版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如果在一次實驗中,測得x,y的四組數(shù)值分別是A1,3,B2,3.8,C3,5.2,D4,6,則A.y=x+1.9 B.C.y=0.95x+1.04 D.2.已知某區(qū)中小學(xué)學(xué)生人數(shù)如圖所示,為了解學(xué)生參加社會實踐活動的意向,擬采用分層抽樣的方法來進行調(diào)查。若高中需抽取20名學(xué)生,則小學(xué)與初中共需抽取的人數(shù)為()A.30 B.40 C.70 D.903.在中,,,成等差數(shù)列,,則的形狀為()A.直角三角形 B.等腰直角三角形C.等腰三角形 D.等邊三角形4.下列四組中的函數(shù),表示同一個函數(shù)的是()A., B.,C., D.,5.若直線與直線平行,則實數(shù)A.0 B.1 C. D.6.?dāng)?shù)列中,,則數(shù)列的極限值()A.等于0 B.等于1 C.等于0或1 D.不存在7.將的圖象向左平移個單位長度,再向下平移個單位長度得到的圖象,若,則()A. B. C. D.8.已知函數(shù),(),若對任意的(),恒有,那么的取值集合是()A. B. C. D.9.傾斜角為,在軸上的截距為的直線方程是A. B. C. D.10.已知是不同的直線,是不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)等差數(shù)列,的前項和分別為,,若,則__________.12.已知,,兩圓和只有一條公切線,則的最小值為________13.將二進制數(shù)110轉(zhuǎn)化為十進制數(shù)的結(jié)果是_____________.14.已知扇形的圓心角,扇形的面積為,則該扇形的弧長的值是______.15.在扇形中,如果圓心角所對弧長等于半徑,那么這個圓心角的弧度數(shù)為______.16.已知,,與的夾角為鈍角,則的取值范圍是_____;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)為奇函數(shù).(1)求實數(shù)的值并證明函數(shù)的單調(diào)性;(2)解關(guān)于不等式:.18.已知函數(shù),(1)求函數(shù)的最小正周期;(2)設(shè)的內(nèi)角的對邊分別為,且,,,求的面積.19.若關(guān)于的不等式對一切實數(shù)都成立,求實數(shù)的取值范圍.20.已知為數(shù)列的前n項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和.21.已知向量(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,,若,求的周長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
求出樣本數(shù)據(jù)的中心(2.5,4.5),依次代入選項中的回歸方程.【詳解】∵x∴樣本數(shù)據(jù)的中心為(2.5,4.5),將它依次代四個選項,只有B符合,∴y與x之間的回歸直線方程是y=1.04x+1.9【點睛】本題的考點是回歸直線經(jīng)過樣本點的中心,而不是考查利用最小二乘法求回歸直線方程.2、C【解析】
根據(jù)高中抽取的人數(shù)和高中總?cè)藬?shù)計算可得抽樣比;利用小學(xué)和初中總?cè)藬?shù)乘以抽樣比即可得到結(jié)果.【詳解】由題意可得,抽樣比為:則小學(xué)和初中共抽?。喝吮绢}正確選項:【點睛】本題考查分層抽樣中樣本數(shù)量的求解,關(guān)鍵是能夠明確分層抽樣原則,準(zhǔn)確求解出抽樣比,屬于基礎(chǔ)題.3、B【解析】
根據(jù)等差中項以及余弦定理即可.【詳解】因為,,成等差數(shù)列,得為直角三角形為等腰直角三角形,所以選擇B【點睛】本題主要考查了等差中項和余弦定理,若為等差數(shù)列,則,屬于基礎(chǔ)題.4、A【解析】
分別判斷兩個函數(shù)的定義域和對應(yīng)法則是否相同即可.【詳解】.的定義域為,,兩個函數(shù)的定義域相同,對應(yīng)法則相同,所以,表示同一個函數(shù)..的定義域為,,兩個函數(shù)的定義域相同,對應(yīng)法則不相同,所以,不能表示同一個函數(shù)..的定義域為,的定義域為,兩個函數(shù)的定義域不相同,所以,不能表示同一個函數(shù)..的定義域為,的定義域,兩個函數(shù)的定義域不相同,對應(yīng)法則相同,所以,不能表示同一個函數(shù).故選.【點睛】本題主要考查判斷兩個函數(shù)是否為同一函數(shù),判斷的依據(jù)主要是判斷兩個函數(shù)的定義域和對應(yīng)法則是否相同即可.5、B【解析】
根據(jù)兩直線的平行關(guān)系,列出方程,即可求解實數(shù)的值,得到答案.【詳解】由題意,當(dāng)時,顯然兩條直線不平行,所以;由兩條直線平行可得:,解得,當(dāng)時,直線方程分別為:,,顯然平行,符合題意;當(dāng)時,直線方程分別為,,很顯然兩條直線重合,不合題意,舍去,所以,故選B.【點睛】本題主要考查了兩直線的位置關(guān)系的應(yīng)用,其中解答中熟記兩直線平行的條件,準(zhǔn)去計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.6、B【解析】
根據(jù)題意得到:時,,再計算即可.【詳解】因為當(dāng)時,.所以.故選:B【點睛】本題主要考查數(shù)列的極限,解題時要注意公式的選取和應(yīng)用,屬于中檔題.7、D【解析】因為,所以,因此,選D.點睛:三角函數(shù)的圖象變換,提倡“先平移,后伸縮”,但“先伸縮,后平移”也常出現(xiàn)在題目中,所以也必須熟練掌握.無論是哪種變形,切記每一個變換總是對字母而言.8、A【解析】當(dāng)時,,畫出圖象如下圖所示,由圖可知,時不符合題意,故選.【點睛】本題主要考查含有絕對值的不等式的解法,考查選擇題的解題策略中的特殊值法.主要的需要滿足的是,根據(jù)不等式的解法,大于在中間,小于在兩邊,可化簡為,左右兩邊為二次函數(shù),中間可以由對數(shù)函數(shù)圖象平移得到,由此畫出圖象驗證是否符合題意.9、D【解析】試題分析:傾斜角,直線方程截距式考點:斜截式直線方程點評:直線斜率為,在y軸上的截距為,則直線方程為,求直線方程最終結(jié)果整理為一般式方程10、D【解析】
由線面平行的判定定理即可判斷A;由線面垂直的判定定理可判斷B;由面面垂直的性質(zhì)可判斷C;由空間中垂直于同一條直線的兩平面平行可判斷D.【詳解】對于A選項,加上條件“”結(jié)論才成立;對于B選項,加上條件“直線和相交”結(jié)論才成立;對于C選項,加上條件“”結(jié)論才成立.故選:D【點睛】本題考查空間直線與平面的位置關(guān)系,涉及線面平行的判定、線面垂直的判定、面面垂直的性質(zhì),屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析:首先根據(jù)等差數(shù)列的性質(zhì)得到,利用分?jǐn)?shù)的性質(zhì),將項的比值轉(zhuǎn)化為和的比值,從而求得結(jié)果.詳解:根據(jù)題意有,所以答案是.點睛:該題考查的是有關(guān)等差數(shù)列的性質(zhì)的問題,將兩個等差數(shù)列的項的比值可以轉(zhuǎn)化為其和的比值,結(jié)論為,從而求得結(jié)果.12、9【解析】
兩圓只有一條公切線,可以判斷兩圓是內(nèi)切關(guān)系,可以得到一個等式,結(jié)合這個等式,可以求出的最小值.【詳解】,圓心為,半徑為2;,圓心為,半徑為1.因為兩圓只有一條公切線,所以兩圓是內(nèi)切關(guān)系,即,于是有(當(dāng)且僅當(dāng)取等號),因此的最小值為9.【點睛】本題考查了圓與圓的位置關(guān)系,考查了基本不等式的應(yīng)用,考查了數(shù)學(xué)運算能力.13、6【解析】
將二進制數(shù)從右開始,第一位數(shù)字乘以2的0次冪,第二位數(shù)字乘以2的1次冪,以此類推,進行計算即可.【詳解】,故答案為:6.【點睛】本題考查進位制,解題關(guān)鍵是了解不同進制數(shù)之間的換算法則,屬于基礎(chǔ)題.14、【解析】
先結(jié)合求出,再由求解即可【詳解】由,則故答案為:【點睛】本題考查扇形的弧長和面積公式的使用,屬于基礎(chǔ)題15、1【解析】
根據(jù)弧長公式求解【詳解】因為圓心角所對弧長等于半徑,所以【點睛】本題考查弧長公式,考查基本求解能力,屬基礎(chǔ)題16、【解析】
與的夾角為鈍角,即數(shù)量積小于0.【詳解】因為與的夾角為鈍角,所以與的數(shù)量積小于0且不平行.且所以【點睛】本題考查兩向量的夾角為鈍角的坐標(biāo)表示,一定注意數(shù)量積小于0包括平角.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2,證明見解析(2)【解析】
(1)由函數(shù)為奇函數(shù),得,化簡得,所以,.再轉(zhuǎn)化函數(shù)為,由定義法證明單調(diào)性.(2)將可化為,構(gòu)造函數(shù),再由在上是單調(diào)遞增函數(shù)求解.【詳解】(1)根據(jù)題意,因為函數(shù)為奇函數(shù),所以,即,即,即,化簡得,所以.所以,證明:任取且,則因為,所以,,,,所以∴,所以在上單調(diào)遞增;(2)可化為,設(shè)函數(shù),由(1)可知,在上也是單調(diào)遞增,所以,即,解得.【點睛】本題主要考查了函數(shù)的單調(diào)性和奇偶性的應(yīng)用,還考查了運算求解的能力,屬于中檔題.18、(1);(2).【解析】
(1)利用二倍角和輔助角公式可將函數(shù)整理為,利用求得結(jié)果;(2)由,結(jié)合的范圍可求得;利用兩角和差正弦公式和二倍角公式化簡已知等式,可求得;分別在和兩種情況下求解出各邊長,從而求得三角形面積.【詳解】(1)的最小正周期:(2)由得:,即:,,解得:,由得:即:若,即時,則:若,則由正弦定理可得:由余弦定理得:解得:綜上所述,的面積為:【點睛】本題考查正弦型函數(shù)的最小正周期、三角形面積的求解,涉及到正弦定理、余弦定理、三角形面積公式、兩角和差正弦公式、二倍角公式、輔助角公式的應(yīng)用,考查學(xué)生對于三角函數(shù)、三角恒等變換和解三角形知識的掌握.19、【解析】
對二次項系數(shù)分成等于0和不等于0兩種情況進行討論,對時,利用二次函數(shù)的圖象進行分析求解.【詳解】當(dāng)時,不等式對一切實數(shù)都成立,所以成立;當(dāng)時,由題意得解得:;綜上所述:.【點睛】本題考查不等式恒成立問題,注意運用分類討論思想進行求解,同時也要結(jié)合二次函數(shù)的圖象進行問題分析與求解.20、(1)(2)【解析】
(1)先根據(jù)和項與通項關(guān)系得項之間遞推關(guān)系,再根據(jù)等比數(shù)列定義以及通項公式求結(jié)果,(2)根據(jù)錯位相減法求結(jié)果.【詳解】(1)因為,所以當(dāng)時,,相減得,,當(dāng)時,,因此數(shù)列為首項為,2為公比的等比數(shù)列,(2),所以,則2,兩式相減得.【點睛】本題考查錯位相減法求和以及由和項求通項,考查基本求解能力,屬中檔題.21、(1);(2)【解析】
(1)根據(jù)向量的數(shù)量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 用戶行為與滿意度研究-洞察分析
- 《景觀色彩構(gòu)成知識》課件
- 加盟合作的意向書(5篇)
- 農(nóng)業(yè)機械行業(yè)產(chǎn)業(yè)鏈分析
- 利用科技力量促進兒童健康飲食教育的實踐探索
- 專業(yè)教育資源在不同領(lǐng)域的應(yīng)用與價值
- 減肥藥的成分解析與效果評估
- 《大學(xué)物理力學(xué)》課件
- 從零開始打造高效能的創(chuàng)業(yè)團隊
- 分工明確對提升團隊工作效率的重要性
- 2024智慧城市城市交通基礎(chǔ)設(shè)施智能監(jiān)測技術(shù)要求
- 《小學(xué)美術(shù)微課程資源開發(fā)與應(yīng)用的實踐研究》結(jié)題報告
- 物理診斷學(xué)智慧樹知到期末考試答案章節(jié)答案2024年溫州醫(yī)科大學(xué)
- 2024年輔警招聘考試試題庫含完整答案(各地真題)
- 《工程建設(shè)標(biāo)準(zhǔn)強制性條文電力工程部分2023年版》
- 多發(fā)性骨折的護理
- 2023-2024學(xué)年北京市海淀區(qū)七年級(上)期末數(shù)學(xué)試卷(含解析)
- 虛擬電廠總體規(guī)劃建設(shè)方案
- 調(diào)試人員微波技術(shù)學(xué)習(xí)課件
- 2024年四川成都市興蓉集團有限公司招聘筆試參考題庫含答案解析
- 《傣族舞蹈教程》課件
評論
0/150
提交評論