版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若為純虛數(shù),則z=()A. B.6i C. D.202.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣853.已知向量,是單位向量,若,則()A. B. C. D.4.若為虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.6.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.7.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.8.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.9.己知函數(shù)的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.10.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.11.若表示不超過的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.812.已知函數(shù),當時,恒成立,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,則a1=_____,a1+a2+…+a5=____14.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.15.若,i為虛數(shù)單位,則正實數(shù)的值為______.16.已知集合,,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)每年3月20日是國際幸福日,某電視臺隨機調(diào)查某一社區(qū)人們的幸福度.現(xiàn)從該社區(qū)群中隨機抽取18名,用“10分制”記錄了他們的幸福度指數(shù),結(jié)果見如圖所示莖葉圖,其中以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉.若幸福度不低于8.5分,則稱該人的幸福度為“很幸?!保?Ⅰ)求從這18人中隨機選取3人,至少有1人是“很幸福”的概率;(Ⅱ)以這18人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“很幸福”的人數(shù),求的分布列及.18.(12分)選修4-5:不等式選講設(shè)函數(shù)f(x)=|x-a|,a<0.(1)證明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求19.(12分)已知函數(shù)(,為自然對數(shù)的底數(shù)),.(1)若有兩個零點,求實數(shù)的取值范圍;(2)當時,對任意的恒成立,求實數(shù)的取值范圍.20.(12分)在直角坐標系中,曲線的參數(shù)方程為:(其中為參數(shù)),直線的參數(shù)方程為(其中為參數(shù))(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程;(2)若曲線與直線交于兩點,點的坐標為,求的值.21.(12分)在中,角、、所對的邊分別為、、,且.(1)求角的大小;(2)若,的面積為,求及的值.22.(10分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)復(fù)數(shù)的乘法運算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時故選:C.【點睛】本題考查復(fù)數(shù)的概念與運算,屬基礎(chǔ)題.2、D【解析】
由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設(shè)等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關(guān)系求出公比是解決本題的關(guān)鍵,屬于基礎(chǔ)題.3、C【解析】
設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設(shè),,是單位向量,,,,聯(lián)立方程解得:或當時,;當時,;綜上所述:.故選:C.【點睛】本題考查向量的模、夾角計算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意的兩種情況.4、B【解析】
由共軛復(fù)數(shù)的定義得到,通過三角函數(shù)值的正負,以及復(fù)數(shù)的幾何意義即得解【詳解】由題意得,因為,,所以在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.故選:B【點睛】本題考查了共軛復(fù)數(shù)的概念及復(fù)數(shù)的幾何意義,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.5、C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對選項逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項.【詳解】函數(shù)的定義域為,在上為減函數(shù).A選項,的定義域為,在上為增函數(shù),不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數(shù),符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.6、A【解析】
分段求解函數(shù)零點,數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.7、C【解析】
根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無最大值.若,則當時,,在上單調(diào)遞減,當時,,在上單調(diào)遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當時,,在遞減;當時,,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.8、C【解析】
設(shè)為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結(jié)論.【詳解】設(shè)分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【點睛】本題考查了棱錐與外接球的位置關(guān)系問題,關(guān)鍵是能夠通過垂直關(guān)系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.9、A【解析】
先將函數(shù)解析式化簡為,結(jié)合題意可求得切點及其范圍,根據(jù)導(dǎo)數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結(jié)合圖象知直線與函數(shù)相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,由交點及導(dǎo)數(shù)的幾何意義求函數(shù)值,屬于難題.10、D【解析】
以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點,以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.設(shè),則,.設(shè)平面的法向量為,則取,得.設(shè)直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點睛】本題考查了向量法求解線面角,考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運算的能力,屬于中檔題.11、B【解析】
求出,,,,,,判斷出是一個以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個以周期為6的周期數(shù)列,則.故選:B.【點睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應(yīng)用.12、A【解析】
分析可得,顯然在上恒成立,只需討論時的情況即可,,然后構(gòu)造函數(shù),結(jié)合的單調(diào)性,不等式等價于,進而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當時,等價于,因為,所以.設(shè),由,顯然在上單調(diào)遞增,因為,所以等價于,即,則.設(shè),則.令,解得,易得在上單調(diào)遞增,在上單調(diào)遞減,從而,故.故選:A.【點睛】本題考查了不等式恒成立問題,利用函數(shù)單調(diào)性是解決本題的關(guān)鍵,考查了學(xué)生的推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、80211【解析】
由,利用二項式定理即可得,分別令、后,作差即可得.【詳解】由題意,則,令,得,令,得,故.故答案為:80,211.【點睛】本題考查了二項式定理的應(yīng)用,屬于中檔題.14、【解析】
算法的功能是求的值,根據(jù)輸出的值,分別求出當時和當時的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當時,,可得:,或(舍去);當時,,可得:(舍去).綜上的值為:.故答案為:.【點睛】本題考查了選擇結(jié)構(gòu)的程序語句,根據(jù)語句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.15、【解析】
利用復(fù)數(shù)模的運算性質(zhì),即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點睛】本題考查復(fù)數(shù)模的運算性質(zhì),考查推理能力與計算能力,屬于基礎(chǔ)題.16、【解析】
由于,,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ).(Ⅱ)見解析.【解析】
(Ⅰ)人中很幸福的有人,可以先計算其逆事件,即人都認為不很幸福的概率,再用減去人都認為不很幸福的概率即可;(Ⅱ)根據(jù)題意,隨機變量,列出分布列,根據(jù)公式求出期望即可.【詳解】(Ⅰ)設(shè)事件抽出的人至少有人是“很幸?!钡?,則表示人都認為不很幸福(Ⅱ)根據(jù)題意,隨機變量,的可能的取值為;;;所以隨機變量的分布列為:所以的期望【點睛】本題考查了離散型隨機變量的概率分布列,數(shù)學(xué)期望的求解,概率分布中的二項分布問題,屬于常規(guī)題型.18、(1)見解析.(1)(-1,0).【解析】試題分析:(1)直接計算f(x)+f(-1(1)f(x)+f(2x)=|x-a|+|2x-a|,分區(qū)間討論去絕對值符號分別解不等式即可.試題解析:(1)證明:函數(shù)f(x)=|x﹣a|,a<2,則f(x)+f(﹣)=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|(x﹣a)+(+a)|=|x+|=|x|+≥1=1.(1)f(x)+f(1x)=|x﹣a|+|1x﹣a|,a<2.當x≤a時,f(x)=a﹣x+a﹣1x=1a﹣3x,則f(x)≥﹣a;當a<x<時,f(x)=x﹣a+a﹣1x=﹣x,則﹣<f(x)<﹣a;當x時,f(x)=x﹣a+1x﹣a=3x﹣1a,則f(x)≥﹣.則f(x)的值域為[﹣,+∞).不等式f(x)+f(1x)<的解集非空,即為>﹣,解得,a>﹣1,由于a<2,則a的取值范圍是(-1,0).考點:1.含絕對值不等式的證明與解法.1.基本不等式.19、(1);(2)【解析】
(1)將有兩個零點轉(zhuǎn)化為方程有兩個相異實根,令求導(dǎo),利用其單調(diào)性和極值求解;(2)將問題轉(zhuǎn)化為對一切恒成立,令,求導(dǎo),研究單調(diào)性,求出其最值即可得結(jié)果.【詳解】(1)有兩個零點關(guān)于的方程有兩個相異實根由,知有兩個零點有兩個相異實根.令,則,由得:,由得:,在單調(diào)遞增,在單調(diào)遞減,又當時,,當時,當時,有兩個零點時,實數(shù)的取值范圍為;(2)當時,,原命題等價于對一切恒成立對一切恒成立.令令,,則在上單增又,,使即①當時,,當時,,即在遞減,在遞增,由①知函數(shù)在單調(diào)遞增即,實數(shù)的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值問題,考查學(xué)生轉(zhuǎn)化能力和分析能力,是一道難度較大的題目.20、(1)(2)5【解析】
(1)首先消去參數(shù)得到曲線的普通方程,再根據(jù),,得到曲線的極坐標方程;(2)將直線的參數(shù)方程代入曲線的直角坐標方程,利用直線的參數(shù)方程中參數(shù)的幾何意義得解;【詳解】解:(1)曲線:消去參數(shù)得到:,由,,得所以(2)代入,設(shè),,由直線的參數(shù)方程參數(shù)的幾何意義得:【點睛】本題考查參數(shù)方程、極坐標方程、普通方程的互化,以及直線參數(shù)方程的幾何意義的應(yīng)用,屬于中檔題.21、(1)(2);【解析】
(1)由代入中計算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【詳解】(1)因為,可得:,∴,或(舍),∵,∴.(2)由余弦定理,得所以,故,又,所以,所以.【點睛】本題考查二倍角公式以及正余弦定理解三角形,考查學(xué)生的運算求解能力,是一道容易題.22、(1)證明見解析(2)【解析】
(1)先證,再證,由可得平面,從而推出平面;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《管理會計 第3版》 課件 第01章 管理會計概述
- 微積分 第3版 課件 7第七節(jié) 二重積分
- 高考語文真題分類卷-專題六 文學(xué)類文本閱讀(含答案)
- 動物之最課件教學(xué)課件
- 網(wǎng)絡(luò)接入?yún)f(xié)議書(2篇)
- 黨群服務(wù)中心建設(shè)工作總結(jié)匯報
- 南京航空航天大學(xué)《薄膜材料與技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
- 南京工業(yè)大學(xué)浦江學(xué)院《食品工藝學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 富陽佳苑4#樓施工組織設(shè)計
- 南京工業(yè)大學(xué)浦江學(xué)院《混凝土結(jié)構(gòu)基本原理課程設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 2023年大學(xué)試題(法學(xué))-著作權(quán)法考試參考題庫(含答案)
- 綠博園站初步設(shè)計說明
- 中控ECS-700學(xué)習課件
- 武漢理工大學(xué)計算機網(wǎng)絡(luò)試題及答案
- 山地光伏施工組織設(shè)計
- 漢字演變500例(中)
- 領(lǐng)導(dǎo)干部政治品德建設(shè)的價值意蘊PPT德才兼?zhèn)湟缘抡頌檎缘翽PT課件(帶內(nèi)容)
- 希臘神話-大力神-赫拉克勒斯
- 軍隊文職招聘(數(shù)學(xué)2+物理)近年考試真題題庫(含真題、典型題匯總)
- 結(jié)構(gòu)加固改造施工方案
- 《診斷學(xué)》心臟聽診
評論
0/150
提交評論