![2023屆廣西柳州市融水中學數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第1頁](http://file4.renrendoc.com/view/c946f18199af5b24d6d4ae397390dcde/c946f18199af5b24d6d4ae397390dcde1.gif)
![2023屆廣西柳州市融水中學數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第2頁](http://file4.renrendoc.com/view/c946f18199af5b24d6d4ae397390dcde/c946f18199af5b24d6d4ae397390dcde2.gif)
![2023屆廣西柳州市融水中學數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第3頁](http://file4.renrendoc.com/view/c946f18199af5b24d6d4ae397390dcde/c946f18199af5b24d6d4ae397390dcde3.gif)
![2023屆廣西柳州市融水中學數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第4頁](http://file4.renrendoc.com/view/c946f18199af5b24d6d4ae397390dcde/c946f18199af5b24d6d4ae397390dcde4.gif)
![2023屆廣西柳州市融水中學數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第5頁](http://file4.renrendoc.com/view/c946f18199af5b24d6d4ae397390dcde/c946f18199af5b24d6d4ae397390dcde5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在圓心角為直角的扇形中,分別以為直徑作兩個半圓,在扇形內隨機取一點,則此點取自陰影部分的概率是()A. B. C. D.2.袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“?!?、“園”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生到之間取整數(shù)值的隨機數(shù),分別用,,,代表“和”、“諧”、“?!?、“園”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.3.已知非零向量滿足,且,則與的夾角為A. B. C. D.4.在一個錐體中,作平行于底面的截面,若這個截面面積與底面面積之比為1∶3,則錐體被截面所分成的兩部分的體積之比為()A.1∶ B.1∶9 C.1∶ D.1∶5.有一個內角為120°的三角形的三邊長分別是m,m+1,m+2,則實數(shù)m的值為()A.1 B. C.2 D.6.已知圓柱的側面展開圖是一個邊長為的正方形,則這個圓柱的體積是()A. B. C. D.7.已知某區(qū)中小學學生人數(shù)如圖所示,為了解學生參加社會實踐活動的意向,擬采用分層抽樣的方法來進行調查。若高中需抽取20名學生,則小學與初中共需抽取的人數(shù)為()A.30 B.40 C.70 D.908.等比數(shù)列的前n項和為,已知,則A. B. C. D.9.下圖所示的幾何體是由一個圓柱中挖去一個以圓柱的上底面為底面,下底面圓心為質點的圓錐面得到,現(xiàn)用一個垂直于底面的平面去截該幾何體、則截面圖形可能是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)10.在鈍角中,角的對邊分別是,若,則的面積為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設函數(shù),則使得成立的的取值范圍是_______________.12.已知,且這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則_______________.13.設,若用含的形式表示,則________.14.已知兩個正實數(shù)x,y滿足=2,且恒有x+2y﹣m>0,則實數(shù)m的取值范圍是______________15.已知函數(shù)f(x)的圖象恒過定點P,則點P的坐標是____________.16.等比數(shù)列中前n項和為,且,,,則項數(shù)n為____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.甲、乙兩位同學參加數(shù)學應用知識競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次測試成績中隨機抽取8次,記錄如下:(Ⅰ)分別估計甲、乙兩名同學在培訓期間所有測試成績的平均分;(Ⅱ)從上圖中甲、乙兩名同學高于85分的成績中各選一個成績作為參考,求甲、乙兩人成績都在90分以上的概率;(Ⅲ)現(xiàn)要從甲、乙中選派一人參加正式比賽,根據(jù)所抽取的兩組數(shù)據(jù)分析,你認為選派哪位同學參加較為合適?說明理由.18.如圖,在長方體中,,點為的中點.(1)求證:直線平面;(2)求證:平面平面;(3)求直線與平面的夾角.19.如圖扇形的圓心角,半徑為2,E為弧AB的中點C?D為弧AB上的動點,且,記,四邊形ABCD的面積為.(1)求函數(shù)的表達式及定義域;(2)求的最大值及此時的值20.已知集合,其中,由中的元素構成兩個相應的集合:,.其中是有序數(shù)對,集合和中的元素個數(shù)分別為和.若對于任意的,總有,則稱集合具有性質.(Ⅰ)檢驗集合與是否具有性質并對其中具有性質的集合,寫出相應的集合和.(Ⅱ)對任何具有性質的集合,證明.(Ⅲ)判斷和的大小關系,并證明你的結論.21.對于三個實數(shù)、、,若成立,則稱、具有“性質”.(1)試問:①,0是否具有“性質2”;②(),0是否具有“性質4”;(2)若存在及,使得成立,且,1具有“性質2”,求實數(shù)的取值范圍;(3)設,,,為2019個互不相同的實數(shù),點()均不在函數(shù)的圖象上,是否存在,且,使得、具有“性質2018”,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】試題分析:設扇形半徑為,此點取自陰影部分的概率是,故選B.考點:幾何概型.【方法點晴】本題主要考查幾何概型,綜合性較強,屬于較難題型.本題的總體思路較為簡單:所求概率值應為陰影部分的面積與扇形的面積之比.但是,本題的難點在于如何求陰影部分的面積,經(jīng)分析可知陰影部分的面積可由扇形面積減去以為直徑的圓的面積,再加上多扣一次的近似“橢圓”面積.求這類圖形面積應注意切割分解,“多還少補”.2、B【解析】
隨機模擬產(chǎn)生了18組隨機數(shù),其中第三次就停止摸球的隨機數(shù)有4個,由此可以估計,恰好第三次就停止摸球的概率.【詳解】隨機模擬產(chǎn)生了以下18組隨機數(shù):343432341342234142243331112342241244431233214344142134其中第三次就停止摸球的隨機數(shù)有:142,112,241,142,共4個,由此可以估計,恰好第三次就停止摸球的概率為p.故選:B.【點睛】本題考查概率的求法,考查列舉法等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題.3、B【解析】
本題主要考查利用平面向量數(shù)量積計算向量長度、夾角與垂直問題,滲透了轉化與化歸、數(shù)學計算等數(shù)學素養(yǎng).先由得出向量的數(shù)量積與其模的關系,再利用向量夾角公式即可計算出向量夾角.【詳解】因為,所以=0,所以,所以=,所以與的夾角為,故選B.【點睛】對向量夾角的計算,先計算出向量的數(shù)量積及各個向量的摸,在利用向量夾角公式求出夾角的余弦值,再求出夾角,注意向量夾角范圍為.4、D【解析】解:因為在一個錐體中,作平行于底面的截面,若這個截面面積與底面面積之比為1∶3,那么分為的兩個錐體的體積比為1:,因此錐體被截面所分成的兩部分的體積之比為.1∶5、B【解析】
由已知利用余弦定理可得,解方程可得的值.【詳解】在三角形中,由余弦定理得:,化簡可得:,解得或(舍).故選:B.【點睛】本題主要考查了余弦定理在解三角形中的應用,考查了方程思想,屬于基礎題.6、A【解析】
由已知易得圓柱的高為,底面圓周長為,求出半徑進而求得底面圓半徑即可求出圓柱體積?!驹斀狻康酌鎴A周長,,所以故選:A【點睛】此題考查圓柱的側面展開為長方形,長為底面圓周長,寬為圓柱高,屬于簡單題目。7、C【解析】
根據(jù)高中抽取的人數(shù)和高中總人數(shù)計算可得抽樣比;利用小學和初中總人數(shù)乘以抽樣比即可得到結果.【詳解】由題意可得,抽樣比為:則小學和初中共抽?。喝吮绢}正確選項:【點睛】本題考查分層抽樣中樣本數(shù)量的求解,關鍵是能夠明確分層抽樣原則,準確求解出抽樣比,屬于基礎題.8、A【解析】設公比為q,則,選A.9、D【解析】
根據(jù)圓錐曲線的定義和圓錐的幾何特征,分截面過旋轉軸時和截面不過旋轉軸時兩種情況,分析截面圖形的形狀,最后綜合討論結果,可得答案.【詳解】根據(jù)題意,當截面過旋轉軸時,圓錐的軸截面為等腰三角形,此時(1)符合條件;當截面不過旋轉軸時,圓錐的軸截面為雙曲線的一支,此時(4)符合條件;故截面圖形可能是(1)(4);故選:D.【點睛】本題考查的知識點是旋轉體,圓錐曲線的定義,關鍵是掌握圓柱與圓錐的幾何特征.10、A【解析】
根據(jù)已知求出b的值,再求三角形的面積.【詳解】在中,,由余弦定理得:,即,解得:或.∵是鈍角三角形,∴(此時為直角三角形舍去).∴的面積為.故選A.【點睛】本題主要考查余弦定理解三角形和三角形的面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)函數(shù)的表達式判斷出函數(shù)為偶函數(shù),判斷函數(shù)在的單調性為遞增,根據(jù)偶函數(shù)的對稱性可得,解絕對值不等式即可.【詳解】解:,定義域為,因為,所以函數(shù)為偶函數(shù).當時,易知函數(shù)在為增函數(shù),根據(jù)偶函數(shù)的性質可知:由可知,所以,解得:或.故答案為:.【點睛】本題考查偶函數(shù)的性質和利用偶函數(shù)對稱性的特點解決問題,屬于基礎題.12、5【解析】
試題分析:由題意得,為等差數(shù)列時,一定為等差中項,即,為等比數(shù)列時,-2為等比中項,即,所以.考點:等差,等比數(shù)列的性質13、【解析】
兩邊取以5為底的對數(shù),可得,化簡可得,根據(jù)對數(shù)運算即可求出結果.【詳解】因為所以兩邊取以5為底的對數(shù),可得,即,所以,,故填.【點睛】本題主要考查了對數(shù)的運算法則,屬于中檔題.14、(-∞,1)【解析】
由x+2y(x+2y)()(1),運用基本不等式可得x+2y的最小值,由題意可得m<x+2y的最小值.【詳解】兩個正實數(shù)x,y滿足2,則x+2y(x+2y)()(1)(1+2)=1,當且僅當x=2y=2時,上式取得等號,x+2y﹣m>0,即為m<x+2y,由題意可得m<1.故答案為:(﹣∞,1).【點睛】本題考查基本不等式的運用:“乘1法”求最值,考查不等式恒成立問題解法,注意運用轉化思想,屬于中檔題.15、(2,4)【解析】
令x-1=1,得到x=2,把x=2代入函數(shù)求出定點的縱坐標得解.【詳解】令x-1=1,得到x=2,把x=2代入函數(shù)得,所以定點P的坐標為(2,4).故答案為:(2,4)【點睛】本題主要考查對數(shù)函數(shù)的定點問題,意在考查學生對該知識的理解掌握水平,屬于基礎題.16、6【解析】
利用等比數(shù)列求和公式求得,再利用通項公式求解n即可【詳解】,代入,,得,又,得.故答案為:6【點睛】本題考查等比數(shù)列的通項公式及求和公式的基本量計算,熟記公式準確計算是關鍵,是基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)(Ⅲ)見解析【解析】
(Ⅰ)由莖葉圖中的數(shù)據(jù)計算、,進而可得平均分的估計值;(Ⅱ)求出基本事件數(shù),計算所求的概率值;(Ⅲ)答案不唯一.從平均數(shù)與方差考慮,派甲參賽比較合適;從成績優(yōu)秀情況分析,派乙參賽比較合適.【詳解】(Ⅰ)由莖葉圖中的數(shù)據(jù),計算,,由樣本估計總體得,甲、乙兩名同學在培訓期間所有測試成績的平均分分別均約為分.(Ⅱ)從甲、乙兩名同學高于分的成績中各選一個成績,基本事件是,甲、乙兩名同學成績都在分以上的基本事件為,故所求的概率為.(Ⅲ)答案不唯一.派甲參賽比較合適,理由如下:由(Ⅰ)知,,,,因為,,所有甲的成績較穩(wěn)定,派甲參賽比較合適;派乙參賽比較合適,理由如下:從統(tǒng)計的角度看,甲獲得分以上(含分)的頻率為,乙獲得分以上(含分)的頻率為,因為,所有派乙參賽比較合適.【點睛】本題考查了利用莖葉圖計算平均數(shù)與方差的應用問題,屬于基礎題.18、(1)見證明;(2)見證明;(3)【解析】
(1)連接,交于,則為中點,連接OP,可證明,從而可證明直線平面;(2)先證明AC⊥BD,,可得到平面,然后結合平面,可知平面平面;(3)連接,由(2)知,平面平面,可知即為與平面的夾角,求解即可.【詳解】(1)證明:連接,交于,則為中點,連接OP,∵P為的中點,∴,∵OP?平面,?平面,∴平面;(2)證明:長方體中,,底面是正方形,則AC⊥BD,又⊥面,則.∵?平面,?平面,,∴平面.∵平面,∴平面平面;(3)解:連接,由(2)知,平面平面,∴即為與平面的夾角,在長方體中,∵,∴.在中,.∴直線與平面的夾角為.【點睛】本題考查了線面平行、面面垂直的證明,考查了線面角的求法,考查了學生的空間想象能力和計算求解能力,屬于中檔題.19、(1)(2)當時,取最大值.【解析】
(1)取OE與DC?AB的交點分別為M?N,在中,分別求出,,再利用梯形的面積公式求解即可;(2)令,則,,再求最值即可.【詳解】解:(1),OE與DC?AB的交點分別為M?N,由已知可知,在中,.,,梯形ABCD的高,則.(2)設,則,,則,,則.,當時,,此時,即,,,,故.故的最大值為,此時.【點睛】本題考查了三角函數(shù)的應用,重點考查了運算能力,屬中檔題20、(Ⅰ)集合不具有性質,集合具有性質,相應集合,,集合,(Ⅱ)見解析(Ⅲ)【解析】解:集合不具有性質.集合具有性質,其相應的集合和是,.(II)證明:首先,由中元素構成的有序數(shù)對共有個.因為,所以;又因為當時,時,,所以當時,.從而,集合中元素的個數(shù)最多為,即.(III)解:,證明如下:(1)對于,根據(jù)定義,,,且,從而.如果與是的不同元素,那么與中至少有一個不成立,從而與中也至少有一個不成立.故與也是的不同元素.可見,中元素的個數(shù)不多于中元素的個數(shù),即,(2)對于,根據(jù)定義,,,且,從而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代環(huán)保材料在建筑領域的應用前景
- 現(xiàn)代交通工具設計中傳統(tǒng)文化的融入方式
- 基坑安全專項方案
- 現(xiàn)代東方風洗浴中心的節(jié)能環(huán)保裝修方案
- 2024年春九年級化學下冊 第9單元 溶液 實驗活動5 一定溶質質量分數(shù)的氯化鈉溶液的配制說課稿 (新版)新人教版
- 2023三年級英語下冊 Unit 1 Animals on the farm Lesson 3 Fish and Birds說課稿 冀教版(三起)
- 2023二年級數(shù)學上冊 一 加與減第1課時 誰的得分高配套說課稿 北師大版
- 2025蓄電池產(chǎn)品及零部件檢驗合同書
- 《5 奇形怪狀的熱帶魚(圖形工具)》說課稿-2023-2024學年清華版(2012)信息技術一年級上冊
- 2024秋五年級英語上冊 Module 2 Unit 1 What did you buy說課稿 外研版(三起)
- 信息對抗與認知戰(zhàn)研究-洞察分析
- 2024-2025學年人教版八年級上冊地理期末測試卷(一)(含答案)
- DB3209T 1236-2023 西蘭花采后處理與貯運技術規(guī)程
- GB/T 44546-2024建筑用裝配式集成吊頂通用技術要求
- 心腦血管疾病預防課件
- 中央2025年中國農(nóng)業(yè)銀行研發(fā)中心校園招聘344人筆試歷年參考題庫解題思路附帶答案詳解
- 手術室??谱o士工作總結匯報
- 2025屆高三聽力技巧指導-預讀、預測
- 蘇州市2025屆高三期初陽光調研(零模)政治試卷(含答案)
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
- 人教版PEP五年級英語下冊單詞表與單詞字帖 手寫體可打印
評論
0/150
提交評論