![材料科學基礎(chǔ)輔導與習題-上交課件 二元相圖及其合金的凝固_第1頁](http://file4.renrendoc.com/view/ab3323bebaa26ebbd4e702c922360183/ab3323bebaa26ebbd4e702c9223601831.gif)
![材料科學基礎(chǔ)輔導與習題-上交課件 二元相圖及其合金的凝固_第2頁](http://file4.renrendoc.com/view/ab3323bebaa26ebbd4e702c922360183/ab3323bebaa26ebbd4e702c9223601832.gif)
![材料科學基礎(chǔ)輔導與習題-上交課件 二元相圖及其合金的凝固_第3頁](http://file4.renrendoc.com/view/ab3323bebaa26ebbd4e702c922360183/ab3323bebaa26ebbd4e702c9223601833.gif)
![材料科學基礎(chǔ)輔導與習題-上交課件 二元相圖及其合金的凝固_第4頁](http://file4.renrendoc.com/view/ab3323bebaa26ebbd4e702c922360183/ab3323bebaa26ebbd4e702c9223601834.gif)
![材料科學基礎(chǔ)輔導與習題-上交課件 二元相圖及其合金的凝固_第5頁](http://file4.renrendoc.com/view/ab3323bebaa26ebbd4e702c922360183/ab3323bebaa26ebbd4e702c9223601835.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Ch4二元相圖及其合金的凝固4.1相圖的表示和測定方法4.2相圖熱力學基本要點4.3二元相圖分析4.4二元合金的凝固理論4.5高分子合金概述14.1相圖的表示和測定方法一、相圖的表示方法二、相圖的測定方法2一、相圖的表示方法1.成分、溫度和壓力三坐標立體圖2.成分與溫度兩坐標平面圖3.成分表示3二、相圖的測定方法1.通過熱力學的計算和分析建立相圖;
2.通過實驗建立相圖41.通過熱力學的計算和分析建立相圖利用已有的熱力學參數(shù),可作出不同溫度、成分下各相的吉布斯自由能曲線,確定不同溫度、成分下平衡存在的相的狀態(tài)和成分,繪制出不同合金的相圖;或者通過熱力學計算,求出有關(guān)數(shù)據(jù),直接作出相圖;計算機的廣泛使用為計算相圖提供了有利的條件,從長遠發(fā)展看,相圖的計算確定是有很大潛力的。
52.通過實驗建立相圖實際金屬材料或陶瓷材料相圖的建立主要依靠實驗的方法,包括熱分析法、熱膨脹法、磁性法、電阻法、金相分析法、X-射線分析法等等,這些方法可歸結(jié)為兩類基本方法--動態(tài)垂直截線法和靜態(tài)水平截線法。
6動態(tài)垂直截線法合金序號123456組元A(﹪)100806040200組元B(﹪)0204060801007InterpretationofcoolingcurvesThemeltingtemperatureofanypurematerial(aone-componentsystem)atconstantpressureisasingleuniquetemperature.Theliquidandsolidphasesexisttogetherinequilibriumonlyatthistemperature.Whencooled,thetemperatureofthemoltenmaterialwillsteadilydecreaseuntilthemeltingpointisreached.Atthispointthematerialwillstarttocrystallise,leadingtotheevolutionoflatentheat
atthesolidliquidinterface,maintainingaconstanttemperatureacrossthematerial.Oncesolidificationiscomplete,steadycoolingresumes.Thearrestincoolingduringsolidificationallowsthemeltingpointofthematerialtobeidentifiedon
atime-temperaturecurve.8Mostsystemsconsistingoftwoormorecomponentsexhibitatemperaturerangeoverwhichthesolidandliquidphasesareinequilibrium.Insteadofasinglemeltingtemperature,thesystemnowhastwodifferenttemperatures,theliquidustemperatureandthesolidustemperaturewhichareneededtodescribethechangefromliquidtosolid.Theliquidustemperatureisthetemperatureabovewhichthesystemisentirelyliquid,andthesolidusisthetemperaturebelowwhichthesystemiscompletelysolid.Betweenthesetwopointstheliquidandsolidphasesareinequilibrium.Whentheliquidustemperatureisreached,solidificationbeginsandthereisareductionincoolingratecausedbylatentheatevolutionandaconsequentreductioninthegradientofthecoolingcurve.9Uponthecompletionofsolidificationthecoolingratealtersagainallowingthetemperatureofthesolidustobedetermined.Ascanbeseenonthediagrambelow,thesechangesingradientallowtheliquidustemperatureTL,andthesolidustemperatureTStobeidentified.10Whencoolingamaterialofeutecticcomposition,solidificationofthewholesampletakesplaceatasingletemperature.Thisresultsinacoolingcurvesimilarinshapetothatofasingle-componentsystemwiththesystemsolidifyingatitseutectictemperature.11Whensolidifyinghypoeutecticorhypereutecticalloys,thefirstsolidtoformisasinglephasewhichhasacompositiondifferenttothatoftheliquid.Thiscausestheliquidcompositiontoapproachthatoftheeutecticascoolingoccurs.Oncetheliquidreachestheeutectictemperatureitwillhavetheeutecticcompositionandwillfreezeatthattemperaturetoformasolideutecticmixtureoftwophases.Formationoftheeutecticcausesthesystemtoceasecoolinguntilsolidificationiscomplete.Theresultingcoolingcurveshowsthetwostagesofsolidificationwithasectionofreducedgradientwhereasinglephaseissolidifyingandaplateauwhereeutecticissolidifying.12Bytakingaseriesofcoolingcurvesforthesamesystemoverarangeofcompositionstheliquidusandsolidustemperaturesforeachcompositioncanbedeterminedallowingthesolidusandliquidustobemappedtodeterminethephasediagram.Belowarecoolingcurvesforthesamesystemrecordedfordifferentcompositionsandthendisplacedalongthetimeaxis.Theredregionsindicatewherethematerialisliquid,theblueregionsindicatewherethematerialissolidandthegreenregionsindicatewherethesolidandliquidphasesareinequilibrium.1314Byremovingthetimeaxisfromthecurvesandreplacingitwithcomposition,thecoolingcurvesindicatethetemperaturesofthesolidusandliquidusforagivencomposition.15Thisallowsthesolidusandliquidustobeplottedtoproducethephasediagram:161718靜態(tài)水平截線法此類方法主要用于測定固態(tài)下發(fā)生的轉(zhuǎn)變。194.2相圖熱力學基本要點一、合金相熱力學二、相平衡熱力學三、相圖熱力學20
一、合金相熱力學合金在平衡狀態(tài)下相的狀態(tài),包括相的數(shù)目和成分,由熱力學條件決定,所存在穩(wěn)定的相的狀態(tài)是系統(tǒng)吉布斯自由能最低的狀態(tài)
1.二組元固溶體相的吉布斯自由能
2.二組元中間相的吉布斯自由能3.混合相的吉布斯自由能211.二組元固溶體相的吉布斯自由能在等壓條件下H0的近似求法
S0的近似求法
溶體的自由能-成分曲線
22ThermodynamicsofSolutions
Consideramechanicalmixtureoftwophases,AandB.IfthisisthentransformedintoasinglesolutionphasewithAandBatomsdistributedrandomlyovertheatomicsites,thentherewillbe,AnenthalpychangeassociatedwithinteractionsbetweentheAandBatoms,⊿Hmix
Anentropychange,⊿Smix,associatedwiththerandommixingoftheatomsAfreeenergyofmixing,⊿Gmix=⊿Hmix-T⊿Smix
AssumethatthesystemconsistsofNatoms:xANofAandxBNofB,where,xA=fractionofAatomsandxB=(1-xA)=fractionofBatoms23EnthalpyofmixingIncalculating⊿Hmixitisassumedthatonlythepotentialenergytermundergoesanysignificantchangeduringmixing.Thischangearisesfromtheinteractionsbetweennearest-neighbouratoms.ConsideranalloyconsistingofatomsAandB.Iftheatomspreferlikeneighbours,AatomswilltendtoclusterandlikewiseBatoms,soagreaternumberofA-AandB-Bbondswillform.IftheatomspreferunlikeneighboursagreaternumberofA-Bbondswillform.IfthereisnopreferenceAandBatomswillberandomlydistributed.24LetwAAbetheinteractionenergybetweenA-Anearestneighbours,wBBthatforB-BnearestneighboursandwABthatforA-Bnearestneighbours.Alloftheseenergiesarenegative,asthezeroinpotentialenergyisforinfiniteseparationbetweenatoms.LeteachatomofAandBhaveco-ordinationnumberz.Therefore,thetotalnumberofnearest-neighbourpairsisNz/2.ProbabilityofA-Aneighbours=xA2ProbabilityofB-Bneighbours=xB2ProbabilityofA-Bneighbours=2xAxBForasolidsolutionthetotalinteractionenergyis,Hs-Us=Nz/2(xA2
wAA+xB2
wBB+2xAxB
wAB)ForpureA,HA=(Nz/2)wAAForpureB,HB=(Nz/2)wBB
25Hencetheenthalpyofmixingisgivenby,⊿Hmix=Hs-(xAHA+xBHB)=(Nz/2)xAxB(2wAB-wAA-wBB)WecandefineaninteractionparameterΩ=(Nz/2)(2wAB-wAA-wBB)Therefore,⊿Hmix=ΩxAxBIfA-AandB-BinteractionsareenergeticallymorefavourablethanA-BinteractionsthenΩ>0.So,⊿Hmix>0andthereisatendencyforthesolutiontoformA-richandB-richregions.IfA-BinteractionsareenergeticallymorefavourablethanA-AandB-Binteractions,Ω<0,⊿Hmix<0,andthereisatendencytoformorderedstructuresorintermediatecompounds.Finallyifthesolutionisidealandallinteractionsareenergeticallyequivalent,thenΩ=0and⊿Hmix=0.26EntropyofmixingPermoleofsites,thisis⊿Smix=kN(-xAlnxA-xBlnxB)(thederivationofthisresultmakesuseofStirling'sapproximation)whereN=Avogadro'snumber,andkN=R,thegasconstant.Hence,⊿Smix=R(-xAlnxA-xBlnxB)Agraphof⊿SmixversusxAhasadifferentformfrom⊿Hmix.ThecurvehasaninfinitegradientatxA=0andxA=1.Thefreeenergyofmixingisnowgivenby,⊿Gmix=⊿Hmix-T⊿Smix=xAxBΩ+RT(xA
lnxA+xBlnxB)ForΩ<0,⊿Gmixisnegativeatalltemperatures,andmixingisexothermic.ForΩ>0,⊿Hmixispositiveandmixingisendothermic.27⊿Sm=-kN(xAlnxA+xBlnxB)即S0=-R(xAlnxA+xBlnxB)28Stirling'sapproximationStirling'sapproximationis:ln
N!=NlnN-N,forlargeNTheentropy,S=k
lnw
wherewisthenumberofpossibleconfigurationsforasystem.Foramechanicalmixturew=1astheonlyarrangementisAatomsonAsitesandBatomsonBsites.ForasolidsolutionofAandBcontainingxANAatomsandxBNBatomsthevalueofwiscalculatedasfollows
N!
{xAN}!{(1-
xA)N}!AssumingthatthethermalentropyofthesystemremainsunchangedwhenAandBgointosolution2930FreeenergycurvesofSolutionsSolutionscontainmorethanonecomponentandinthesesituationsthefreeenergyofthesolutionwillbecomedependentonitscompositionaswellasthetemperature.Itisshownabovethatthefreeenergyofmixingis:⊿Gmix=⊿Hmix-T⊿Smix=xAxBΩ+RT(xAlnxA+xBlnxB)Theshapeofthe⊿Gmixcurveisdependentontemperature.Forthecurveshownbelowthevalueof⊿Hmixispositive,leadingtoamaximumonthecurveatlowtemperatures.⊿Gmixisalwaysnegativeforlowsoluteconcentrationsasthegradientof⊿SmixisinfiniteatxA=0andxA=1.31Athightemperaturesthereisacompletesolutionandthecurvehasasingleminimum.Atlowtemperaturesthecurvehasamaximumandtwominima.Inthecompositionrangebetweenthetwominima(denotedbythedashedlines)amixtureoftwophasesismorestablethanasingle-phasesolution.Thefreeenergyofaregularsolidsolution,⊿Gsol,isthesumofthefreeenergyofmixing⊿Gmixandthefreeenergyoffusion⊿Gfus.32FreeenergyoffusionWhenaliquidsolidifiesthereisachangeinthefreeenergyoffreezing,astheatomsmoveclosertogetherandformacrystallinesolid.Forapurecomponent,thiscanbeempiricallycalculatedusingRichard'sRule:⊿Gfusion=-9.5(Tm-T)Tm=meltingtemperature
T=currenttemperature⊿Gfusion=0atthemeltingtemperatureofthecomponent.
⊿Gfusion<0belowthemeltingtemperatureofthecomponent.
⊿Gfusion
>0abovethemeltingtemperatureofthecomponent.Inanalloy,ifboththeliquidandsolidsolutionsareidealthen⊿Gfusionforthealloycanbeinterpolatedbetweenthevaluesforthetwocomponents.33Nowwecanplotthefreeenergyofaregularsolidsolutionfromtheequation,⊿Gsol=⊿Gmix+⊿Gfusion342.二組元中間相的吉布斯自由能
353.混合相的吉布斯自由能x=(n1x1+n2x2)/(n1+n2)36二、相平衡熱力學
1.相平衡條件
2.圖解法求化學位
3.相平衡的公切線法則371.相平衡條件二元系中,兩相平衡的熱力學條件是每個組元在各相中的化學位相等,即
μαA=μβAμαB=μβB二元系中,三相平衡的熱力學條件是每個組元在各相中的化學位相等,即
μαA=μβA=μγAμαB=μβB=μγB
多元復相平衡的普遍條件是每個組元在各相中的化學位都必須彼此相等,即μαi=μβi=μγi=…=μPi
其中,α、β、γ…P表示合金中存在的相,i代表合金中的第i個組元382.圖解法求化學位
393.相平衡的公切線法則一相分解為兩相平衡
兩相平衡
化合物相形成平衡
二元系中的三相平衡
40一相分解為兩相平衡41兩相平衡
42化合物相形成平衡
43二元系中的三相平衡
44三、相圖熱力學推測相圖步驟為:首先,求得各相在不同T和X時的G,并作G-X曲線;其次,根據(jù)公切線法則,作出G-X曲線的公切線,找出平衡相的成分和存在范圍,然后綜合畫在T-X坐標圖上.其規(guī)律為:1.當兩相的G-X成分曲線不相交時,表示在某T下只有穩(wěn)定單相(即G最低的那個相)存在,在相圖中對應的是單相區(qū);2.若兩相的G-X曲線相交,則必有一條公切線,兩切點相應的成分表示在此溫度下兩個平衡相的成分,在該成分范圍內(nèi)相圖上對應存在兩相區(qū);45
3.若兩相G-X曲線相交,但只在交點相切,則在相圖中與這個切點相對應的是一個相變點,表示同成分的兩相平衡;4.在有三相存在時,如三條G-X曲線依次相交,存在兩條公切線,有兩對平衡相,切點對應的成分分別表示其平衡相的成分.如三相的G-X曲線只存在一條公切線,表示三相平衡,三個切點對應的成分表示三個平衡相的成分,在相圖上對應有一條三相共存的水平線46Phasediagrams1
Freeenergycurvescanbeusedtodeterminethemoststablestateforasystem,i.e.thephaseorphasemixturewiththelowestfreeenergyforagiventemperatureandcomposition.Belowisaschematicfree-energycurveforthesolidphaseofanalloy.47ThesolidshowncouldeitherexistasamixtureorasahomogeneoussolutionofAandB.ThefiguresbelowshowthatanalloyofcompositionCcanexistindifferentconfigurationswithdifferingfreeenergies.Inthefirstfigure(below)thefreeenergyofunmixedAandBisshownasthediagonalblackline.ThefreeenergyofthismixtureatcompositionCisshownasaredpoint.48Thesystemcanreduceitsfreeenergybyexistingasamixtureoftwophases
Thoughthesystemhasreduceditsfreeenergyfromthatofthemixture,themoststableconfigurationforthesystemisasolidsolution.Thisallowsthefreeenergyofthesystemtositonthefreeenergycurve.49Formostsystemstherewillbemorethanonephaseandassociatedfree-energycurvetoconsider.Atagiventemperaturethemoststablephaseforasystemcanvarywithcomposition.Whilethesystemcouldconsistentirelyofthephasewhichismoststableatagivencompositionandtemperature,ifthefreeenergycurvesforthetwophasescross,themoststableconfigurationmaybeamixtureoftwophaseswithcompositionsdifferingfromthatoftheoverallsystem.Thetotalfreeenergyofthesysteminanygiventwo-phaseconfigurationcanbefoundbylinkingthetwophasesinquestionwithastraightlineonafree-energyplot.5051Takingalinethatisacommontangenttothetwofree-energycurvesproducesthelowestpossiblefreeenergyforthesystemasawhole.Wherethelinemeetsthefreeenergycurvesdefinesthecompositionofeachphase.52Forpositionswhereitisnotpossibletodrawacommontangentbetweenthetwofree-energycurvesthesystemwillsitentirelyinthephasewiththelowestfreeenergy.Thebordersbetweenthesingle-andtwo-phaseregionsmarkthepositionsofthesolidusandliquidusonthephasediagram.53Whenthetemperatureisalteredthecompositionsofthesolidandliquidinequilibriumchangeandbuilduptheshapeofthesolidusandliquiduscurvesonaphasediagram.Below,abinarysystemcanbeseenalongwiththefree-energycurvesfortheliquidandsolidphasesatarangeoftemperaturesshownonthephasediagram.54
55Phasediagrams2Thefree-energycurvesandphasediagramsdiscussedinPhaseDiagrams1wereallforsystemswherethesolidexistsasasolutionatallcompositionsandtemperatures.Inmostrealsystemsthisisnotthecase.Thisisduetoapositive⊿Hmixcausedbyunfavourableinteractionsbetweenunlikeneighbouratoms.Asthetemperatureisreducedthe⊿Hmixtermbecomesmoresignificantandthecurveturnsupwardatintermediatecompositions,resultinginacurvewithtwominimaandonemaximumasdescribedearlier.Acommontangentcanthenbedrawnbetweenthetwominimashowingthatthesystemcanreduceitsfreeenergythroughexistingasamixtureoftwodistinctphases.56ThefreeenergyofasystemofcompositionCocanbeminimisedbyexistingasamixtureoftwosolidphasesofcompositionC1andC2:Thiseffectcanresultinasystemwhich,thoughsingle-phaseuponsolidification,willseparateintotwosolidphasesoncooling(e.g.Cr-W).57Anotherpossibleresultisthatthefree-energycurvefortheliquidwillintersecttheupturnedsectionofthefree-energycurveforthesolidbeforethetemperatureishighenoughtoinducetheformationofasolidsolution.Asthetemperatureisincreased,thefree-energycurvefortheliquidmovesdownwardrelativetothesolidcurveandreachesapositionwhereit
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 應收賬款的質(zhì)押合同
- 塑鋼購銷合同
- 2025水庫承包合同范本
- 2025合同模板機械設(shè)備租賃合同范本
- 全新補充合同書下載
- bim設(shè)計服務合同
- 學校保潔員合同協(xié)議
- IT運維服務合同年
- 2025環(huán)境監(jiān)測合同書
- 2025年鑄鐵及相關(guān)金屬制衛(wèi)生、廚房器具、餐具項目規(guī)劃申請報告
- Unit6AtthesnackbarStorytimeDiningwithdragons(課件)譯林版英語四年級上冊
- 2023年四川省公務員錄用考試《行測》真題卷及答案解析
- 機電一體化系統(tǒng)設(shè)計-第5章-特性分析
- 2025年高考物理復習壓軸題:電磁感應綜合問題(原卷版)
- 雨棚鋼結(jié)構(gòu)施工組織設(shè)計正式版
- 2024尼爾森IQ中國本土快消企業(yè)調(diào)研報告
- 2024年印度辣椒行業(yè)狀況及未來發(fā)展趨勢報告
- 石家莊長安區(qū)幼兒園信息統(tǒng)計表
- 最終稿(教學評一致)課件
- 2023年廣東省深圳市八年級下學期物理期中考試試卷
- 《詩詞寫作常識 詩詞中國普及讀物 》讀書筆記思維導圖
評論
0/150
提交評論