初一幾何經(jīng)典的知識(shí)點(diǎn)歸納_第1頁
初一幾何經(jīng)典的知識(shí)點(diǎn)歸納_第2頁
初一幾何經(jīng)典的知識(shí)點(diǎn)歸納_第3頁
初一幾何經(jīng)典的知識(shí)點(diǎn)歸納_第4頁
初一幾何經(jīng)典的知識(shí)點(diǎn)歸納_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

初一幾何經(jīng)典的知識(shí)點(diǎn)歸納除了課堂上的學(xué)習(xí)外,數(shù)學(xué)學(xué)問點(diǎn)也是同學(xué)提高數(shù)學(xué)成果的重要途徑,讀書破萬卷下筆如有神,下面作者為您細(xì)心整理了4篇《初一幾何經(jīng)典的學(xué)問點(diǎn)歸納》。

初一幾何經(jīng)典的學(xué)問點(diǎn)歸納篇一

角的種類:角的大小與邊的長短沒有關(guān)系;角的大小打算于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動(dòng)態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

銳角:大于0°,小于90°的角叫做銳角。

直角:等于90°的角叫做直角。

鈍角:大于90°而小于180°的角叫做鈍角。

平角:等于180°的角叫做平角。

優(yōu)角:大于180°小于360°叫優(yōu)角。

劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

周角:等于360°的角叫做周角。

負(fù)角:根據(jù)順時(shí)針方向旋轉(zhuǎn)而成的角叫做負(fù)角。

正角:逆時(shí)針旋轉(zhuǎn)的角為正角。

0角:等于零度的角。

余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。

對頂角:兩條直線相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長線,這樣的兩個(gè)角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角?;閷斀堑膬蓚€(gè)角相等。

還有很多種角的關(guān)系,如內(nèi)錯(cuò)角,同位角,同旁內(nèi)角(三線八角中,主要用來推斷平行)!

幾何圖形分類

(1)立體幾何圖形可以分為以下幾類:

第一類:柱體;

包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數(shù)的多少又可分為三棱柱、四棱柱、N棱柱;

棱柱體積統(tǒng)一等于底面面積乘以高,即V=SH,

其次類:錐體;

包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及N棱錐;

《.》。

大多幾何體都由這些幾何體組成。

(2)平面幾何圖形如何分類

a.圓形

b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)章四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……

注:正方形既是矩形也是菱形

初一幾何經(jīng)典的學(xué)問點(diǎn)歸納篇二

(1)棱柱:

定義:有兩個(gè)面相互平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都相互平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱

幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

表示:用各頂點(diǎn)字母,如五棱錐

幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相像,其相像比等于頂點(diǎn)到截面距離與高的比的平方。

(3)棱臺(tái):

定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

表示:用各頂點(diǎn)字母,如五棱臺(tái)

幾何特征:①上下底面是相像的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面綻開圖是一個(gè)矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面綻開圖是一個(gè)扇形。

(6)圓臺(tái):

定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面綻開圖是一個(gè)弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

初一幾何經(jīng)典的學(xué)問點(diǎn)歸納篇三

三角形的學(xué)問點(diǎn)

1、三角形:由不在同始終線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2、三角形的分類

3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

4、高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

5、中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對邊中點(diǎn)的線段叫做三角形的中線。

6、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。

7、高線、中線、角平分線的意義和做法

8、三角形的穩(wěn)定性:三角形的外形是固定的,三角形的這共性質(zhì)叫三角形的穩(wěn)定性。

9、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°

推論1直角三角形的兩個(gè)銳角互余

推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和

推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

11、三角形外角的性質(zhì)

(1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

(2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和;

(3)三角形的一個(gè)外角大于與它不相鄰的任一內(nèi)角;

(4)三角形的外角和是360°。

四邊形(含多邊形)學(xué)問點(diǎn)、概念總結(jié)

一、平行四邊形的定義、性質(zhì)及判定

1、兩組對邊平行的四邊形是平行四邊形。

2、性質(zhì):

(1)平行四邊形的對邊相等且平行

(2)平行四邊形的對角相等,鄰角互補(bǔ)

(3)平行四邊形的對角線相互平分

3、判定:

(1)兩組對邊分別平行的四邊形是平行四邊形

(2)兩組對邊分別相等的四邊形是平行四邊形

(3)一組對邊平行且相等的四邊形是平行四邊形

(4)兩組對角分別相等的四邊形是平行四邊形

(5)對角線相互平分的四邊形是平行四邊形

4、對稱性:平行四邊形是中心對稱圖形

二、矩形的定義、性質(zhì)及判定

1、定義:有一個(gè)角是直角的平行四邊形叫做矩形

2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對角線相等

3、判定:

(1)有一個(gè)角是直角的平行四邊形叫做矩形

(2)有三個(gè)角是直角的四邊形是矩形

(3)兩條對角線相等的平行四邊形是矩形

4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

三、菱形的定義、性質(zhì)及判定

1、定義:有一組鄰邊相等的平行四邊形叫做菱形

(1)菱形的四條邊都相等

(2)菱形的對角線相互垂直,并且每一條對角線平分一組對角

(3)菱形被兩條對角線分成四個(gè)全等的直角三角形

(4)菱形的面積等于兩條對角線長的積的一半

2、s菱=爭6(n、6分別為對角線長)

3、判定:

(1)有一組鄰邊相等的平行四邊形叫做菱形

(2)四條邊都相等的四邊形是菱形

(3)對角線相互垂直的平行四邊形是菱形

4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

四、正方形定義、性質(zhì)及判定

1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形

2、性質(zhì):

(1)正方形四個(gè)角都是直角,四條邊都相等

(2)正方形的兩條對角線相等,并且相互垂直平分,每條對角線平分一組對角

(3)正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形

(4)正方形的對角線與邊的夾角是45°

(5)正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形

3、判定:

(1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等

(2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角

4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

五、梯形的定義、等腰梯形的性質(zhì)及判定

1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對角線相等

3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

4、對稱性:等腰梯形是軸對稱圖形

六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

七、線段的重心是線段的中點(diǎn);平行四邊形的重心是兩對角線的交點(diǎn);三角形的重心是三條中線的交點(diǎn)。

八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。

九、多邊形

1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

4、多邊形的對角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對角線。

5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。

6、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。

7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全掩蓋,叫做用多邊形掩蓋平面。

8、公式與性質(zhì)

多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

9、多邊形外角和定理:

(1)n邊形外角和等于n·180°-(n-2)·180°=360°

(2)邊形的每個(gè)內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°

10、多邊形對角線的條數(shù):

(1)從n邊形的一個(gè)頂點(diǎn)動(dòng)身可以引(n-3)條對角線,把多邊形分詞(n-2)個(gè)三角形

(2)n邊形共有n(n-3)/2條對角線

圓學(xué)問點(diǎn)、概念總結(jié)

1、不在同始終線上的三點(diǎn)確定一個(gè)圓。

2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

推論2圓的兩條平行弦所夾的弧相等

3、圓是以圓心為對稱中心的中心對稱圖形

4、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

7、同圓或等圓的半徑相等

8、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

10、推論在同圓或等圓中,假如兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

11、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角

12、①直線L和⊙O相交d

②直線L和⊙O相切d=r

③直線L和⊙O相離dr

13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑

15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

16、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

17、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角

19、假如兩個(gè)圓相切,那么切點(diǎn)肯定在連心線上

20、①兩圓外離dR+r

②兩圓外切d=R+r

③兩圓相交R-rr)

④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dr)

21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

22、定理:把圓分成n(n≥3):

(1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

(2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

24、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

27、正三角形面積√3a/4a表示邊長

28、假如在一個(gè)頂點(diǎn)四周有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

29、弧長計(jì)算公式:L=n兀R/180

30、扇形面積公式:S扇形=n兀R^2/360=LR/2

31、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

35、弧長公式l=a*ra是圓心角的弧度數(shù)r0扇形面積公式s=1/2*l*r

初一幾何經(jīng)典的學(xué)問點(diǎn)歸納篇四

一、線、角

1.直線沒有端點(diǎn),沒有長度,可以無限延長。

2.射線只有一個(gè)端點(diǎn),沒有長度,射線可以無限延長,并且射線有方向。

3.在一條直線上的一個(gè)點(diǎn)可以引出兩條射線。

4.線段有兩個(gè)端點(diǎn),可以測量長度。圓的半徑、直徑都是線段。

5.角的兩邊是射線,角的大小與射線的長度沒有關(guān)系,而是跟角的兩邊叉開的大小有關(guān),叉得越大角就越大。

6.幾個(gè)易錯(cuò)的角邊關(guān)系:

(1)平角的兩邊是射線,平角不是直線。

(2)三角形、四邊形中的角的兩邊是線段。

(3)圓心角的兩邊是線段。

7.兩條直線相交成直角時(shí),這兩條直線叫做相互垂直。其中一條直線叫做另一條直線的垂線,這兩條直線的交點(diǎn)叫做垂足。

8.從直線外一點(diǎn)到這條直線所畫的垂直線段的長度叫做點(diǎn)到直線的距離。

9.在同一個(gè)平面上不相交的兩條直線叫做平行線。

二、三角形

1.任何三角形內(nèi)角和都是180度。

2.三角形具有穩(wěn)定的特性,三角形兩邊之和大于第三邊,三角形兩邊之差小于第三邊。

3.任何三角形都有三條高。

4.直角三角形兩個(gè)銳角的和是90度。

5.兩個(gè)三角形等底等高,則它們面積相等。

6.面積相等的兩個(gè)三角形,外形不肯定相同。

三、正方形面積

1.正方形面積:邊長邊長

2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論