版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
6.3.2
二項(xiàng)式系數(shù)的性質(zhì)1.了解二項(xiàng)式系數(shù)的性質(zhì)并能簡(jiǎn)單應(yīng)用.2.掌握“賦值法”并會(huì)靈活應(yīng)用.你從上面的表示形式可以直觀地看出什么規(guī)律?
通過(guò)前面的學(xué)習(xí),我們知道:(a+b)n的展開(kāi)式的二項(xiàng)式系數(shù),當(dāng)
n取正整數(shù)時(shí)可以表示成如下形式:(a+b)11
1
(a+b)21
2
1
(a+b)31
3
3
1
(a+b)41
4
6
4
1
(a+b)51
5
10
10
5
1
(a+b)61
6
15
20
15
6
1
1615201561(a+b)1(a+b)3(a+b)4(a+b)5(a+b)2(a+b)61112113311464115101051二項(xiàng)式系數(shù)的性質(zhì)1.對(duì)稱性:與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等.實(shí)際上,由
,所以2.增減性與最大值二項(xiàng)式系數(shù)先增后減,當(dāng)
n
為偶數(shù)時(shí),中間的一項(xiàng)
取得最大值;當(dāng)
n
為奇數(shù)時(shí),中間的兩項(xiàng)
與
相等,且同時(shí)取得最大值.3.各二項(xiàng)式系數(shù)的和已知令
,得這就是說(shuō),
的展開(kāi)式的各二項(xiàng)式系數(shù)的和等于.二項(xiàng)式系數(shù)性質(zhì)的應(yīng)用例1.(1)已知
的展開(kāi)式中只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則n=(
)A.11
B.10
C.9
D.8(2)在
的二項(xiàng)展開(kāi)式中與第3項(xiàng)二項(xiàng)式系數(shù)相同的項(xiàng)是(
)A.第8項(xiàng)B.第7項(xiàng)C.第9項(xiàng) D.第10項(xiàng)CD1.二項(xiàng)式系數(shù)最大的項(xiàng)的求法求二項(xiàng)式系數(shù)最大的項(xiàng),根據(jù)二項(xiàng)式系數(shù)的性質(zhì)對(duì)
中的
n進(jìn)行討論:(1)當(dāng)
n為偶數(shù)時(shí),中間一項(xiàng)的二項(xiàng)式系數(shù)最大;(2)當(dāng)
n為奇數(shù)時(shí),中間兩項(xiàng)的二項(xiàng)式系數(shù)最大.2.展開(kāi)式中系數(shù)最大的項(xiàng)的求法求展開(kāi)式中系數(shù)最大的項(xiàng)與求二項(xiàng)式系數(shù)最大的項(xiàng)是不同的,需要根據(jù)各項(xiàng)系數(shù)的正、負(fù)變化情況進(jìn)行分析.如求
(a,b∈R)的展開(kāi)式中系數(shù)最大的項(xiàng),一般采用待定系數(shù)法.設(shè)展開(kāi)式中各項(xiàng)系數(shù)分別為A0,A1,A2,…,An,且第
項(xiàng)最大,應(yīng)用
解出
k,即得出系數(shù)最大的項(xiàng).1.(1)在
的二項(xiàng)展開(kāi)式中,若只有x5的系數(shù)最大,則
n等于(
)A.8 B.9C.10 D.11(2)已知
的展開(kāi)式中第6項(xiàng)與第7項(xiàng)的系數(shù)相等,求展開(kāi)式中系數(shù)最大的項(xiàng).C求二項(xiàng)展開(kāi)的系數(shù)和例2.若
,求(1);(2);(3);(4).二項(xiàng)展開(kāi)式中系數(shù)和的求法(1)對(duì)形如
,
的式子求其展開(kāi)式的各項(xiàng)系數(shù)之和,常用賦值法,只需令
即可;對(duì)
的式子求其展開(kāi)式各項(xiàng)系數(shù)之和,只需令
即可;(2)一般地,若
,則
f(x)展開(kāi)式中:各項(xiàng)系數(shù)之和為
f(1);奇數(shù)項(xiàng)系數(shù)之和為
;偶數(shù)項(xiàng)系數(shù)之和為.(3)賦值法是解決二項(xiàng)展開(kāi)式中項(xiàng)的系數(shù)常用的方法,根據(jù)題目要求,靈活賦給字母不同的值.一般地,要使展開(kāi)式中項(xiàng)的關(guān)系變?yōu)橄禂?shù)的關(guān)系.令
可得常數(shù)項(xiàng);令
可得所有項(xiàng)系數(shù)之和;令
可得偶次項(xiàng)系數(shù)之和與奇次項(xiàng)系數(shù)之和的差.2.設(shè)
.(1)求
的值;(2)求
的值;(3)求
的值.
解:(1)令
,得
,令
,得
,所以
(2)由(1)①令
,得
②
①-②得
,所以.(3)因?yàn)?/p>
,所以k為奇數(shù)時(shí),
,k為偶數(shù)時(shí),
,故. 整除、求余數(shù)問(wèn)題例3.(1)用二項(xiàng)式定理證明
能被100整除;(2)求
除以7的余數(shù).解:(1)因?yàn)樗?/p>
能被100整除.(2)因?yàn)樗?/p>
被7除余數(shù)為4.整除性問(wèn)題或求余數(shù)問(wèn)題的處理方法(1)解決這類問(wèn)題,必須構(gòu)造一個(gè)與題目條件有關(guān)的二項(xiàng)式;(2)用二項(xiàng)式定理處理這類問(wèn)題,通常把被除數(shù)的底數(shù)寫成除數(shù)(或與除數(shù)密切關(guān)聯(lián)的數(shù))與某數(shù)的和或差的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版建筑材料知識(shí)產(chǎn)權(quán)保護(hù)銷售合同樣本3篇
- 二零二五年度車場(chǎng)租賃與停車場(chǎng)環(huán)境美化合同4篇
- 教育領(lǐng)域的時(shí)間管理研究進(jìn)展與展望
- 家庭教育環(huán)境的智能化改造方案
- 二零二五年度草原生態(tài)修復(fù)與種植合作合同3篇
- 2025版施工安全責(zé)任免除協(xié)議書(全新升級(jí))3篇
- 甘肅2025年甘肅民族師范學(xué)院招聘博士研究生59人筆試歷年參考題庫(kù)附帶答案詳解
- 二零二五年度新能源高速公路車輛通行費(fèi)結(jié)算合同2篇
- 網(wǎng)絡(luò)世界安全為先家庭教育的必修課
- 2025年度農(nóng)業(yè)綜合開(kāi)發(fā)項(xiàng)目土地承包種植合同4篇
- 信息化運(yùn)維服務(wù)信息化運(yùn)維方案
- 汽車修理廠員工守則
- 骨科手術(shù)的術(shù)后飲食和營(yíng)養(yǎng)指導(dǎo)
- 2024年中國(guó)南方航空股份有限公司招聘筆試參考題庫(kù)含答案解析
- 六年級(jí)上冊(cè)數(shù)學(xué)應(yīng)用題100題
- 個(gè)人代賣協(xié)議
- 公安交通管理行政處罰決定書式樣
- 10.《運(yùn)動(dòng)技能學(xué)習(xí)與控制》李強(qiáng)
- 冀教版數(shù)學(xué)七年級(jí)下冊(cè)綜合訓(xùn)練100題含答案
- 1神經(jīng)外科分級(jí)護(hù)理制度
- 場(chǎng)館惡劣天氣處置應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論