理.2、D【解析】

由tanA的值,利用銳角三角函數(shù)定義設(shè)出BC與AC,進(jìn)而利用勾股定理表示出AB,由周長為60求出x的值,確定出兩直角邊,即可求出三角形面積.【詳解】如圖所示,由tanA=125設(shè)BC=12x,AC=5x,根據(jù)勾股定理得:AB=13x,由題意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,則△ABC面積為120,故選D.【點(diǎn)睛】此題考查了解直角三角形,銳角三角函數(shù)定義,以及勾股定理,熟練掌握勾股定理是解本題的關(guān)鍵.3、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以點(diǎn)B為圓心,BC長為半徑畫弧,交腰AC于點(diǎn)E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故選C.點(diǎn)睛:本題考查了等腰三角形的性質(zhì),當(dāng)?shù)妊切蔚牡捉菍?yīng)相等時(shí)其頂角也相等,難度不大.4、B【解析】

根據(jù)時(shí)針與分針相距的份數(shù)乘以每份的度數(shù),可得答案.【詳解】解:3點(diǎn)40分時(shí)針與分針相距4+=份,30°×=130,故選B.【點(diǎn)睛】本題考查了鐘面角,確定時(shí)針與分針相距的份數(shù)是解題關(guān)鍵.5、A【解析】試題分析:根據(jù)五邊形的內(nèi)角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數(shù),再根據(jù)角平分線的定義可得∠PDC與∠PCD的角度和,進(jìn)一步求得∠P的度數(shù).解:∵五邊形的內(nèi)角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內(nèi)相交于點(diǎn)O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點(diǎn):多邊形內(nèi)角與外角;三角形內(nèi)角和定理.6、A【解析】設(shè)乙騎自行車的平均速度為x千米/時(shí),則甲騎自行車的平均速度為(x+2)千米/時(shí),根據(jù)題意可得等量關(guān)系:甲騎110千米所用時(shí)間=乙騎100千米所用時(shí)間,根據(jù)等量關(guān)系可列出方程即可.解:設(shè)乙騎自行車的平均速度為x千米/時(shí),由題意得:=,故選A.7、C【解析】

把(-2,0)和(0,1)代入y=kx+b,求出解析式,再將A(3,m)代入,可求得m.【詳解】把(-2,0)和(0,1)代入y=kx+b,得,解得所以,一次函數(shù)解析式y(tǒng)=x+1,再將A(3,m)代入,得m=×3+1=.故選C.【點(diǎn)睛】本題考核知識(shí)點(diǎn):考查了待定系數(shù)法求一次函數(shù)的解析式,根據(jù)解析式再求函數(shù)值.8、A【解析】

由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設(shè)∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內(nèi)角和定理列方程求解.【詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設(shè)∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì).關(guān)鍵是利用等腰三角形的底角相等,外角的性質(zhì),內(nèi)角和定理,列方程求解.9、D【解析】解:∵△ABC、△DCE、△FEG是三個(gè)全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點(diǎn)睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關(guān)鍵.10、B【解析】

有一個(gè)角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據(jù)矩形的面積公式解答即可.【詳解】∵點(diǎn)E、F分別為四邊形ABCD的邊AD、AB的中點(diǎn),∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,F(xiàn)G∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.【點(diǎn)睛】本題考查的是中點(diǎn)四邊形.解題時(shí),利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個(gè)角是直角的平行四邊形是矩形;(2)有三個(gè)角是直角的四邊形是矩形;(1)對角線互相平分且相等的四邊形是矩形.11、D【解析】

根據(jù)題意,得到P、Q分別同時(shí)到達(dá)D、C可判斷①②,分段討論P(yáng)Q位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據(jù)兩個(gè)點(diǎn)的相對位置判斷點(diǎn)P在DC上時(shí),存在△BPQ與△BEA相似的可能性,分類討論計(jì)算即可.【詳解】解:由圖象可知,點(diǎn)Q到達(dá)C時(shí),點(diǎn)P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時(shí),△BPQ的面積等于∴AB=DC=8故故②錯(cuò)誤當(dāng)14<t<22時(shí),故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點(diǎn)連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點(diǎn)P運(yùn)行路徑的交點(diǎn)是P,滿足△ABP是等腰三角形此時(shí),滿足條件的點(diǎn)有4個(gè),故④錯(cuò)誤.∵△BEA為直角三角形∴只有點(diǎn)P在DC邊上時(shí),有△BPQ與△BEA相似由已知,PQ=22﹣t∴當(dāng)或時(shí),△BPQ與△BEA相似分別將數(shù)值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.【點(diǎn)睛】本題是動(dòng)點(diǎn)問題的函數(shù)圖象探究題,考查了三角形相似判定、等腰三角形判定,應(yīng)用了分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想.12、A【解析】

解:連接OA,OC,過點(diǎn)O作OD⊥AC于點(diǎn)D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故選A.【點(diǎn)睛】本題考查三角形的外接圓;勾股定理;圓周角定理;垂徑定理.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、36°或37°.【解析】分析:先過E作EG∥AB,根據(jù)平行線的性質(zhì)可得∠AEF=∠BAE+∠DFE,再設(shè)∠CEF=x,則∠AEC=2x,根據(jù)6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,進(jìn)而得到∠C的度數(shù).詳解:如圖,過E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,設(shè)∠CEF=x,則∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度數(shù)為整數(shù),∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案為:36°或37°.點(diǎn)睛:本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作平行線,解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.14、1【解析】

首先證明AB=AC=a,根據(jù)條件可知PA=AB=AC=a,求出⊙D上到點(diǎn)A的最大距離即可解決問題.【詳解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如圖延長AD交⊙D于P′,此時(shí)AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值為1.故答案為1.【點(diǎn)睛】圓外一點(diǎn)到圓上一點(diǎn)的距離最大值為點(diǎn)到圓心的距離加半徑,最小值為點(diǎn)到圓心的距離減去半徑.15、﹣24【解析】分析:如下圖,過點(diǎn)C作CF⊥AO于點(diǎn)F,過點(diǎn)D作DE∥OA交CO于點(diǎn)E,設(shè)CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點(diǎn)C的坐標(biāo)為,這樣由點(diǎn)C在反比例函數(shù)的圖象上即可得到k=-24.詳解:如下圖,過點(diǎn)C作CF⊥AO于點(diǎn)F,過點(diǎn)D作DE∥OA交CO于點(diǎn)E,設(shè)CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點(diǎn)C的坐標(biāo)為,∵點(diǎn)C在反比例函數(shù)的圖象上,∴k=.故答案為:-24.點(diǎn)睛:本題的解題要點(diǎn)有兩點(diǎn):(1)作出如圖所示的輔助線,設(shè)CF=4x,結(jié)合已知條件把OF和OA用含x的式子表達(dá)出來;(2)由四邊形AOCB是菱形,點(diǎn)D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.16、4【解析】

過點(diǎn)C作CH⊥AB于H,利用解直角三角形的知識(shí),分別求出AH、AC、BC的值,進(jìn)而利用三線合一的性質(zhì)得出AA'的值,然后利用旋轉(zhuǎn)的性質(zhì)可判定△ACA'∽△BCB',繼而利用相似三角形的對應(yīng)邊成比例的性質(zhì)可得出BB'的值.【詳解】解:過點(diǎn)C作CH⊥AB于H,

∵在Rt△ABC中,∠C=90,cosA=,

∴AC=AB?cosA=6,BC=3,

在Rt△ACH中,AC=6,cosA=,

∴AH=AC?cosA=4,

由旋轉(zhuǎn)的性質(zhì)得,AC=A'C,BC=B'C,

∴△ACA'是等腰三角形,因此H也是AA'中點(diǎn),

∴AA'=2AH=8,

又∵△BCB'和△ACA'都為等腰三角形,且頂角∠ACA'和∠BCB'都是旋轉(zhuǎn)角,

∴∠ACA'=∠BCB',

∴△ACA'∽△BCB',∴即,解得:BB'=4.故答案為:4.【點(diǎn)睛】此題考查了解直角三角形、旋轉(zhuǎn)的性質(zhì)、勾股定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是得出△ACA'∽△BCB'.17、4﹣【解析】解:(1)當(dāng)a=1時(shí),拋物線L的解析式為:y=x1,當(dāng)y=1時(shí),1=x1,∴x=±,∵B在第一象限,∴A(﹣,1),B(,1),∴AB=1,∵向右平移拋物線L使該拋物線過點(diǎn)B,∴AB=BC=1,∴AC=4;(1)如圖1,設(shè)拋物線L3與x軸的交點(diǎn)為G,其對稱軸與x軸交于Q,過B作BK⊥x軸于K,設(shè)OK=t,則AB=BC=1t,∴B(t,at1),根據(jù)拋物線的對稱性得:OQ=1t,OG=1OQ=4t,∴O(0,0),G(4t,0),設(shè)拋物線L3的解析式為:y=a3(x﹣0)(x﹣4t),y=a3x(x﹣4t),∵該拋物線過點(diǎn)B(t,at1),∴at1=a3t(t﹣4t),∵t≠0,∴a=﹣3a3,∴=﹣,故答案為(1)4;(1)﹣.點(diǎn)睛:本題考查二次函數(shù)的圖象和性質(zhì).熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.18、【解析】

解:∵∠ACB=30°,∠ADB=60°,

∴∠CAD=30°,

∴AD=CD=60m,

在Rt△ABD中,

AB=AD?sin∠ADB=60×=(m).故答案是:.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣30x+1;(2)每件售價(jià)定為55元時(shí),每星期的銷售利潤最大,最大利潤2元;(3)該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝360件.【解析】

(1)每星期的銷售量等于原來的銷售量加上因降價(jià)而多銷售的銷售量,代入即可求解函數(shù)關(guān)系式;(2)根據(jù)利潤=銷售量(銷售單價(jià)-成本),建立二次函數(shù),用配方法求得最大值.(3)根據(jù)題意可列不等式,再取等將其轉(zhuǎn)化為一元二次方程并求解,根據(jù)每星期的銷售利潤所在拋物線開口向下求出滿足條件的x的取值范圍,再根據(jù)(1)中一元一次方程求得滿足條件的x的取值范圍內(nèi)y的最小值即可.【詳解】(1)y=300+30(60﹣x)=﹣30x+1.(2)設(shè)每星期利潤為W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55時(shí),W最大值=2.∴每件售價(jià)定為55元時(shí),每星期的銷售利潤最大,最大利潤2元.(3)由題意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,當(dāng)x=52時(shí),銷售300+30×8=540,當(dāng)x=58時(shí),銷售300+30×2=360,∴該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝360件.【點(diǎn)睛】本題主要考查一次函數(shù)的應(yīng)用和二次函數(shù)的應(yīng)用,注意綜合運(yùn)用所學(xué)知識(shí)解題.20、答案見解析【解析】

連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)K,以點(diǎn)K為圓心OK為半徑作⊙K交⊙O于點(diǎn)A,A′,作直線PA,PA′,直線PA,PA′即為所求.【詳解】解:連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)K,以點(diǎn)K為圓心OK為半徑作⊙K交⊙O于點(diǎn)A,A′,作直線PA,PA′,直線PA,PA′即為所求.【點(diǎn)睛】本題考查作圖?復(fù)雜作圖,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題.21、,當(dāng)x=1時(shí),原式=﹣1.【解析】

先化簡分式,然后將x的值代入計(jì)算即可.【詳解】解:原式==.且,∴x的整數(shù)有,∴取,當(dāng)時(shí),原式.【點(diǎn)睛】本題考查了分式的化簡求值,熟練掌握分式混合運(yùn)算法則是解題的關(guān)鍵.22、(1)見解析(2)相切【解析】

(1)首先利用角平分線的作法得出CO,進(jìn)而以點(diǎn)O為圓心,OB為半徑作⊙O即可;(2)利用角平分線的性質(zhì)以及直線與圓的位置關(guān)系進(jìn)而求出即可.【詳解】(1)如圖所示:;(2)相切;過O點(diǎn)作OD⊥AC于D點(diǎn),∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O與直線AC相切,【點(diǎn)睛】此題主要考查了復(fù)雜作圖以及角平分線的性質(zhì)與作法和直線與圓的位置關(guān)系,正確利用角平分線的性質(zhì)求出d=r是解題關(guān)鍵.23、(1)證明見解析;(2)結(jié)論:四邊形ACDF是矩形.理由見解析.【解析】

(1)只要證明AB=CD,AF=CD即可解決問題;(2)結(jié)論:四邊形ACDF是矩形.根據(jù)對角線相等的平行四邊形是矩形判斷即可;【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:結(jié)論:四邊形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四邊形ACDF是平行四邊形,∵四邊形ABCD是平行四邊形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等邊三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四邊形ACDF是矩形.【點(diǎn)睛】本題考查平行四邊形的判定和性質(zhì)、矩形的判定、全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問題.24、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結(jié)合BQ⊥CP于點(diǎn)Q,PE⊥AB于點(diǎn)E即可由角平分線的性質(zhì)得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設(shè)EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結(jié)合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過點(diǎn)O作OK⊥HB于點(diǎn)K,結(jié)合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結(jié)合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過點(diǎn)G作GN⊥QB交QB的延長線于點(diǎn)N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點(diǎn)P,又∵BQ⊥CP于點(diǎn)Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點(diǎn)E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設(shè)EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過點(diǎn)O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(jù)(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過點(diǎn)G作GN⊥QB交QB的延長線于點(diǎn)N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點(diǎn)睛:解本題第3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論