2023高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)五篇_第1頁
2023高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)五篇_第2頁
2023高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)五篇_第3頁
2023高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)五篇_第4頁
2023高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)五篇_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

本文格式為Word版,下載可任意編輯——2023高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)五篇下面是我為大家整理的2023高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)五篇,供大家參考。

總結(jié)是對取得的成績、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)等方面狀況進(jìn)行評價(jià)與描述的一種書面材料,它可以給我們下一階段的學(xué)習(xí)和工作生活做指導(dǎo),讓我們一起認(rèn)真地寫一份總結(jié)吧??偨Y(jié)你想好怎么寫了嗎?這次帥氣的我為您整理了5篇《高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)》,可以幫助到您,就是我最大的樂趣哦。

高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)歸納篇一

1、函數(shù)零點(diǎn)的定義

(1)對于函數(shù))(xfy,我們把方程0)(xf的實(shí)數(shù)根叫做函數(shù))(xfy)的零點(diǎn)。

(2)方程0)(xf有實(shí)根函數(shù)(yfx)的圖像與x軸有交點(diǎn)函數(shù)(yfx)有零點(diǎn)。因此判斷一個函數(shù)是否有零點(diǎn),有幾個零點(diǎn),就是判斷方程0)(xf是否有實(shí)數(shù)根,有幾個實(shí)數(shù)根。函數(shù)零點(diǎn)的求法:解方程0)(xf,所得實(shí)數(shù)根就是(fx)的零點(diǎn)(3)變號零點(diǎn)與不變號零點(diǎn)

①若函數(shù)(fx)在零點(diǎn)0x左右兩側(cè)的函數(shù)值異號,則稱該零點(diǎn)為函數(shù)(fx)的變號零點(diǎn)。②若函數(shù)(fx)在零點(diǎn)0x左右兩側(cè)的函數(shù)值同號,則稱該零點(diǎn)為函數(shù)(fx)的不變號零點(diǎn)。

③若函數(shù)(fx)在區(qū)間,ab上的圖像是一條連續(xù)的曲線,則0

2、函數(shù)零點(diǎn)的判定

(1)零點(diǎn)存在性定理:假使函數(shù))(xfy在區(qū)間],[ba上的圖象是連續(xù)不斷的曲線,并且有(fa)(fb),那么,函數(shù)(xfy)在區(qū)間,ab內(nèi)有零點(diǎn),即存在,(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。

(2)函數(shù))(xfy零點(diǎn)個數(shù)(或方程0)(xf實(shí)數(shù)根的個數(shù))確定方法

①代數(shù)法:函數(shù))(xfy的零點(diǎn)0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù))(xfy的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。

(3)零點(diǎn)個數(shù)確定

0)(xfy有2個零點(diǎn)0)(xf有兩個不等實(shí)根;0)(xfy有1個零點(diǎn)0)(xf有兩個相等實(shí)根;0)(xfy無零點(diǎn)0)(xf無實(shí)根;對于二次函數(shù)在區(qū)間,ab上的零點(diǎn)個數(shù),要結(jié)合圖像進(jìn)行確定。

3、二分法

(1)二分法的定義:對于在區(qū)間[,]ab上連續(xù)不斷且(fa)(fb)的函數(shù)(yfx),通過不斷地把函數(shù)(yfx)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個端點(diǎn)逐步迫近零點(diǎn),進(jìn)而得到零點(diǎn)的近似值的方法叫做二分法;

(2)用二分法求方程的近似解的步驟:

①確定區(qū)間[,]ab,驗(yàn)證(fa)(fb)給定確切度e;

②求區(qū)間(,)ab的中點(diǎn)c;③計(jì)算(fc);

(ⅰ)若(fc),則c就是函數(shù)的零點(diǎn);

(ⅱ)若(fa)(fc),則令bc(此時零點(diǎn)0(,)xac);(ⅲ)若(fc)(fb),則令ac(此時零點(diǎn)0(,)xcb);

④判斷是否達(dá)到確切度e,即ab,則得到零點(diǎn)近似值為a(或b);否則重復(fù)②至④步。

高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)歸納篇二

高一數(shù)學(xué)集合有關(guān)概念

集合的含義

集合的中元素的三個特性:

元素的確定性如:世界上的山

元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3。集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

集合的表示方法:列舉法與描述法。

注意:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

列舉法:{a,b,c……}

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x(R|x—32},{x|x—32}

語言描述法:例:{不是直角三角形的三角形}

Venn圖:

4、集合的分類:

有限集含有有限個元素的集合

無限集含有無限個元素的集合

空集不含任何元素的集合例:{x|x2=—5}

高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)篇三

集合

集合具有某種特定性質(zhì)的事物的總體。這里的“事物〞可以是人,物品,也可以是數(shù)學(xué)元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。3、口號等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論??低?Cantor,G.F.P.,1845年—1918年,德國數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

集合,在數(shù)學(xué)上是一個基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義〞。集合

集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象會集在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

元素與集合的關(guān)系

元素與集合的關(guān)系有“屬于〞與“不屬于〞兩種。

集合與集合之間的關(guān)系

某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性?!赫f明一下:假使集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A?B。中學(xué)教材課本里將?符號下加了一個≠符號(如右圖),不要混淆,考試時還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集?!?/p>

集合的幾種運(yùn)算法則

并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B〞(或“B并A〞),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元差集表示

素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B〞(或“B交A〞),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么由于A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。好玩兒的是;例如在1到105中不是3,5,7的整倍數(shù)的數(shù)有多少個。結(jié)果是3,5,7每項(xiàng)減集合

1再相乘。48個。對稱差集:設(shè)A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運(yùn)算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N_是正整數(shù)的全體,且N_n={1,2,3,……,n},假使存在一個正整數(shù)n,使得集合A與N_n一一對應(yīng),那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說“空集屬于任何集合〞。補(bǔ)集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補(bǔ)集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認(rèn)為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補(bǔ)集。CuA={3,4}。在信息技術(shù)當(dāng)中,往往把CuA寫成~A。

集合元素的性質(zhì)

1、確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如“個子高的同學(xué)〞“很小的數(shù)〞都不能構(gòu)成集合。這特性質(zhì)主要用于判斷一個集合是否能形成集合。2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論