版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列立體圖形中,主視圖是三角形的是()A. B. C. D.2.估計﹣1的值為()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間3.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數為()A.105° B.110° C.115° D.120°4.如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點,點D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是()A.米2 B.米2 C.米2 D.米25.某數學興趣小組開展動手操作活動,設計了如圖所示的三種圖形,現(xiàn)計劃用鐵絲按照圖形制作相應的造型,則所用鐵絲的長度關系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:]6.下列圖標中,是中心對稱圖形的是()A. B.C. D.7.如圖,已知正五邊形內接于,連結,則的度數是()A. B. C. D.8.如圖,已知△ADE是△ABC繞點A逆時針旋轉所得,其中點D在射線AC上,設旋轉角為α,直線BC與直線DE交于點F,那么下列結論不正確的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α9.一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續(xù)向南航行30海里到達C點時,測得海島B在C點的北偏東15°方向,那么海島B離此航線的最近距離是()(結果保留小數點后兩位)(參考數據:3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里10.如圖,在平面直角坐標系xOy中,點C,B,E在y軸上,Rt△ABC經過變化得到Rt△EDO,若點B的坐標為(0,1),OD=2,則這種變化可以是()A.△ABC繞點C順時針旋轉90°,再向下平移5個單位長度B.△ABC繞點C逆時針旋轉90°,再向下平移5個單位長度C.△ABC繞點O順時針旋轉90°,再向左平移3個單位長度D.△ABC繞點O逆時針旋轉90°,再向右平移1個單位長度11.如圖,已知菱形ABCD,∠B=60°,AB=4,則以AC為邊長的正方形ACEF的周長為()A.16 B.12 C.24 D.1812.如圖所示,二次函數y=ax2+bx+c(a≠0)的圖象經過點(﹣1,2),且與x軸交點的橫坐標分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結論:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正確的結論有()A.1個 B.2個 C.3個 D.4個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.與是位似圖形,且對應面積比為4:9,則與的位似比為______.14.計算:=_______.15.如圖,矩形AOCB的兩邊OC、OA分別位于x軸、y軸上,點B的坐標為B(),D是AB邊上的一點.將△ADO沿直線OD翻折,使A點恰好落在對角線OB上的點E處,若點E在一反比例函數的圖像上,那么k的值是_______16.若代數式有意義,則x的取值范圍是__.17.函數y=的定義域是________.18.如圖,已知拋物線和x軸交于兩點A、B,和y軸交于點C,已知A、B兩點的橫坐標分別為﹣1,4,△ABC是直角三角形,∠ACB=90°,則此拋物線頂點的坐標為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,正方形ABCD的邊長為4,點E,F(xiàn)分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)線段AC,AG,AH什么關系?請說明理由;設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.20.(6分)已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2與x軸的交點B(2,0)(1)求a、b的值;(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍;(3)動點P從點B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設移動時間為t秒,當△PAC為等腰三角形時,直接寫出t的值.21.(6分)計算:.先化簡,再求值:,其中.22.(8分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.求證:DE是⊙O的切線.求DE的長.23.(8分)“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).請根據以上信息回答:(1)本次參加抽樣調查的居民有多少人?(2)將兩幅不完整的圖補充完整;(3)若居民區(qū)有8000人,請估計愛吃D粽的人數;(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.24.(10分)在平面直角坐標系xOy中,若拋物線頂點A的橫坐標是,且與y軸交于點,點P為拋物線上一點.求拋物線的表達式;若將拋物線向下平移4個單位,點P平移后的對應點為如果,求點Q的坐標.25.(10分)在數學實踐活動課上,老師帶領同學們到附近的濕地公園測量園內雕塑的高度.用測角儀在A處測得雕塑頂端點C′的仰角為30°,再往雕塑方向前進4米至B處,測得仰角為45°.問:該雕塑有多高?(測角儀高度忽略不計,結果不取近似值.)26.(12分)如圖,已知,請用尺規(guī)過點作一條直線,使其將分成面積比為兩部分.(保留作圖痕跡,不寫作法)27.(12分)老師布置了一個作業(yè),如下:已知:如圖1的對角線的垂直平分線交于點,交于點,交于點.求證:四邊形是菱形.某同學寫出了如圖2所示的證明過程,老師說該同學的作業(yè)是錯誤的.請你解答下列問題:能找出該同學錯誤的原因嗎?請你指出來;請你給出本題的正確證明過程.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
考查簡單幾何體的三視圖.根據從正面看得到的圖形是主視圖,可得圖形的主視圖【詳解】A、圓錐的主視圖是三角形,符合題意;B、球的主視圖是圓,不符合題意;C、圓柱的主視圖是矩形,不符合題意;D、正方體的主視圖是正方形,不符合題意.故選A.【點睛】主視圖是從前往后看,左視圖是從左往右看,俯視圖是從上往下看2、C【解析】分析:根據被開方數越大算術平方根越大,可得答案.詳解:∵<<,∴1<<5,∴3<﹣1<1.故選C.點睛:本題考查了估算無理數的大小,利用被開方數越大算術平方根越大得出1<<5是解題的關鍵,又利用了不等式的性質.3、C【解析】
如圖,首先證明∠AMO=∠2,然后運用對頂角的性質求出∠ANM=55°;借助三角形外角的性質求出∠AMO即可解決問題.【詳解】如圖,對圖形進行點標注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質,熟練掌握和靈活運用相關知識是解題的關鍵.4、C【解析】
連接OD,∵弧AB的半徑OA長是6米,C是OA的中點,∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故選C.5、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點:生活中的平移現(xiàn)象6、B【解析】
根據中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【點睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.7、C【解析】
根據多邊形內角和定理、正五邊形的性質求出∠ABC、CD=CB,根據等腰三角形的性質求出∠CBD,計算即可.【詳解】∵五邊形為正五邊形∴∵∴∴故選:C.【點睛】本題考查的是正多邊形和圓、多邊形的內角和定理,掌握正多邊形和圓的關系、多邊形內角和等于(n-2)×180°是解題的關鍵.8、D【解析】
利用旋轉不變性即可解決問題.【詳解】∵△DAE是由△BAC旋轉得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正確,
故選D.【點睛】本題考查旋轉的性質,解題的關鍵是熟練掌握旋轉不變性解決問題,屬于中考??碱}型.9、B【解析】
根據題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據三角形內角和和等腰三角形的性質得出BA=BE,AD=DE,設BD=x,Rt△ABD中,根據勾股定理得AD=DE=
3x,AB=BE=CE=2x,由AC=AD+DE+EC=2
3x+2x=30,解之即可得出答案.【詳解】根據題意畫出圖如圖所示:作BD⊥AC,取BE=CE,
∵AC=30,∠CAB=30°∠ACB=15°,
∴∠ABC=135°,
又∵BE=CE,
∴∠ACB=∠EBC=15°,
∴∠ABE=120°,
又∵∠CAB=30°
∴BA=BE,AD=DE,
設BD=x,
在Rt△ABD中,
∴AD=DE=
3x,AB=BE=CE=2x,
∴AC=AD+DE+EC=2
3x+2x=30,
∴x=153+1
=
15【點睛】本題考查了三角形內角和定理與等腰直角三角形的性質,解題的關鍵是熟練的掌握三角形內角和定理與等腰直角三角形的性質.10、C【解析】
Rt△ABC通過變換得到Rt△ODE,應先旋轉然后平移即可【詳解】∵Rt△ABC經過變化得到Rt△EDO,點B的坐標為(0,1),OD=2,∴DO=BC=2,CO=3,∴將△ABC繞點C順時針旋轉90°,再向下平移3個單位長度,即可得到△DOE;或將△ABC繞點O順時針旋轉90°,再向左平移3個單位長度,即可得到△DOE;故選:C.【點睛】本題考查的是坐標與圖形變化旋轉和平移的知識,解題的關鍵在于利用旋轉和平移的概念和性質求坐標的變化11、A【解析】
由菱形ABCD,∠B=60°,易證得△ABC是等邊三角形,繼而可得AC=AB=4,則可求得以AC為邊長的正方形ACEF的周長.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等邊三角形,∴AC=AB=BC=4,∴以AC為邊長的正方形ACEF的周長為:4AC=1.故選A.【點睛】本題考查了菱形的性質、正方形的性質以及等邊三角形的判定與性質.此題難度不大,注意掌握數形結合思想的應用.12、C【解析】
首先根據拋物線的開口方向可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點中,﹣2<x1<﹣1、0<x2<1說明拋物線的對稱軸在﹣1~0之間,即x=﹣>﹣1,可根據這些條件以及函數圖象上一些特殊點的坐標來進行判斷【詳解】由圖知:拋物線的開口向下,則a<0;拋物線的對稱軸x=﹣>﹣1,且c>0;①由圖可得:當x=﹣2時,y<0,即4a﹣2b+c<0,故①正確;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正確;③拋物線對稱軸位于y軸的左側,則a、b同號,又c>0,故abc>0,所以③不正確;④由于拋物線的對稱軸大于﹣1,所以拋物線的頂點縱坐標應該大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正確;因此正確的結論是①②④.故選:C.【點睛】本題主要考查對二次函數圖象與系數的關系,拋物線與x軸的交點,二次函數圖象上點的坐標特征等知識點的理解和掌握,能根據圖象確定與系數有關的式子的正負是解此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2:1【解析】
由相似三角形的面積比等于相似比的平方,即可求得與的位似比.【詳解】解與是位似圖形,且對應面積比為4:9,與的相似比為2:1,故答案為:2:1.【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.14、3【解析】
先把化成,然后再合并同類二次根式即可得解.【詳解】原式=2.故答案為【點睛】本題考查了二次根式的計算:先把各二次根式化為最簡二次根式,再進行然后合并同類二次根式.15、-12【解析】過E點作EF⊥OC于F,如圖所示:
由條件可知:OE=OA=5,,所以EF=3,OF=4,
則E點坐標為(-4,3)
設反比例函數的解析式是y=,則有k=-4×3=-12.故答案是:-12.16、x3【解析】
由代數式有意義,得
x-30,
解得x3,
故答案為:x3.【點睛】本題考查了分式有意義的條件,從以下三個方面透徹理解分式的概念:分式無意義:分母為零;分式有意義:分母不為零;分式值為零:分子為零且分母不為零.17、【解析】分析:根據分式有意義的條件是分母不為0,即可求解.詳解:由題意得:x-2≠0,即.故答案為點睛:本題考查了使函數有意義的自變量的取值范圍的確定.函數是整式型,自變量去全體實數;函數是分式型,自變量是使分母不為0的實數;根式型的函數的自變量去根號下的式子大于或等于0的實數;當函數關系式表示實際問題時,自變量不僅要使函數關系式有意義,還要使實際問題有意義.18、(,)【解析】
連接AC,根據題意易證△AOC∽△COB,則,求得OC=2,即點C的坐標為(0,2),可設拋物線解析式為y=a(x+1)(x﹣4),然后將C點坐標代入求解,最后將解析式化為頂點式即可.【詳解】解:連接AC,∵A、B兩點的橫坐標分別為﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即=,解得OC=2,∴點C的坐標為(0,2),∵A、B兩點的橫坐標分別為﹣1,4,∴設拋物線解析式為y=a(x+1)(x﹣4),把點C的坐標代入得,a(0+1)(0﹣4)=2,解得a=﹣,∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,∴此拋物線頂點的坐標為(,).故答案為:(,).【點睛】本題主要考查相似三角形的判定與性質,拋物線的頂點式,解此題的關鍵在于熟練掌握其知識點,利用相似三角形的性質求得關鍵點的坐標.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)=;(2)結論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】
(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當GC=GH時,易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當CH=HG時,易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.3.在BC上取一點M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿足條件的m的值為或2或8﹣4.【點睛】本題屬于四邊形綜合題,考查了正方形的性質,全等三角形的判定和性質,相似三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題.20、(1)a=﹣;(2)﹣1<n<2;(3)滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.【解析】試題分析:(1)、根據題意求出點C的坐標,然后將點C和點B的坐標代入直線解析式求出a和b的值;(2)、根據題意可知點Q在點A和點B之間,從而求出n的取值范圍;(3)、本題需要分幾種情況分別來進行計算,即AC=P1C,P2A=P2C和AP3=AC三種情況分別進行計算得出t的值.試題解析:(1)、解:∵點C是直線l1:y=x+1與軸的交點,∴C(0,1),∵點C在直線l2上,∴b=1,∴直線l2的解析式為y=ax+1,∵點B在直線l2上,∴2a+1=0,∴a=﹣;(2)、解:由(1)知,l1的解析式為y=x+1,令y=0,∴x=﹣1,由圖象知,點Q在點A,B之間,∴﹣1<n<2(3)、解:如圖,∵△PAC是等腰三角形,∴①點x軸正半軸上時,當AC=P1C時,∵CO⊥x軸,∴OP1=OA=1,∴BP1=OB﹣OP1=2﹣1=1,∴1÷1=1s,②當P2A=P2C時,易知點P2與O重合,∴BP2=OB=2,∴2÷1=2s,③點P在x軸負半軸時,AP3=AC,∵A(﹣1,0),C(0,1),∴AC=,∴AP3=,∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣)s,即:滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.點睛:本題主要考查的就是一次函數的性質、等腰三角形的性質和動點問題,解決這個問題的關鍵就是要能夠根據題意進行分類討論,從而得出答案.在解決一次函數和等腰三角形問題時,我們一定要根據等腰三角形的性質來進行分類討論,可以利用圓規(guī)來作出圖形,然后根據實際題目來求出答案.21、(1)1;(2)2-1.【解析】
(1)分別計算負指數冪、絕對值、零指數冪、特殊角的三角函數值、立方根;(2)先把括號內通分相減,再計算分式的除法,除以一個分式,等于乘它的分子、分母交換位置.【詳解】(1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.(2)原式=[﹣]?=?=,當x=﹣2時,原式===2-1.【點睛】本題考查負指數冪、絕對值、零指數冪、特殊角的三角函數值、立方根以及分式的化簡求值,解題關鍵是熟練掌握以上性質和分式的混合運算.22、(1)詳見解析;(2)4.【解析】試題分析:(1)連結OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切線;(2)過點O作OF⊥AC于點F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.試題解析:(1)連結OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切線;(2)過點O作OF⊥AC于點F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四邊形OFED是矩形,∴DE=OF=4.考點:切線的判定;垂徑定理;勾股定理;矩形的判定及性質.23、(1)600(2)見解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次參加抽樣調查的居民有600人.(2分)(2)如圖;…(5分)(3)8000×40%=3200(人).答:該居民區(qū)有8000人,估計愛吃D粽的人有3200人.…(7分)(4)如圖;(列表方法略,參照給分).…(8分)P(C粽)==.答:他第二個吃到的恰好是C粽的概率是.…(10分)24、為;點Q的坐標為或.【解析】
依據拋物線的對稱軸方程可求得b的值,然后將點B的坐標代入線可求得c的值,即可求得拋物線的表達式;由平移后拋物線的頂點在x軸上可求得平移的方向和距離,故此,然后由點,軸可得到點Q和P關于x對稱,可求得點Q的縱坐標,將點Q的縱坐標代入平移后的解析式可求得對應的x的值,則可得到點Q的坐標.【詳解】拋物線頂點A的橫坐標是,,即,解得..將代入得:,拋物線的解析式為.拋物線向下平移了4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度深圳定制旅游租車服務合同范本2篇
- 全國2021屆高三英語試題8、9月分類解析:A單元-單項填空(A10情態(tài)動詞與虛擬語氣)
- 場所合法經營保證書
- 【智慧測評】2021高考生物(人教版)總復習作業(yè):必修3-第3章-植物的激素調節(jié)-階段質量檢測
- 等比數列的性質的經典總結
- 全國固體廢物管理信息系統(tǒng)
- GB2894-2008安全標志及其使用導則(高清版)
- 重慶2025年重慶市榮昌區(qū)基層醫(yī)療衛(wèi)生事業(yè)單位招聘7人筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 兩圓內切的性質及其應用
- 鐵路接觸網設備故障分析與預防考核試卷
- 2024廣東省基本醫(yī)療保險門診特定病種業(yè)務經辦規(guī)程-申請表
- 2023年輔導員職業(yè)技能大賽試題及答案
- 講師與教育平臺合作合同
- 2025屆江蘇省丹陽市丹陽高級中學高一數學第一學期期末統(tǒng)考試題含解析
- 汽車保險與理賠課件 3.4認識新能源汽車車上人員責任保險
- GB/T 33629-2024風能發(fā)電系統(tǒng)雷電防護
- 建筑工程施工現(xiàn)場安全檢查手冊
- 小學英語語法練習模擬試卷
- 高標準農田建設項目安全文明施工方案
- 2024-2025學年一年級上冊數學北師大版4.6《挖紅薯》(教學設計)
- 糖尿病患者體重管理專家共識(2024年版)解讀
評論
0/150
提交評論