2022-2023學(xué)年吉林省長春市南關(guān)區(qū)東北師大附中新城校區(qū)中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
2022-2023學(xué)年吉林省長春市南關(guān)區(qū)東北師大附中新城校區(qū)中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
2022-2023學(xué)年吉林省長春市南關(guān)區(qū)東北師大附中新城校區(qū)中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
2022-2023學(xué)年吉林省長春市南關(guān)區(qū)東北師大附中新城校區(qū)中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
2022-2023學(xué)年吉林省長春市南關(guān)區(qū)東北師大附中新城校區(qū)中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,反比例函數(shù)y=-4x的圖象與直線y=-1A.8B.6C.4D.22.在,,,這四個數(shù)中,比小的數(shù)有()個.A. B. C. D.3.若△ABC與△DEF相似,相似比為2:3,則這兩個三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:44.⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則n的值為()A.3 B.4 C.6 D.85.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,則圖中相似三角形共有()A.1對 B.2對 C.3對 D.4對6.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0,②當(dāng)﹣1≤x≤3時,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函數(shù)圖象上,當(dāng)0<x1<x2時,y1<y2,其中正確的是()A.①②④ B.①③ C.①②③ D.①③④7.如圖,若a∥b,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.120° D.150°8.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.9.如圖,在△ABC中,∠C=90°,M是AB的中點,動點P從點A出發(fā),沿AC方向勻速運動到終點C,動點Q從點C出發(fā),沿CB方向勻速運動到終點B.已知P,Q兩點同時出發(fā),并同時到達終點.連結(jié)MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是()A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小10.如圖,在正方形ABCD中,AB=,P為對角線AC上的動點,PQ⊥AC交折線A﹣D﹣C于點Q,設(shè)AP=x,△APQ的面積為y,則y與x的函數(shù)圖象正確的是()A. B.C. D.11.我國的釣魚島面積約為4400000m2,用科學(xué)記數(shù)法表示為()A.4.4×106B.44×105C.4×106D.0.44×10712.a(chǎn)≠0,函數(shù)y=與y=﹣ax2+a在同一直角坐標系中的大致圖象可能是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在某公益活動中,小明對本年級同學(xué)的捐款情況進行了統(tǒng)計,繪制成如圖所示的不完整的統(tǒng)計圖,其中捐10元的人數(shù)占年級總?cè)藬?shù)的25%,則本次捐款20元的人數(shù)為______人.14.在△ABC中,若∠A,∠B滿足|cosA-|+(sinB-)2=0,則∠C=_________.15.拋物線y=﹣x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是_____.16.分解因式:xy2﹣2xy+x=_____.17.將拋物線y=(x+m)2向右平移2個單位后,對稱軸是y軸,那么m的值是_____.18.甲、乙兩車分別從A、B兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達B地后馬上以另一速度原路返回A地(掉頭的時間忽略不計),乙車到達A地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離y(千米)與甲車的行駛時間t(小時)之間的函數(shù)圖象,則當(dāng)乙車到達A地的時候,甲車與A地的距離為_____千米.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標系xOy中,拋物線y=ax2﹣4ax+3a﹣2(a≠0)與x軸交于A,B兩(點A在點B左側(cè)).(1)當(dāng)拋物線過原點時,求實數(shù)a的值;(2)①求拋物線的對稱軸;②求拋物線的頂點的縱坐標(用含a的代數(shù)式表示);(3)當(dāng)AB≤4時,求實數(shù)a的取值范圍.20.(6分)如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.(1)求證:∠BDC=∠A;(2)若CE=4,DE=2,求AD的長.21.(6分)如圖,在直角三角形ABC中,(1)過點A作AB的垂線與∠B的平分線相交于點D(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)若∠A=30°,AB=2,則△ABD的面積為.22.(8分)某中學(xué)開展“漢字聽寫大賽”活動,為了解學(xué)生的參與情況,在該校隨機抽取了四個班級學(xué)生進行調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:(1)這四個班參與大賽的學(xué)生共__________人;(2)請你補全兩幅統(tǒng)計圖;(3)求圖1中甲班所對應(yīng)的扇形圓心角的度數(shù);(4)若四個班級的學(xué)生總數(shù)是160人,全校共2000人,請你估計全校的學(xué)生中參與這次活動的大約有多少人.23.(8分)如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動點,直線AP、BP分別交l于M、N兩點.(1)當(dāng)∠A=30°時,MN的長是;(2)求證:MC?CN是定值;(3)MN是否存在最大或最小值,若存在,請寫出相應(yīng)的最值,若不存在,請說明理由;(4)以MN為直徑的一系列圓是否經(jīng)過一個定點,若是,請確定該定點的位置,若不是,請說明理由.24.(10分)如圖,在?ABCD中,AB=4,AD=5,tanA=,點P從點A出發(fā),沿折線AB﹣BC以每秒1個單位長度的速度向中點C運動,過點P作PQ⊥AB,交折線AD﹣DC于點Q,將線段PQ繞點P順時針旋轉(zhuǎn)90°,得到線段PR,連接QR.設(shè)△PQR與?ABCD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).(1)當(dāng)點R與點B重合時,求t的值;(2)當(dāng)點P在BC邊上運動時,求線段PQ的長(用含有t的代數(shù)式表示);(3)當(dāng)點R落在?ABCD的外部時,求S與t的函數(shù)關(guān)系式;(4)直接寫出點P運動過程中,△PCD是等腰三角形時所有的t值.25.(10分)如圖1,正方形ABCD的邊長為8,動點E從點D出發(fā),在線段DC上運動,同時點F從點B出發(fā),以相同的速度沿射線AB方向運動,當(dāng)點E運動到終點C時,點F也停止運動,連接AE交對角線BD于點N,連接EF交BC于點M,連接AM.(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=2﹣)(1)在點E、F運動過程中,判斷EF與BD的位置關(guān)系,并說明理由;(2)在點E、F運動過程中,①判斷AE與AM的數(shù)量關(guān)系,并說明理由;②△AEM能為等邊三角形嗎?若能,求出DE的長度;若不能,請說明理由;(3)如圖2,連接NF,在點E、F運動過程中,△ANF的面積是否變化,若不變,求出它的面積;若變化,請說明理由.26.(12分)如圖,在直角坐標系xOy中,直線與雙曲線相交于A(-1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.求m、n的值;求直線AC的解析式.27.(12分)如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC、AB于點E.F.試判斷直線BC與⊙O的位置關(guān)系,并說明理由;若BD=23,BF=2,求⊙O的半徑.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題解析:由于點A、B在反比例函數(shù)圖象上關(guān)于原點對稱,則△ABC的面積=2|k|=2×4=1.故選A.考點:反比例函數(shù)系數(shù)k的幾何意義.2、B【解析】

比較這些負數(shù)的絕對值,絕對值大的反而小.【詳解】在﹣4、﹣、﹣1、﹣這四個數(shù)中,比﹣2小的數(shù)是是﹣4和﹣.故選B.【點睛】本題主要考查負數(shù)大小的比較,解題的關(guān)鍵時負數(shù)比較大小時,絕對值大的數(shù)反而小.3、C【解析】

由△ABC與△DEF相似,相似比為2:3,根據(jù)相似三角形的性質(zhì),即可求得答案.【詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個三角形的面積比為4:1.故選C.【點睛】此題考查了相似三角形的性質(zhì).注意相似三角形的面積比等于相似比的平方.4、C【解析】

根據(jù)題意可以求出這個正n邊形的中心角是60°,即可求出邊數(shù).【詳解】⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則這個正n邊形的中心角是60°,n的值為6,故選:C【點睛】考查正多邊形和圓,求出這個正多邊形的中心角度數(shù)是解題的關(guān)鍵.5、C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三對相似三角形.故選C.6、B【解析】∵函數(shù)圖象的對稱軸為:x=-==1,∴b=﹣2a,即2a+b=0,①正確;由圖象可知,當(dāng)﹣1<x<3時,y<0,②錯誤;由圖象可知,當(dāng)x=1時,y=0,∴a﹣b+c=0,∵b=﹣2a,∴3a+c=0,③正確;∵拋物線的對稱軸為x=1,開口方向向上,∴若(x1,y1)、(x2,y2)在函數(shù)圖象上,當(dāng)1<x1<x2時,y1<y2;當(dāng)x1<x2<1時,y1>y2;故④錯誤;故選B.點睛:本題主要考查二次函數(shù)的相關(guān)知識,解題的關(guān)鍵是:由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理.7、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質(zhì),對頂角相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.平行線的性質(zhì)定理:兩直線平行,同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補,兩條平行線之間的距離處處相等.8、C【解析】

根據(jù)全等三角形的判定定理進行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對應(yīng)邊應(yīng)該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個小三角形全等,故本選項符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個小三角形全等,故本選項不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點睛】本題考查了全等三角形的判定,注意三角形邊和角的對應(yīng)關(guān)系是關(guān)鍵.9、C【解析】如圖所示,連接CM,∵M是AB的中點,∴S△ACM=S△BCM=S△ABC,開始時,S△MPQ=S△ACM=S△ABC;由于P,Q兩點同時出發(fā),并同時到達終點,從而點P到達AC的中點時,點Q也到達BC的中點,此時,S△MPQ=S△ABC;結(jié)束時,S△MPQ=S△BCM=S△ABC.△MPQ的面積大小變化情況是:先減小后增大.故選C.10、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,當(dāng)點Q在AD上時,PA=PQ,∴DP=AP=x,∴S=;當(dāng)點Q在DC上時,PC=PQCP=4-x,∴S=;所以該函數(shù)圖象前半部分是拋物線開口向上,后半部分也為拋物線開口向下,故選B.【點睛】本題考查動點問題的函數(shù)圖象,有一定難度,解題關(guān)鍵是注意點Q在AP、DC上這兩種情況.11、A【解析】4400000=4.4×1.故選A.點睛:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).12、D【解析】

分a>0和a<0兩種情況分類討論即可確定正確的選項【詳解】當(dāng)a>0時,函數(shù)y=的圖象位于一、三象限,y=﹣ax2+a的開口向下,交y軸的正半軸,沒有符合的選項,當(dāng)a<0時,函數(shù)y=的圖象位于二、四象限,y=﹣ax2+a的開口向上,交y軸的負半軸,D選項符合;故選D.【點睛】本題考查了反比例函數(shù)的圖象及二次函數(shù)的圖象的知識,解題的關(guān)鍵是根據(jù)比例系數(shù)的符號確定其圖象的位置,難度不大.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、35【解析】分析:根據(jù)捐款10元的人數(shù)占總?cè)藬?shù)25%可得捐款總?cè)藬?shù),將總?cè)藬?shù)減去其余各組人數(shù)可得答案.詳解:根據(jù)題意可知,本年級捐款捐款的同學(xué)一共有20÷25%=80(人),則本次捐款20元的有:80?(20+10+15)=35(人),故答案為:35.點睛:本題考查了條形統(tǒng)計圖.計算出捐款總?cè)藬?shù)是解決問題的關(guān)鍵.14、75°【解析】【分析】根據(jù)絕對值及偶次方的非負性,可得出cosA及sinB的值,從而得出∠A及∠B的度數(shù),利用三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案為:75°.【點睛】本題考查了特殊角的三角函數(shù)值及非負數(shù)的性質(zhì),解答本題的關(guān)鍵是得出cosA及sinB的值,另外要求我們熟練掌握一些特殊角的三角函數(shù)值.15、-3<x<1【解析】試題分析:根據(jù)拋物線的對稱軸為x=﹣1,一個交點為(1,0),可推出另一交點為(﹣3,0),結(jié)合圖象求出y>0時,x的范圍.解:根據(jù)拋物線的圖象可知:拋物線的對稱軸為x=﹣1,已知一個交點為(1,0),根據(jù)對稱性,則另一交點為(﹣3,0),所以y>0時,x的取值范圍是﹣3<x<1.故答案為﹣3<x<1.考點:二次函數(shù)的圖象.16、x(y-1)2【解析】分析:先提公因式x,再用完全平方公式把繼續(xù)分解.詳解:=x()=x()2.故答案為x()2.點睛:本題考查了因式分解,有公因式先提公因式,然后再用公式法繼續(xù)分解,因式分解必須分解到每個因式都不能再分解為止.17、1【解析】

根據(jù)平移規(guī)律“左加右減,上加下減”填空.【詳解】解:將拋物線y=(x+m)1向右平移1個單位后,得到拋物線解析式為y=(x+m-1)1.其對稱軸為:x=1-m=0,解得m=1.故答案是:1.【點睛】主要考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.18、630【解析】分析:兩車相向而行5小時共行駛了900千米可得兩車的速度之和為180千米/時,當(dāng)相遇后車共行駛了720千米時,甲車到達B地,由此則可求得兩車的速度.再根據(jù)甲車返回到A地總用時16.5小時,求出甲車返回時的速度即可求解.詳解:設(shè)甲車,乙車的速度分別為x千米/時,y千米/時,甲車與乙車相向而行5小時相遇,則5(x+y)=900,解得x+y=180,相遇后當(dāng)甲車到達B地時兩車相距720千米,所需時間為720÷180=4小時,則甲車從A地到B需要9小時,故甲車的速度為900÷9=100千米/時,乙車的速度為180-100=80千米/時,乙車行駛900-720=180千米所需時間為180÷80=2.25小時,甲車從B地到A地的速度為900÷(16.5-5-4)=120千米/時.所以甲車從B地向A地行駛了120×2.25=270千米,當(dāng)乙車到達A地時,甲車離A地的距離為900-270=630千米.點睛:利用函數(shù)圖象解決實際問題,其關(guān)鍵在于正確理解函數(shù)圖象橫,縱坐標表示的意義,抓住交點,起點.終點等關(guān)鍵點,理解問題的發(fā)展過程,將實際問題抽象為數(shù)學(xué)問題,從而將這個數(shù)學(xué)問題變化為解答實際問題.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)a=;(2)①x=2;②拋物線的頂點的縱坐標為﹣a﹣2;(3)a的范圍為a<﹣2或a≥.【解析】

(1)把原點坐標代入y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把拋物線解析式配成頂點式,即可得到拋物線的對稱軸和拋物線的頂點的縱坐標;(3)設(shè)A(m,1),B(n,1),利用拋物線與x軸的交點問題,則m、n為方程ax2﹣4ax+3a﹣2=1的兩根,利用判別式的意義解得a>1或a<﹣2,再利用根與系數(shù)的關(guān)系得到m+n=4,mn=,然后根據(jù)完全平方公式利用n﹣m≤4得到(m+n)2﹣4mn≤16,所以42﹣4?≤16,接著解關(guān)于a的不等式,最后確定a的范圍.【詳解】(1)把(1,1)代入y=ax2﹣4ax+3a﹣2得3a﹣2=1,解得a=;(2)①y=a(x﹣2)2﹣a﹣2,拋物線的對稱軸為直線x=2;②拋物線的頂點的縱坐標為﹣a﹣2;(3)設(shè)A(m,1),B(n,1),∵m、n為方程ax2﹣4ax+3a﹣2=1的兩根,∴△=16a2﹣4a(3a﹣2)>1,解得a>1或a<﹣2,∴m+n=4,mn=,而n﹣m≤4,∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,∴42﹣4?≤16,即≥1,解得a≥或a<1.∴a的范圍為a<﹣2或a≥.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠1)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).20、(1)證明過程見解析;(2)1.【解析】試題分析:(1)連接OD,由CD是⊙O切線,得到∠ODC=90°,根據(jù)AB為⊙O的直徑,得到∠ADB=90°,等量代換得到∠BDC=∠ADO,根據(jù)等腰直角三角形的性質(zhì)得到∠ADO=∠A,即可得到結(jié)論;(2)根據(jù)垂直的定義得到∠E=∠ADB=90°,根據(jù)平行線的性質(zhì)得到∠DCE=∠BDC,根據(jù)相似三角形的性質(zhì)得到,解方程即可得到結(jié)論.試題解析:(1)連接OD,∵CD是⊙O切線,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB為⊙O的直徑,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE?AE,∴11=2(2+AD),∴AD=1.考點:(1)切線的性質(zhì);(2)相似三角形的判定與性質(zhì).21、(1)見解析(2)【解析】

(1)分別作∠ABC的平分線和過點A作AB的垂線,它們的交點為D點;(2)利用角平分線定義得到∠ABD=30°,利用含30度的直角三角形三邊的關(guān)系得到AD=AB=,然后利用三角形面積公式求解.【詳解】解:(1)如圖,點D為所作;(2)∵∠CAB=30°,∴∠ABC=60°.∵BD為角平分線,∴∠ABD=30°.∵DA⊥AB,∴∠DAB=90°.在Rt△ABD中,AD=AB=,∴△ABD的面積=×2×=.故答案為.【點睛】本題考查了作圖﹣復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了三角形面積公式.22、(1)100;(2)見解析;(3)108°;(4)1250.【解析】試題分析:(1)根據(jù)乙班參賽30人,所占比為20%,即可求出這四個班總?cè)藬?shù);(2)根據(jù)丁班參賽35人,總?cè)藬?shù)是100,即可求出丁班所占的百分比,再用整體1減去其它所占的百分比,即可得出丙所占的百分比,再乘以參賽得總?cè)藬?shù),即可得出丙班參賽得人數(shù),從而補全統(tǒng)計圖;(3)根據(jù)甲班級所占的百分比,再乘以360°,即可得出答案;(4)根據(jù)樣本估計總體,可得答案.試題解析:(1)這四個班參與大賽的學(xué)生數(shù)是:30÷30%=100(人);故答案為100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,則丙班得人數(shù)是:100×15%=15(人);如圖:(3)甲班級所對應(yīng)的扇形圓心角的度數(shù)是:30%×360°=108°;(4)根據(jù)題意得:2000×=1250(人).答:全校的學(xué)生中參與這次活動的大約有1250人.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖;樣本估計總體.23、(1);(2)MC?NC=5;(3)a+b的最小值為2;(4)以MN為直徑的一系列圓經(jīng)過定點D,此定點D在直線AB上且CD的長為.【解析】

(1)由題意得AO=OB=2、OC=3、AC=5、BC=1,根據(jù)MC=ACtan∠A=、CN=可得答案;(2)證△ACM∽△NCB得,由此即可求得答案;(3)設(shè)MC=a、NC=b,由(2)知ab=5,由P是圓上異于A、B的動點知a>0,可得b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)得a+b不存在最大值,當(dāng)a=b時,a+b最小,據(jù)此求解可得;(4)設(shè)該圓與AC的交點為D,連接DM、DN,證△MDC∽△DNC得,即MC?NC=DC2=5,即DC=,據(jù)此知以MN為直徑的一系列圓經(jīng)過定點D,此頂點D在直線AB上且CD的長為.【詳解】(1)如圖所示,根據(jù)題意知,AO=OB=2、OC=3,則AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直線l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×=,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=,則MN=MC+CN=+=,故答案為:;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC?NC=AC?BC=5×1=5;(3)設(shè)MC=a、NC=b,由(2)知ab=5,∵P是圓上異于A、B的動點,∴a>0,∴b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)知,a+b不存在最大值,當(dāng)a=b時,a+b最小,由a=b得a=,解之得a=(負值舍去),此時b=,此時a+b的最小值為2;(4)如圖,設(shè)該圓與AC的交點為D,連接DM、DN,∵MN為直徑,∴∠MDN=90°,則∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,則△MDC∽△DNC,∴,即MC?NC=DC2,由(2)知MC?NC=5,∴DC2=5,∴DC=,∴以MN為直徑的一系列圓經(jīng)過定點D,此定點D在直線AB上且CD的長為.【點睛】本題考查的是圓的綜合問題,解題的關(guān)鍵是掌握相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用、反比例函數(shù)的性質(zhì)等知識點.24、(1);(2)(9﹣t);(3)①S=﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.【解析】

(1)根據(jù)題意點R與點B重合時t+t=3,即可求出t的值;(2)根據(jù)題意運用t表示出PQ即可;(3)當(dāng)點R落在□ABCD的外部時可得出t的取值范圍,再根據(jù)等量關(guān)系列出函數(shù)關(guān)系式;(3)根據(jù)等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵將線段PQ繞點P順時針旋轉(zhuǎn)90°,得到線段PR,∴PQ=PR,∠QPR=90°,∴△QPR為等腰直角三角形.當(dāng)運動時間為t秒時,AP=t,PQ=PQ=AP?tanA=t.∵點R與點B重合,∴AP+PR=t+t=AB=3,解得:t=.(2)當(dāng)點P在BC邊上時,3≤t≤9,CP=9﹣t,∵tanA=,∴tanC=,sinC=,∴PQ=CP?sinC=(9﹣t).(3)①如圖1中,當(dāng)<t≤3時,重疊部分是四邊形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴=,∴=,∴KM=(t﹣3)=t﹣,∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.②如圖2中,當(dāng)3<t≤3時,重疊部分是四邊形PQKB.S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.③如圖3中,當(dāng)3<t<9時,重疊部分是△PQK.S=?S△PQC=××(9﹣t)?(9﹣t)=(9﹣t)2.(3)如圖3中,①當(dāng)DC=DP1=3時,易知AP1=3,t=3.②當(dāng)DC=DP2時,CP2=2?CD?,∴BP2=,∴t=3+.③當(dāng)CD=CP3時,t=4.④當(dāng)CP3=DP3時,CP3=2÷,∴t=9﹣=.綜上所述,滿足條件的t的值為3或或4或.【點睛】本題考查四邊形綜合題、動點問題、平行四邊形的性質(zhì)、多邊形的面積、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.25、(1)EF∥BD,見解析;(2)①AE=AM,理由見解析;②△AEM能為等邊三角形,理由見解析;(3)△ANF的面積不變,理由見解析【解析】

(1)依據(jù)DE=BF,DE∥BF,可得到四邊形DBFE是平行四邊形,進而得出EF∥DB;(2)依據(jù)已知條件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等邊三角形,則∠EAM=60°,依據(jù)△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即當(dāng)DE=16?8時,△AEM是等邊三角形;(3)設(shè)DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,依據(jù)△DEN∽△BNA,即可得出PN=,根據(jù)S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面積不變.【詳解】解:(1)EF∥BD.證明:∵動點E從點D出發(fā),在線段DC上運動,同時點F從點B出發(fā),以相同的速度沿射線AB方向運動,∴DE=BF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論