下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
PAGEPAGE3【三維設(shè)計】2015-2016學(xué)年高中數(shù)學(xué)2.2.1綜合法和分析法課時達(dá)標(biāo)檢測新人教A版選修1-2一、選擇題1.在證明命題“對于任意角θ,cos4θ-sin4θ=cos2θ”的過程:“cos4θ-sin4θ=(cos2θ+sin2θ)(cos2θ-sin2θ)=cos2θ-sin2θ=cos2θ”中應(yīng)用了()A.分析法B.綜合法C.分析法和綜合法綜合使用D.間接證法解析:選B符合綜合法的證明思路.2.下列函數(shù)f(x)中,滿足“對任意x1,x2∈(0,+∞),當(dāng)x1<x2時,都有f(x1)>f(x2)”的是()A.f(x)=eq\f(1,x) B.f(x)=(x-1)2C.f(x)=ex D.f(x)=ln(x+1)解析:選A本題就是找哪一個函數(shù)在(0,+∞)上是減函數(shù),A項中,f′(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))′=-eq\f(1,x2)<0,∴f(x)=eq\f(1,x)在(0,+∞)上為減函數(shù).3.設(shè)a>0,b>0,若eq\r(3)是3a與3b的等比中項,則eq\f(1,a)+eq\f(1,b)的最小值為()A.8 B.4C.1 D.eq\f(1,4)解析:選Beq\r(3)是3a與3b的等比中項?3a·3b=3?3a+b=3?a+b=1,因為a>0,b>0,所以eq\r(ab)≤eq\f(a+b,2)=eq\f(1,2)?ab≤eq\f(1,4),所以eq\f(1,a)+eq\f(1,b)=eq\f(a+b,ab)=eq\f(1,ab)≥eq\f(1,\f(1,4))=4.4.已知f(x)=ax+1,0<a<1,若x1,x2∈R,且x1≠x2,則()A.eq\f(fx1+fx2,2)≤feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2)))B.eq\f(fx1+fx2,2)=feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2)))C.eq\f(fx1+fx2,2)≥feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2)))D.eq\f(fx1+fx2,2)>feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2)))解析:選D因為x1≠x2,所以eq\f(fx1+fx2,2)=eq\f(ax1+1+ax2+1,2)>eq\r(ax1+1·ax2+1)=aeq\f(x1+x2,2)+1=feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2))),所以eq\f(fx1+fx2,2)>feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2))).5.A,B為△ABC的內(nèi)角,A>B是sinA>sinB的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件解析:選C若A>B,則a>b,又eq\f(a,sinA)=eq\f(b,sinB),∴sinA>sinB;若sinA>sinB,則由正弦定理得a>b,∴A>B.二、填空題6.命題“函數(shù)f(x)=x-xlnx在區(qū)間(0,1)上是增函數(shù)”的證明過程“對函數(shù)f(x)=x-xlnx取導(dǎo)得f′(x)=-lnx,當(dāng)x∈(0,1)時,f′(x)=-lnx>0,故函數(shù)f(x)在區(qū)間(0,1)上是增函數(shù)”應(yīng)用了________的證明方法.解析:該證明過程符合綜合法的特點.答案:綜合法7.如果aeq\r(a)+beq\r(b)>aeq\r(b)+beq\r(a),則實數(shù)a,b應(yīng)滿足的條件是________.解析:aeq\r(a)+beq\r(b)>aeq\r(b)+beq\r(a)?aeq\r(a)-aeq\r(b)>beq\r(a)-beq\r(b)?a(eq\r(a)-eq\r(b))>b(eq\r(a)-eq\r(b))?(a-b)(eq\r(a)-eq\r(b))>0?(eq\r(a)+eq\r(b))(eq\r(a)-eq\r(b))2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b8.已知sinθ+cosθ=eq\f(1,5)且eq\f(π,2)≤θ≤eq\f(3π,4),則cos2θ=________.解析:因為sinθ+cosθ=eq\f(1,5),所以1+sin2θ=eq\f(1,25),所以sin2θ=-eq\f(24,25).因為eq\f(π,2)≤θ≤eq\f(3π,4),所以π≤2θ≤eq\f(3π,2).所以cos2θ=-eq\r(1-sin22θ)=-eq\f(7,25).答案:-eq\f(7,25)三、解答題9.設(shè)x>0,y>0,證明不等式(x2+y2)eq\f(1,2)>(x3+y3)eq\f(1,3).證明:法一:(分析法)證明原不等式成立,即證(x2+y2)3>(x3+y3)2,即證x6+y6+3x2y2(x2+y2)>x6+y6+2x3y3,即證3x2y2(x2+y2)>2x3y3,因為x>0,y>0,所以只需證x2+y2>eq\f(2,3)xy.又因為x>0,y>0,所以x2+y2≥2xy>eq\f(2,3)xy.所以(x2+y2)eq\f(1,2)>(x3+y3)eq\f(1,3).法二:(綜合法)因為x>0,y>0,所以(x2+y2)3=x6+y6+3x2y2(x2+y2)≥x6+y6+6x3y3>x6+y6+2x3y3=(x3+y3)2,所以(x2+y2)eq\f(1,2)>(x3+y3)eq\f(1,3).10.設(shè)f(x)=lnx+eq\r(x)-1,證明:(1)當(dāng)x>1時,f(x)<eq\f(3,2)(x-1);(2)當(dāng)1<x<3時,f(x)<eq\f(9x-1,x+5).證明:(1)記g(x)=lnx+eq\r(x)-1-eq\f(3,2)(x-1),則當(dāng)x>1時,g′(x)=eq\f(1,x)+eq\f(1,2\r(x))-eq\f(3,2)<0.又g(1)=0,故g(x)<0,即f(x)<eq\f(3,2)(x-1).(2)記h(x)=f(x)-eq\f(9x-1,x+5),則h′(x)=eq\f(1,x)+eq\f(1,2\r(x))-eq\f(54,x+52)=eq\f(2+\r(x),2x)-eq\f(54,x+52)<eq\f(x+5,4x)-eq\f(54,x+52)=eq\f(x+53-216x,4xx+52).令p(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年滬教版八年級物理下冊月考試卷含答案
- 2025年粵教滬科版選擇性必修3歷史下冊階段測試試卷含答案
- 2025年粵教新版八年級地理下冊階段測試試卷
- 2025年蘇教版七年級生物下冊月考試卷
- 遵義職業(yè)技術(shù)學(xué)院《中國古代文學(xué)與中學(xué)語文教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五版木工雕刻藝術(shù)創(chuàng)作授權(quán)合同4篇
- 2025年度農(nóng)用拖拉機租賃與農(nóng)產(chǎn)品溯源合同4篇
- 二零二五年度金融行業(yè)派遣勞務(wù)安全保障合同4篇
- 2025年度屋頂綠化租賃與節(jié)能減排合同4篇
- 二零二五年倉儲設(shè)備采購與運輸合同3篇
- 2024年英語高考全國各地完形填空試題及解析
- 智能養(yǎng)老院視頻監(jiān)控技術(shù)方案
- 你比我猜題庫課件
- 體育概論(第二版)課件第三章體育目的
- 無人駕駛航空器安全操作理論復(fù)習(xí)測試附答案
- 建筑工地春節(jié)留守人員安全技術(shù)交底
- 默納克-NICE1000技術(shù)交流-V1.0
- 蝴蝶蘭的簡介
- 老年人心理健康量表(含評分)
- 《小兒靜脈輸液速度》課件
- 營銷人員薪酬標(biāo)準(zhǔn)及績效考核辦法
評論
0/150
提交評論