版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精2020-2021學(xué)年新教材數(shù)學(xué)北師大版必修第一冊(cè)課時(shí)分層作業(yè)42古典概型含解析課時(shí)分層作業(yè)(四十二)古典概型(建議用時(shí):40分鐘)一、選擇題1.一部三冊(cè)的小說,任意排放在書架的同一層上,則各冊(cè)的排放次序共有()A.3種B.4種C.6種D.12種C[(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),共6種.]2.下列是古典概型的是()A.任意拋擲兩枚骰子,所得點(diǎn)數(shù)之和作為樣本點(diǎn)B.求任意的一個(gè)正整數(shù)平方的個(gè)位數(shù)字是1的概率,將取出的正整數(shù)作為樣本點(diǎn)C.從甲地到乙地共n條路線,求某人正好選中最短路線的概率D.拋擲一枚均勻硬幣,首次出現(xiàn)正面為止C[A項(xiàng)中由于點(diǎn)數(shù)的和出現(xiàn)的可能性不相等,故A不是;B項(xiàng)中的樣本點(diǎn)是無(wú)限的,故B不是;C項(xiàng)滿足古典概型的有限性和等可能性,故C是;D項(xiàng)中樣本點(diǎn)既不是有限個(gè),也不具有等可能性,故D不是.]3.從{1,2,3,4,5}中隨機(jī)選取一個(gè)數(shù)為a,從{1,2,3}中隨機(jī)選取一個(gè)數(shù)為b,則b〉a的概率是()A.eq\f(4,5)B.eq\f(3,5)C.eq\f(2,5)D.eq\f(1,5)D[設(shè)所取的數(shù)中b>a為事件A,如果把選出的數(shù)a,b寫成一數(shù)對(duì)(a,b)的形式,則試驗(yàn)的樣本空間Ω={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3)},共15個(gè),事件A包含的樣本點(diǎn)有(1,2),(1,3),(2,3),共3個(gè),因此所求的概率P(A)=eq\f(3,15)=eq\f(1,5).]4.從甲、乙、丙、丁、戊五個(gè)人中選取三人參加演講比賽,則甲、乙都當(dāng)選的概率為()A.eq\f(2,5)B.eq\f(2,10)C.eq\f(3,10)D.eq\f(3,5)C[從五個(gè)人中選取三人,則試驗(yàn)的樣本空間Ω={(甲,乙,丙),(甲,乙,?。?,(甲,乙,戊),(甲,丙,?。?(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊)},而甲、乙都當(dāng)選的結(jié)果有3種,故所求的概率為eq\f(3,10).]5.同時(shí)拋擲三枚均勻的硬幣,出現(xiàn)一枚正面,兩枚反面的概率等于()A.eq\f(1,4)B.eq\f(1,3)C.eq\f(3,8)D.eq\f(1,2)C[試驗(yàn)的樣本空間Ω={(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,反,正),(反,正,反),(反,反,反)},共8種,出現(xiàn)一枚正面,兩枚反面的樣本點(diǎn)有3種,故概率為P=eq\f(3,8)。]二、填空題6.從含有3件正品和1件次品的4件產(chǎn)品中不放回地任取2件,則取出的2件中恰有1件是次品的概率是________.eq\f(1,2)[設(shè)3件正品為A,B,C,1件次品為D,從中不放回地任取2件,試驗(yàn)的樣本空間Ω={(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)},共6個(gè).其中恰有1件是次品的樣本點(diǎn)有:(A,D),(B,D),(C,D),共3個(gè),故P=eq\f(3,6)=eq\f(1,2).]7.在國(guó)慶閱兵中,某兵種A,B,C三個(gè)方陣按一定次序通過主席臺(tái),若先后次序是隨機(jī)排定的,則B先于A,C通過的概率為________.eq\f(1,3)[用(A,B,C)表示A,B,C通過主席臺(tái)的次序,則所有可能的次序有(A,B,C),(A,C,B),(B,A,C),(B,C,A),(C,A,B),(C,B,A),共6種,其中B先于A,C通過的有(B,C,A)和(B,A,C),共2種,故所求概率P=eq\f(2,6)=eq\f(1,3)。]8.從1,2,3,4,5中任意取出兩個(gè)不同的數(shù),其和為5的概率是________.eq\f(1,5)[從5個(gè)數(shù)中任意取出兩個(gè)不同的數(shù),樣本點(diǎn)的總數(shù)為10,若取出的兩數(shù)之和等于5,則有(1,4),(2,3),共有2個(gè)樣本點(diǎn),所以取出的兩數(shù)之和等于5的概率為eq\f(2,10)=eq\f(1,5).]三、解答題9.某種飲料每箱裝6聽,其中一箱有2聽不合格,質(zhì)檢人員依次不放回地從該箱中隨機(jī)抽出2聽,求檢測(cè)出不合格產(chǎn)品的概率.[解]只要檢測(cè)的2聽中有1聽不合格,就表示查出了不合格產(chǎn)品.分為兩種情況:1聽不合格和2聽都不合格.設(shè)合格飲料為1,2,3,4,不合格飲料為5,6,從6聽中選2聽的基本事件有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15種.有1聽不合格的有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8種;有2聽不合格的有(5,6),共1種,所以檢測(cè)出不合格產(chǎn)品的概率為eq\f(8+1,15)=eq\f(3,5)。10.某學(xué)校有初級(jí)教師21人,中級(jí)教師14人,高級(jí)教師7人,現(xiàn)采用分層隨機(jī)抽樣的方法從這些教師中抽取6人對(duì)績(jī)效工資情況進(jìn)行調(diào)查.(1)求應(yīng)從初級(jí)教師、中級(jí)教師、高級(jí)老師中分別抽取的人數(shù);(2)若從分層隨機(jī)抽樣抽取的6名教師中隨機(jī)抽取2名教師做進(jìn)一步數(shù)據(jù)分析,求抽取的2名教師均為初級(jí)教師的概率.[解](1)由分層隨機(jī)抽樣知識(shí)得應(yīng)從初級(jí)教師、中級(jí)教師、高級(jí)教師中抽取的人數(shù)分別為3,2,1。(2)在分層隨機(jī)抽樣抽取的6名教師中,3名初級(jí)教師分別記為A1,A2,A3,2名中級(jí)教師分別記為A4,A5,高級(jí)教師記為A6,則從中抽取2名教師的樣本空間為Ω={(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6)},即樣本點(diǎn)的總數(shù)為15。抽取的2名教師均為初級(jí)教師(記為事件B)的樣本點(diǎn)為(A1,A2),(A1,A3),(A2,A3),共3種.所以P(B)=eq\f(3,15)=eq\f(1,5).11.有五根細(xì)木棒,長(zhǎng)度分別為1,3,5,7,9(cm),從中任取三根,能搭成三角形的概率是()A.eq\f(3,20)B.eq\f(2,5)C.eq\f(1,5)D.eq\f(3,10)D[設(shè)取出的三根木棒能搭成三角形為事件A,試驗(yàn)的樣本空間Ω={(1、3、5),(1、3、7),(1、3、9),(1、5、7),(1、5、9),(1、7、9),(3、5、7),(3、5、9),(3、7、9),(5、7、9)},樣本空間的總數(shù)為10,由于三角形兩邊之和大于第三邊,構(gòu)成三角形的樣本點(diǎn)只有(3、5、7),(3、7、9),(5、7、9)三種情況,故所求概率為P(A)=eq\f(3,10)。]12.兩位男同學(xué)和兩位女同學(xué)隨機(jī)排成一列,則兩位女同學(xué)相鄰的概率是()A.eq\f(1,6)B.eq\f(1,4)C.eq\f(1,3)D.eq\f(1,2)C[設(shè)兩位男同學(xué)分別為a,b,兩位女同學(xué)分別為c,d,四人隨機(jī)站成一列,試驗(yàn)的樣本空間Ω={abcd,abdc,acbd,acdb,adbc,adcb,bacd,badc,bcad,bcda,bdac,bdca,cabd,cadb,cbad,cbda,cdab,cdba,dabc,dacb,dbac,dbca,dcab,dcba}共24個(gè),其中表示兩位女同學(xué)相鄰的樣本點(diǎn)有:abcd,abdc,acdb,dcab,dcba,bacd,badc,bcda,bdca,cdab,cdba,adcb,共12個(gè),故所求的概率為eq\f(12,24)=eq\f(1,2)。]13.從三男三女共6名學(xué)生中任選2名(每名同學(xué)被選中的概率均相等),則2名都是女同學(xué)的概率等于________.eq\f(1,5)[用A,B,C表示三名男同學(xué),用a,b,c表示三名女同學(xué),則從6名同學(xué)中選出2人的樣本空間Ω={AB,AC,Aa,Ab,Ac,BC,Ba,Bb,Bc,Ca,Cb,Cc,ab,ac,bc},其中事件“2名都是女同學(xué)”包含樣本點(diǎn)的個(gè)數(shù)為3,故所求的概率為eq\f(3,15)=eq\f(1,5).]14.袋中共有6個(gè)除了顏色外完全相同的球,其中有1個(gè)紅球,2個(gè)白球和3個(gè)黑球.從袋中任取兩球,兩球顏色為一白一黑的概率為________.eq\f(2,5)[設(shè)袋中紅球用a表示,2個(gè)白球分別用b1,b2表示,3個(gè)黑球分別用c1,c2,c3表示,則試驗(yàn)的樣本空間Ω={(a,b1),(a,b2),(a,c1),(a,c2),(a,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3)},則樣本空間的總數(shù)為15個(gè).兩球顏色為一白一黑的樣本空間有(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),共6個(gè).∴其概率為eq\f(6,15)=eq\f(2,5).]15.袋子中放有大小和形狀相同的小球若干個(gè),其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球n個(gè).已知從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)是2的小球的概率是eq\f(1,2)。(1)求n的值;(2)從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為a,第二次取出的小球標(biāo)號(hào)為b.記事件A表示“a+b=2",求事件A的概率.[解](1)由題意可知:eq\f(n,1+1+n)=eq\f(1,2),解得n=2。(2)不放回地隨機(jī)抽取2個(gè)小球的樣本空間Ω={(0,1),(0,21),(0,22),(1,0)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版固定資產(chǎn)互借互貸協(xié)議樣式版B版
- 2022端午節(jié)活動(dòng)策劃方案三篇范文
- 2025年COD自動(dòng)在線監(jiān)測(cè)儀項(xiàng)目規(guī)劃申請(qǐng)報(bào)告范文
- 2024-2025學(xué)年謝家集區(qū)數(shù)學(xué)三年級(jí)第一學(xué)期期末監(jiān)測(cè)試題含解析
- 2025年低壓接觸器項(xiàng)目提案報(bào)告
- 員工工作計(jì)劃(15篇)
- 九年級(jí)中秋節(jié)滿分作文5篇
- 中專自我鑒定范文集合五篇
- 教學(xué)改革學(xué)期工作總結(jié)簡(jiǎn)短范文5篇模板
- 常用的員工個(gè)人工作總結(jié)12篇
- 2024廣西專業(yè)技術(shù)人員繼續(xù)教育公需科目參考答案(100分)
- 譯林版小學(xué)英語(yǔ)二年級(jí)上全冊(cè)教案
- DL∕T 821-2017 金屬熔化焊對(duì)接接頭射線檢測(cè)技術(shù)和質(zhì)量分級(jí)
- 小學(xué)五年級(jí)英語(yǔ)語(yǔ)法練習(xí)
- NB-T32004-2018光伏并網(wǎng)逆變器技術(shù)規(guī)范
- 領(lǐng)導(dǎo)與班子廉潔談話記錄(4篇)
- 衡陽(yáng)市耒陽(yáng)市2022-2023學(xué)年七年級(jí)上學(xué)期期末語(yǔ)文試題【帶答案】
- 文庫(kù)發(fā)布:strata手冊(cè)
- 旋挖鉆孔灌注樁施工技術(shù)規(guī)程
- 過氧化二異丙苯安全技術(shù)說明書
- 幼師課例分析報(bào)告總結(jié)與反思
評(píng)論
0/150
提交評(píng)論